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Phase solitons and domain dynamics in an optically injected semiconductor laser

F. Gustave,1 L. Columbo,2 G. Tissoni,1 M. Brambilla,2 F. Prati,3 and S. Barland1,*
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We analyze experimentally and theoretically the spatiotemporal dynamics of a highly multimode semiconductor
laser with coherent optical injection. Due to the particular geometry of the device (a 1-m-long ring cavity), the
multimode dynamics can be resolved in real time and we observe stable chiral solitons and domain dynamics.
The experiment is analyzed in the framework of a set of effective semiconductor Maxwell-Bloch equations. We
analyze the stability of stationary solutions and simulate both the complete model and a reduced rate equation
model. This allows us to predict domain shrinking and the stability of only one chiral charge that we ascribe to
the finite active medium response time.
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I. INTRODUCTION

Optical systems are often used as an experimental test
bench for the analysis of complex dynamical phenomena. In
the context of laser physics, many such studies have been
devoted to the laser with injected signal [1,2]. This interest
can be attributed to the fact that the forcing term breaks the
phase symmetry of the laser system. Doing so, it increases
by one the number of dimensions of the phase space [3], and
therefore brings the very common single mode class-B lasers
(semiconductor, CO2, most solid state) from bidimensional to
three-dimensional, thus allowing chaotic dynamics. Because
of their relative experimental ease of use and theoretical
convenience, lasers with injected signal are therefore a widely
explored topic the study of which remains very lively on
specific topics like optical excitability [4–7]. However, most
works to date have remained limited to single mode dynamics
with comparatively few works focused on either transverse [8]
or longitudinal [9–11] spatiotemporal dynamics. Yet, multi-
mode or spatially extended lasers with coherent forcing can be
an extraordinary tool to explore synchronization and dynamics
of oscillatory media with forcing, a conceptually simple yet
very rich dynamical context [12–14].

Here, following the recent observation of phase solitons
hosting a chiral charge and deeply related to excitable
dynamics [15], we describe experimental observations of the
spatiotemporal behavior of a strongly multimode semiconduc-
tor ring laser with optical forcing. We evidence plane-wave and
modulational instabilities and show the propagation of fronts.
In order to explain these new experimental findings we derive
a set of effective semiconductor Maxwell-Bloch equations and
analyze the stability of injection locked solutions with an exact
and an approximated approach. The model is further reduced to
a set of rate equations which reproduce well the basic features
of the relevant dynamical regimes and of the phase solitons,
at difference from the Ginzburg-Landau derived in [15] which
assumes instantaneous gain.
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In Sec. II we present the experimental device (II A) followed
by spectral analysis of the dynamics (II B). We then describe
different instabilities (II C) and analyze the propagation of
solitons and fronts (II D). The theoretical analysis is reported in
Sec. III, where we first derive a set of effective semiconductor
Maxwell-Bloch equations (III A) and their reduction to rate
equations (III B). We then analyze the injection locked solution
and its stability (III C) and describe the results of numerical
simulations (III D). Finally, we present our conclusions in
Sec. IV.

II. EXPERIMENT

A. Experimental setup

The experimental setup is shown in Fig. 1. It consists of
a highly multimode semiconductor ring laser with external
forcing. The ring laser is built by enclosing a 4-mm-long,
980-nm, semiconductor optical amplifier inside a ring cavity.
The direction of the junction is horizontal (i.e., the largest
transverse direction of the gain stripe is vertical). Due to the
geometry of the gain stripe, the output beam of the optical
amplifier is very astigmatic.

At difference from standard operation of optical amplifiers,
the present amplifier being operated in a laser with injected
signal configuration requires very careful stabilization of
temperature in order to keep the laser wavelength emission
constant with respect to the external forcing. This is here
achieved by two Peltier elements operating in parallel and with
separate heat sinks. One of the Peltier elements provides the
bulk of heat removal and is operated at constant current, while
the other one is operated in a standard proportional-integral-
derivative scheme for high-sensitivity active stabilization.
The highly diverging direction is collimated on each side
with high numerical aperture spherical collimators and the
remaining divergence along the other direction (vertical) is
then compensated for by a set of cylindrical lenses. The ring
cavity is eight-shaped because it allows for lower incidence
angle of the beam on the cavity mirrors. The laser is kept
unidirectional by an optical isolator placed at the opposite
side of the cavity with respect to the gain medium. The
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FIG. 1. Left: Scheme of the experimental setup. The semicon-
ductor element SE is enclosed in a unidirectional ring cavity, which
includes two beam splitters, one of which is used for signal pick-up
and the other one for external forcing. Cylindrical lenses CL are used
to compensate for the very strong astigmatism of the beam caused
by the aperture of the semiconductor element. FPD1-2 are high-
bandwidth (9 GHz) photodetectors used for time series (oscilloscope)
and power spectrum (PSA) measurements. Detector D1 is used to
monitor slow dynamics (micro- to millisecond) associated to thermal
effects. The optical spectrum analyzer is used for coarse tuning of the
forcing beam close to the ring laser frequency. The tunable master
laser spectrum is monitored by a Fabry-Perot interferometer and part
of the forcing beam is sent to a fiber coupler for beat note or phase
measurements.

former, combined with the cylindrical lenses, has the additional
effect of filtering out unwanted transverse effects [16,17] by
constraining emission on a single transverse mode. The ring
cavity itself is constituted by three high reflectivity mirrors
(R > 99%) and one 90% reflectivity beam splitter (BS) used as
an input for the forcing beam. One of the mirrors (bottom right
in Fig. 1) is mounted on a piezoelectric actuator which allows
subwavelength tuning of the cavity length. An additional 10%
reflectivity outcoupling beam splitter is inserted in the cavity
for the detection path since the other available output (at the
90% beam splitter) is unusable due to very strong direct
reflection of the forcing beam which brings the detectors
to saturation. The round-trip time is about 3.6 ns and the
measured field lifetime is of the order of 10 ns. This means a
very low finesse (less than ten) of the cavity as compared to
the value which could be estimated from the beam splitter and
mirror reflectivities, which we attribute to poor mode matching
(somewhat unavoidable with strongly astigmatic beams).

The output of the laser is measured in the direction of the
injection beam. The output beam is split in several parts, used
for low-bandwidth (but high-sensitivity) emitted power mea-
surement, optical spectrum measurement, and high-bandwidth
(9 GHz) time-series or power spectrum measurement. The
first two detection paths are used to optimize the ring laser
alignment by minimizing standalone lasing threshold and to
ensure proper tuning of the injection beam with respect to the
ring laser. The emitted power in the operating regime (about 1.1
times the threshold current) is of the order of 10 mW. In order
to resolve the phase of the laser beam with respect to that of the
external forcing, each of these beams can be separately coupled
into two of the optical inputs of a 3 × 3 single mode fiber
coupler. The simultaneous measurement of all three outputs

(corresponding to three different phase conditions between
both fields) allows the reconstruction via simple algebra of the
instantaneous intensity and relative phase [6,15]. We underline
that the procedure is straightforward in principle but requires
very careful calibration of all detectors.

The injection beam is provided by a grating tunable
external cavity semiconductor laser followed by an optical
amplifier providing about 200 mW optical power. Although no
emission is expected from the ring laser back into the master
laser since the ring laser is constrained to be unidirectional,
an optical isolator protects the master laser from eventual
spurious backreflections.

B. Spectral analysis

The two most important control parameters of the ex-
periment are injected power and detuning between master
and slave lasers. We show in Fig. 2 the transmission of the
ring cavity when biased below standalone emission threshold
depending on the detuning between the ring cavity and the
injection beam � = ν − νc, for several values of injected
power. This figure has been obtained by scanning the voltage
on the piezoelectric actuator and measuring the time averaged
output power of the ring cavity. At low injected power the
transmission curve shows three symmetric maxima. Each of
these peaks corresponds to the resonances of a linear optical
cavity and is separated by 275 MHz as expected due to the
length of the ring. Increasing the injected beam power the
cavity resonances are shifted towards the red (up to about
60 MHz) and become asymmetric. While the left part of
the resonance remains essentially unaltered, the right part
becomes steeper and finally essentially vertical for increasing
values of the injected power. We underline that these curves
were obtained with a low-bandwidth detector, which averages
out any spatial or temporal dynamics. In fact, time trace
observations for static value of the voltage corresponding to
the vertical edge of the resonance show very slow square-wave
oscillations due to thermal effects, analyzed in the context
of slow-fast excitability in [18] and described as regenerative
oscillations in [19,20]. In [18–20], these oscillations have been
attributed to temperature dynamics, which slowly destabilizes
both states of an optical bistability loop [37]. In these
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FIG. 2. Transmission of the ring cavity as a function of the
detuning between the master laser and the resonances of the ring
cavity, obtained for different values of injected power.
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FIG. 3. Evolution of the power spectrum computed on time
traces when the detuning is changed by applying voltage to the
piezo. The dominant parabolic shapes correspond to the fact that
the displacement of the piezoelectric component is not strictly linear
with voltage.

conditions, no dynamics faster than the round-trip time has
been observed.

In contrast, spatial dynamics, of course associated with
multimode instabilities in the context of optical resonators,
can be readily observed when the bias current of the ring
laser is brought above the lasing emission threshold. Even in
the absence of optical injection, the laser emission consists of
several longitudinal modes. In the presence of optical injection,
many frequencies therefore show up in the power spectrum as
plotted in Fig. 3. The vertical lines correspond to the beat
notes between successive longitudinal modes of the ring laser.
Due to the slightly nonlinear response of the piezo element on
the applied voltage, the actual detuning between the forcing
and the laser modes varies quadratically when the voltage is
varied. This translates in parabolic shapes for the beat note
between forcing and the laser when the forcing is far from
resonant conditions (voltage close to zero or ten). Closer to
resonant condition (between 3 and 9 V) the frequencies are
pulled and the beat notes do not follow this parabolic shape.
The actual detuning is varied in almost two free spectral ranges
over the 0–15-V scan. In this particular case, the strongest
frequency is close to 800 MHz, which indicates that the
forcing frequency is detuned about three free spectral ranges
from the dominant laser cavity mode. Nevertheless, many
other longitudinal modes are also involved and, depending on
specific conditions, the full width of the spectrum can reach
about 10 GHz.

C. Instabilities of the homogeneous solution

Time traces monitored by the high-bandwidth detector
contain all the information that can be extracted from a
pure intensity measurement but actually this is not the most
convenient way to visualize the data. In fact, most of the traces
are exceedingly complex and the phenomena taking place can
only be grasped by observing in a specific comoving reference
frame. This is obtained by acquiring very long real-time mea-
surements (from 10 × 106 to 200 × 106 points) and splitting
this array of points in many segments of length equal to one
cavity round-trip time. These segments are then stacked on top

(a) (b)

FIG. 4. Different instabilities can develop along the propagation
direction. (a) Plane wave instability. (b) Modulational instability
leading to a drifting roll pattern or turbulent regime.

of each other, which provide a space-time representation of the
dynamics, the horizontal axis being equivalent to space inside
the cavity while the vertical dimension describes the evolution
in units of round trips. Many spatiotemporal regimes can
be straightforwardly analyzed in this representation whereas
some of them would be very difficult to grasp in a purely
temporal representation.

In Fig. 4 (left panel) we show an example of a plane-wave
instability. Here the whole spatial extension of the system
changes state at about round trip 260, switching from a
high-power to a low-power state, both of them locked at
the frequency of the external forcing. The two vertical time
traces on the left correspond to the evolution of two different
points of space (marked by the vertical lines in the space-time
diagram), which appear to be very well synchronized. Also
the small amplitude oscillations which appear between round
trips 400 and 500 take place essentially along the whole spatial
extension of the system, indicating a fundamentally single
mode behavior. In contrast, in the right panel of Fig. 4, we show
the growth of an instability which involves several longitudinal
modes. In this case, starting from a stationary homogeneous
solution a spatially periodic pattern develops and drifts.

D. Solitons and fronts

In Fig. 5 (left frame), the laser beam intensity is uniform
except for a narrow perturbation at about 0.35 space units.
The width of this pulse depends in a nontrivial way on the
detuning between the forcing and the closest laser mode but
pulses as narrow as 200 ps have been observed. Note that
this breadth amounts to about 1/18 of the round-trip time,
as will be noted further on. In this regime, the whole system
is locked to the external forcing, except for the pulse, which
also consists of a 2π relative phase rotation of the slave laser
field with respect to the injected field (top right frame). In
order to get an indication for the robustness of these wave
packets, we have acquired time traces corresponding to 40-km
propagation (i.e., 4 × 104 round trips, which corresponds to
the maximal record length of our oscilloscope). Then we have
superimposed the corresponding 4 × 104 observations of the
pulse and superimposed them accurately (effectively canceling
any jitter) on a color-coded bidimensional histogram mimick-
ing analog oscilloscope persistence (bottom-right frame). The
very narrow resulting distribution indicates that these wave
packets are extremely robust, most of the dispersion of the
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FIG. 5. Robustness of phase solitons. Left frame: A localized wave packet of 200-ps duration propagates at constant speed over 1000
round trips. It consists of a 2π phase rotation (top right frame), embedded in a uniformly phase-locked background. Bottom right: Color coded
bidimensional histogram of soliton temporal profile (close to 1-ns duration), which shows remarkably constant shape over 4 × 104 round trips.
Note the logarithmic color scale.

curves actually resulting from electrical noise in the detector
and oscilloscope. Since several of these nondispersing wave
packets can coexist independently of each other, they have
been analyzed as phase solitons in [15].

In [15] the chiral charge of these solitons (set by the rotation
direction of the relative phase) has been shown to originate
from chaotic regions, in which the electric-field amplitude can
vanish, leading to a phase defect. Nevertheless, chaotic regions

FIG. 6. Domain dynamics towards a phase-locked regime. The
chaotic domain shrinks due to different propagation speed of the left
and right fronts.

do not always carry the chiral charge which will allow soliton
stability. For example, in Fig. 6, we show the evolution of
the system towards a fully locked state without any soliton.
At round trip zero, more than half of the system is phase
locked while the remaining part is chaotic and two fronts are
connecting both states. Interestingly the left and right front
differ notably but inside the chaotic domain there is no obvious
asymmetry. In the course of time the left and right fronts drift at
constant but different speeds. This front propagation is strongly
reminiscent of observations realized in transverse [21] and in
delayed optical systems [22]. Since no sufficient pinning force
exists on the fronts [21,23,24] the relative motion of the fronts
leads to continuous contraction of the chaotic domain which
finally disappears.

III. THEORY

In order to describe field evolution in the laser with coherent
injection sketched in Fig. 1 we extended the model described
in [25,26] to include field propagation. Such a model can be
easily retraced to widespread ones in multimode laser theory,
incorporating the complex and peculiar optical features of
semiconductor lasers and avoiding the heavy, first-principles,
many-body quantum-mechanical treatment. Specifically, this
is done by using a phenomenological formula for the frequency
and carrier density dependence of the gain and refractive index
to fit the microscopic susceptibility. This leads to a simple
differential equation for temporal evolution of the macroscopic
polarization P in the semiconductor active medium that can
be coupled with the equations for the electric field E and the
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carrier density N to provide a complete and self-consistent
description of the system dynamics.

A. Effective semiconductor Maxwell-Bloch equations

We suppose that both BSs have transmissivity T �= 0, while
all mirrors M are perfect reflectors (T = 0). The electric field
ẼI (0,t) injected into the cavity at z = 0 (the position of the
right BS) and the one propagating in the active medium Ẽ(z,t)
can be written as

Ẽ(z,t) = E(z,t)

2
exp [i(k0z − ω0t)] + c.c., (1)

ẼI (0,t) = EI

2
exp (−iω0t) + c.c., (2)

where EI ∈ R,k0 = ω0/v = ω0n/c and n = √
εb is the back-

ground refractive index. Analogously, the medium macro-
scopic polarization can be written as

P̃ (z,t) = P(z,t)

2
exp [i(k0z − ω0t)] + c.c. (3)

In the slowly varying envelope and rotating wave approxi-
mation, the radiation-matter interaction is described by the
following nonlinear partial differential equations [25]:

∂E
∂z

+ 1

v

∂E
∂t

= g̃P, (4)

τd

∂P
∂t

= [	(N )(1 − iα) + 2iδ(N )], (5)

× [−if0ε0εb(1 − iα)(N/N0 − 1)E − P],

τe

∂N

∂t
= Iτe

eV
− N − iτe

4�
(E∗P − EP∗), (6)

where τe is the carrier density nonradiative decay time; I and
V are the pump current and the sample volume, respectively;
g̃ = iω0	c/(2ε0nngc),ng is the group index; 	c is the field
confinement factor; α is the linewidth enhancement factor; and
N0 is the transparency carrier density. Finally 	(N ) and δ(N )
represent the gain width and the detuning between the gain
peak and the reference frequency [as long as |δ(N )| � 	(N )]
and in Eq. (5) the term ζ = f0ε0εb is the differential gain,
where f0 measures the maximum gain [25]. The functions
	(N ) and δ(N ) can be phenomenologically derived by a
linear fit of the gain curves calculated with a microscopic
model for different values of N [25]. In terms of the new
variables E = ηE,P ′ = iηP,D = ζ (N/N0 − 1), with η2 =
ζ τe/(2�N0), Eqs. (4)–(6) take the simplified form

∂E

∂z
+ 1

v

∂E

∂t
= gP, (7)

τd

∂P

∂t
= [	(D)(1 − iα) + 2iδ(D)]

× [(1 − iα)ED − P ], (8)

τe

∂D

∂t
= μ − D − 1

2
(E∗P + EP ∗), (9)

where we set g = −ig̃ ∈ R,EI = ηEI , and μ = ζ (I/I0 − 1),
I0 = eV N0/τe being the transparency current. For the func-
tions 	(D) and δ(D) we use the expressions reported in [26]
for an equivalent emitter 	(D) = 0.276 + 1.016 D,δ(D) =

−0.169 + 0.216 D. To make the boundary conditions periodic
and isochronous we follow the guidelines in [2]. The boundary
condition for the field envelope at z = 0 = L is

E(0,t) =
√

T EI + RE(l,t − �t)e−iδ0 , (10)

where R = 1 − T ,�t = (L − l)/c,� = L − l + nl and δ0 =
(ωc − ω0)�/c,ωc is the cavity frequency closest to ω0 and l

is the length of the active medium. By introducing the trans-
formation η = z/l,t ′ = t + z

l
�t the boundary condition (10)

assumes the isochronous form

E(0,t ′) =
√

T EI + RE(1,t ′)e−iδ0 . (11)

and Eq. (7) becomes

∂E

∂η
+ �

c

∂E

∂t ′
= gP, (12)

while Eqs. (8) and (9) read the same apart from the replacement
of ∂/∂t by ∂/∂t ′. Finally, by introducing the new field
envelopes

E′(η,t ′) = E(z,t ′)e[(ln R−iδ0)η] +
√

T EIη, (13)

P ′(η,t ′) = P (z,t ′)e[(ln R−iδ0)η], (14)

we obtain

∂E′

∂η
+ �

c

∂E′

∂t ′
= (ln R − iδ0)(E′ −

√
T EIη) (15)

+
√

T EI + glP ′,

τd

∂P ′

∂t ′
= [	(D)(1 − iα) + 2iδ(D)] (16)

× [(1 − iα)D(E′ −
√

T EIη) − P ′],

τe

∂D

∂t ′
= μ − D − 1

2
e−(2 ln R)η (17)

× [E′∗P ′ + E′P ′∗ −
√

T EIη(P ′ + P ′∗)],

with the periodic and isochronous boundary condition:

E′(0,t ′) = E′(1,t ′). (18)

At this point we apply the low transmission approximation [2]
defined as T � 1,gl � 1,|δ0| � 1 with the pump parameter
A = gl/T and the cavity detuning θ = δ0/T both of order
unity.

In this limit the auxiliary variables E′ and P ′ defined
by Eqs. (13) and (14) coincide with E and P , respectively.
By introducing the dimensionless time τ = t ′/τd and rates
σ = τdcT /�,b = τd/τe, the amplitude y = EI/

√
T of the

injected field, and making the substitutions AP → P,AD →
D,Aμ → μ we can write the dynamical equations (15)–(17)
in the final form:

cτd

�

∂E

∂η
+ ∂E

∂τ
= σ [y − (1 + iθ )E + P ], (19)

∂P

∂τ
= [	(D)(1 − iα) + 2iδ(D)]

× [(1 − iα)ED − P ], (20)

∂D

∂τ
= b

[
μ − D − 1

2
(E∗P + EP ∗)

]
, (21)
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with E(0,τ ) = E(1,τ ). Equations (19)–(21), apart from the
propagation term, coincide with Eqs. (1)–(3) in [26] if in the
latter the diffraction term is neglected. The dependence of
the model parameters on the medium length within the cavity
l is purely parametric, provided that σ/b remains constant,
since it appears only via �,η, and σ . This indicates that this
geometrical term is relevant to the quantitative aspects of the
results but not to their substance.

We observe that Maxwell-Bloch equations for multilon-
gitudinal mode emission, analogous to Eqs. (19)–(21), were
introduced in [10] for a two-level unidirectional ring laser with
injected field. In that system a multimode instability, due to
the competition among the injected field frequency and the
free-running laser frequency, was analyzed in detail.

Thermal mechanisms which are present in the experiment
are not taken into account here because we are interested in
the fast spatial dynamics consisting of fronts and phase soliton
formation. Since, as we shall see in the following, the above
equations reproduce very well the experimental observations,
we conclude that thermal effects are not crucial to these
phenomena. The addition of a slow thermal variable coupled to
an effective detuning (as done for instance in [18–20]) could
allow the reproduction of the slow experimental features in
addition to the fast ones. However, it is very impractical with
the present model due to widely differing time scales and may
be more convenient using alternative modeling strategies based
on delayed differential equations [35,36].

B. Reduction to rate equations

The present model can be reduced to the widespread rate-
equation model (see, e.g., [27]) by assuming a flat gain (infinite
gain linewidth) which is formally stated by adiabatically
eliminating the macroscopic polarization P , i.e., by setting
∂P
∂τ

= 0 in Eq. (20):

cτd

�

∂E

∂η
+ ∂E

∂τ
= σ [y − (1 + iθ )E + (1 − iα)ED], (22)

∂D

∂τ
= b[μ − D(1 + |E|2)]. (23)

The rate-equation model has been numerically tested versus
the complete one [Eqs. (19)–(21)] for several relevant cases
and it has proved capable of describing coherent sceneries as
for dynamics and stability of locked/unlocked states and phase
solitons. This evidence, the deeper analysis of which will be
the object of further work, leads us to use the reduced approach
in the systematic study of the phase solitons properties. Note
that from the time scales σ � b a class-A approximation is
expected to be valid in the single mode regime. However, when
multiple modes are involved (as is the case here for soliton or
front propagation), this approximation is not guaranteed to
work anymore. In fact, as was shown in [15], a class-A model
(even derived with a nonstandard adiabatic elimination) cannot
reproduce some features of the experiment as, for example,
stability of the phase solitons only for one sign of chiral charge.

C. Injection locked solution and its stability

The dynamical equations (19)–(21) [as well as Eqs. (22)
and (23)] admit the longitudinally uniform stationary so-

lution E = Es = √
xeiφ,P = Ps,D = Ds (injection locked

solution) with Ds = μ/(1 + x),Ps = (1 − iα)DsEs , and

y2 = x[(1 − Ds)
2 + (θ + αDs)

2], (24)

φ = arctan

(
θ + αDs

Ds − 1

)
. (25)

Clearly μ = 1 is the value of the pump parameter at the free-
running laser threshold.

The shape of the stationary curves given by Eqs. (24)
and (25) depends on the parameters μ,α,θ and it can exhibit
bistability for suitable values of those parameters. Figure 7
shows the bistability domains in the (x,θ ) plane for different
values of μ and fixed α. The equation for the boundaries of
the bistability is [26]

θ± = −μα ±
√

μ2x2(1 + α2) − [(1 + x)2 − μ]2

(1 + x)2
. (26)

Using Eq. (26) we can derive the value of θS and xS correspond-
ing to the rightmost point of the bistability domain (vertical
tangent) [26]. In particular, one finds θS = −μα/(1 + xS)2,
which implies that in order to have bistability the detuning
θ must be negative, i.e., the injection frequency must be red
detuned with respect to the cavity resonance.

We study the stability of the stationary solution Es,Ps,Ds

in a standard way [2] assuming in accordance with the
experimental values b, αn = O(ε) and σ = O(ε2) and solving
the characteristic equation perturbatively in ε. The relevant
eigenvalue can be written as λ = λ1ε + λ2ε

2, with λ1 imagi-
nary. Hence the instability condition is Re(λ2) > 0, from which
we derived an equation for the boundaries of the instabilities
domain, which is biquadratic in αn:

c4b
−4α4

n + c2b
−2α2

n + c0 = 0, (27)

where the coefficients ci are given in the Appendix. The
coefficient c0 gives the boundaries of the instability domain

0 0.5 1 1.5
 x

-3

-2

-1

0

FIG. 7. The extension of the bistability in the (x,θ ) plane
increases for increasing values of μ. Black continuous line μ = 1.01,
blue dashed line μ = 1.05, red dash-dotted line μ = 1.1.
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in the single-mode limit n = 0, and it reads

c0 = [(x + 1)2 − μ]2 dy2

dx
. (28)

If the stationary curve is S shaped the equation c0 = 0 is
satisfied at the turning points of the curve, which means that, as
usual, the negative slope part of the curve is unstable. Another
solution of the equation, which exists even if the stationary
curve is single valued, is xIL = √

μ − 1, which corresponds to
the injection locking threshold, i.e., the stationary solution is
unstable when the injected amplitude is so small that x < xIL.
This result agrees with that of a two-level laser, where the
injection locking threshold is given by xIL = μ − μthr for a
class-B laser and by xIL = √

μthr(
√

μ − √
μthr) for a class-A

laser [2]. Considering that we have defined μthr = 1, we
observe that in this particular context of phase-locked solutions
the class-A approximation is valid. This is because σ � b and
the condition c0 = 0 amounts to assuming the single mode
limit αn = 0. As noted in Sec. III B, as soon as this last
condition ceases to be true, the class-A approximation may not
hold anymore. On the other hand, c4 is always non-negative
and it is null for Ds = 1, i.e., x = μ − 1. This explains the
existence of a vertical asymptote in the instability domains
shown in Fig. 8 for typical cases.

Referring to Fig. 8, we observe that the necessary condition
for the existence of a phase soliton, that is, the stability of the
whole upper branch of the stationary curve, is achieved when
θ + α is positive and sufficiently large (black line). In contrast,
if θ + α is positive but very small, null, or negative a part of
the upper branch in unstable against a band of side modes.
In this case the instability domain starts from the saddle node
when θ + α is null or negative (red and green curves) or from a
different point on the upper branch when θ + α is positive. We
will focus in the rest of the paper on the latter case θ = −2.97
where the whole upper branch is stable. The corresponding

0 0.01 0.02 0.03
 x

0

3

6

 n

10-3

0 2 4
 y 10-3

0

0.01

0.02

0.03

 x

 A

 B

 C

FIG. 8. Instability domains boundaries in the (αn,x) plane for
θ = −3.01 (green dash-dotted curve), θ = −3 (red dashed curve),
θ = −2.99 (thick blue curve), θ = −2.97 (thin black curve). The
inset represents the S-shaped curve of the injection locked solutions
corresponding to θ = −2.97. The other parameters are α = 3,μ =
1.01,σ = 3 × 10−6,b = 5 × 10−4.

S-shaped curve is shown in the figure inset together with the
three fixed points for y = 0.0014, denoted as A, B, and C.

D. Numerical simulations

We looked for phase solitons starting from point C in Fig. 8
where the system is excitable in the absence of propagation
(∂/∂z = 0).

A stable soliton is obtained by superimposing to the stable
locked state C a positive phase kink of 2π along z for the field,
having the form �+(z) = 4 tan−1 [exp(−βz)] with β large to
have a steep kink. We checked that a stable soliton can be
created in that way with any β larger than about 5. This is to
be expected, since phase solitons are robust attractors of the
system. The only observed difference is in the build-up time,
which is the larger the less steep is the phase jump (i.e., the
smaller is β).

Phase solitons are stable over a finite interval of locked
states C which begins approximately at the left turning point
of the bistable curve and the extension of which increases with
the pump μ as shown in Fig. 9.

In order to speed up the simulations, we obtained the
latter results by numerical integration of the reduced model
equations Eqs. (22) and (23), after checking their consistence
with the complete model. We observe that below the left
stability boundary the system falls towards the unstable lower
state, where its dynamics is characterized by spatiotemporal
turbulence, while above the right stability boundary the system
invariably approaches the uniform stable locked state.

Differently from what happens in driven oscillatory systems
described by the forced Ginzburg- Landau equation [14]
that preserves the parity symmetry, and in agreement with
the experiments, in our multilongitudinal mode laser the
“negative” chiral charge is unstable. In fact, as illustrated
in Fig. 10, the addition of a negative phase kink �−(z) =
2π − 4 tan−1 [exp(−βz)] to the field phase excites a negative
charged phase soliton that after a rather short transient
spontaneously undergoes a phase kink sign reversal. This
is accomplished by a passage of the field through the

1.01 1.02 1.03
1.3

1.5

1.7

1.9

2.1

2.3

 y

10-3

FIG. 9. Phase solitons existence range in terms of injected field
amplitude y vs the pump μ. We set θ = −2.97 while the other
parameters are as in Fig. 8.
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FIG. 10. Negatively charged solitons are unstable and acquire
a positive chiral charge by passing trough a phase defect. We set
y = 0.0014 and θ = −2.97. The other parameters are as in Fig. 8.

origin [E = 0 ⇐⇒ Im(E) = Re(E) = 0] in the phase-space
trajectory [see Fig. 5(b)], which is associated with the creation
of a transient phase defect.

Very interestingly for applications to all optical inten-
sity [28,29] or phase [30] information encoding, the mul-
tistability among the homogeneous locked state, the one
and the two phase solitons, a solution was demonstrated by
superimposing to the stable homogeneous background first a
positive kink and then a second one centered in a different
position (see Fig. 11).

Finally, one of the striking experimental observations is the
asymmetry between right and left fronts shown in Fig. 6. This
feature, which was not observed in numerical simulations of
the forced Ginzburg-Landau equation [15], is on the contrary
clearly visible when simulating the full model or the rate-
equation model as shown in Fig. 12 and then we conclude that
it is not related to the propagative nature of the system but to
the noninstantaneous semiconductor medium. Similarly to the

FIG. 11. Multistability among the homogeneous locked solution
corresponding to the fixed point A in Fig. 8, the one and two solitons
configurations. The two phase solitons travel endlessly along the
cavity. Parameters are as in Fig. 10.

FIG. 12. Domain coarsening. Fronts between stable locked states
and unstable states move at constant speed. The parameters are α =
3,μ = 1.01,σ = 3 × 10−6,b = 5 × 10−4,θ = −2.0,y = 0.235.

experimental observation, the growth of the locked state seems
to result from a convective instability since this state drifts
towards the right faster than it grows. However, the distinction
is of course strongly related to the chosen reference frame [31]
and in the present case of periodic boundary conditions the
stable state ends up invading the whole system in any case.

IV. CONCLUSIONS

We have presented an experimental, theoretical, and nu-
merical study of a semiconductor laser with coherent optical
injection. At variance with most previous works on the topic,
we focus on a strongly multimode regime and the resulting
spatiotemporal effects. Thanks to a balanced choice of the ge-
ometrical parameters of the experiment, we are able to observe
long term dynamics still resolving the most detailed features.
In particular we have presented observations of plane-wave
and modulational instabilities. In a suitable spatiotemporal
representation we have been able to describe complex time
series in terms of motion of fronts connecting chaotic and
phase-locked domains. When these chaotic domains contain a
chiral charge, the inward motion of fronts is halted and chirally
charged solitons emerge. We have measured the propagation of
these phase solitons over 40-km distance and therefore shown
their extreme robustness. Most of these observations can be
understood from the general literature in forced oscillatory
media, but at least two very unexpected features could be
described only with the use of a more specific modeling: phase
solitons are observed for only one sign of chiral charge and left
and right fronts differ strongly. The experimental results are
paired by a detailed derivation of the model sketched in [15]
where a linear stability of the homogeneous phase-locked
solutions was performed. This model was further reduced to a
set of rate equations including propagation which are still able
to capture all the specific features of the experiment, contrary to
the oversimplified approximation of an instantaneous medium
response. From this, we conclude that the asymmetry of the
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fronts and the instability of one of the two possible chiral signs
results from the noninstantaneous medium dynamics. In order
to clarify this point, experiments based on the propagation of
light in instantaneous media would certainly be insightful. In
particular, the analysis of rising and falling fronts in the regime
of coexistence of patterned and homogeneous state outside
the front-pinning region in coherently driven Kerr ring res-
onators [32,33] would be particularly interesting. On the other
hand, theoretical analysis dedicated to the stability of chirally
charged walls [34] might also shed more light on the origin of
the instability of the negatively charged solitons. In addition,
the destabilization of solitons (which is hard to address with
our partial differential equation model) might be more tractable
with models based on delayed differential equations [35,36],
the analysis of which could therefore prove very insightful.

Finally, our models predict that the pulse width associated
to the intensity shape of the phase solitons could be
significantly reduced to the ps or sub-ps scale if a shorter
cavity is considered and the medium response is made
correspondingly faster to ensure a formally analog dynamical
behavior in the multimode regime.
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APPENDIX

We study the stability of the stationary solution Es,Ps,Ds

as in [2] assuming spatiotemporal perturbations of the form
δX(η) exp(λτ ) where X = E,E∗, P , P ∗,D, and

δE(η) =
+∞∑

n=−∞
δfne

2πinη, n = 0,±1,±2 . . . . (A1)

The linearized equations for the perturbations are

λδfn = [iαn − σ (1 + iθ )]δfn + σ

∫ 1

0
dη e−2πinηδP, (A2)

λδP = Q[(1 − iα)(EsδD + DsδE) − δP ], (A3)

λδD = −b

2
(EsδP + δE∗Ps + EsδP

∗
s + δEP ∗

s ) − bδD,

(A4)

where αn = 2πncτd/� are the cavity resonances scaled to
the gain width and we set Q = 	(Ds)(1 − iα) + 2iδ(Ds).
Combining Eq. (A3) for δP and the analogous equation for

δP ∗ (not reported here) with Eq. (A4) for δD we get, after
lengthy but simple algebra, the following expressions for δP

and δP ∗ as a function of the electric-field perturbations δE

and δE∗:

δP = T1δE + T2E
2
s δE

∗, (A5)

δP ∗ = T ′
2(E∗

s )2δE + T ′
1δE

∗, (A6)
with

T1 = D−1(1 − iα)QDs (A7)

× [(λ + Q∗)(λ + b) − b(1 + iα)xλ/2],

T2 = −D−1(1 − iα)QDsb[Q∗ + (1 − iα)λ/2], (A8)

D = λ(λ + Q)(λ + Q∗) + bλ2 + 2bRe(Q)λ

+ bx[Re(Q) + αIm(Q)]λ + b|Q|2(1 + x). (A9)

The functions T ′
1,2 are obtained from T1,2 through complex con-

jugation but leaving λ unaltered. Inserting the expressions (A5)
and (A6) in Eq. (A2) for δfn and in the corresponding equation
for δf ∗

−n we obtain the characteristic equation

[λ + iαn + σ (1 + iθ − T1)][λ + iαn + σ (1 − iθ − T ′
1)]

− σ 2x2T2T
′

2 = 0. (A10)

In accordance with the experimental values, we can here
safely assume b, αn = O(ε), and σ = O(ε2) and solve
Eq. (A10) perturbatively in ε. The relevant eigenvalue can
be written as λ = λ1ε + λ2ε

2, with λ1 imaginary. Hence the
instability condition is Re(λ2) > 0, from which we derived an
equation for the boundaries of the instabilities domain, which
is biquadratic in αn:

c4b
−4α4

n + c2b
−2α2

n + c0 = 0, (A11)

where the coefficients ci are given by

c0 = −(1 + x)(1 + x − Ds)
[
D2

s (x − 1)(1 + α2)

+ 2Ds(1 − αθ ) − (1 + x)(1 + θ2)
]
, (A12)

c2 = −D4
s (1 + α2)[x2(1 + α2) − 2]

− 2D3
s [(2 + x)(2 + α2 − αθ )

+ x2(1 + α2)(αθ − 1)]

+D2
s [x2 + 2(6 + α2)(1 + x) − 8αθ (1 + x)

+ 2θ2(1 + x) − α2θ2x2]

+ 2Ds(1 + x)(2 + x)(αθ − θ2 − 2)

+ 2(1 + θ2)(1 + x)2, (A13)

c4 = (Ds − 1)2[(Ds − 1)2 + (αDs + θ )2]. (A14)
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