
PHYSICAL REVIEW A 93, 063822 (2016)

Extracting work from quantum states of radiation

M. Kolář
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Quantum optomechanics opens a possibility to mediate a physical connection between quantum optics and
classical thermodynamics. We propose and theoretically analyze a one-way chain starting from various quantum
states of radiation. In the chain, the radiation state is first ideally swapped to a sufficiently large mechanical
oscillator (membrane). Then the membrane mechanically pushes a classical almost massless piston, which is
pressing a gas in a small container. As a result, we observe strongly nonlinear and nonmonotonic transfer of the
energy stored in classical and quantum uncertainty of radiation to mechanical work. The amount of work and
even its sign depend strongly on the uncertainty of the radiation state. Our theoretical prediction would stimulate
an experimental proposal for such optomechanical connection to thermodynamics.
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I. INTRODUCTION

The recent development of quantum optomechanics has
stimulated many proposals and experiments testing the pos-
sibility of mechanical systems to mediate physical con-
nections between physical platforms [1–7]. These physical
connections bring together different physics and translate
many physical notions beyond their mathematical analogies.
Already from university studies, one would say that the
most natural connection of classical mechanics is to classical
thermodynamics [8]. On the other hand, quantum optics is
already directly connected to quantum mechanics by a pressure
of light [9,10] in many recent experimental achievements
[11–18]. Therefore, it is natural to think about the physical con-
nection between quantum optics and classical thermodynamics
mediated by mechanical systems. Theoretical thoughts about
it and planning of future experiments have been stimulated
by the recent fast progress in quantum optomechanics and
many discussions about quantum thermodynamics in this
context [19–27].

In contrast to many of these discussions, we focus on the
basic but important quantum-to-classical transition between
quantum modes of light, mechanical oscillators at that border,
and the fully classical system of the piston manipulating
thermodynamic states of gas in the closed container [8]. It is
a kind of quantum-classical transition typical for the detectors
registering light at the quantum level. The mediating mechan-
ical oscillator feels a position projection from the classical
system and environment [28]. The quantum quadrature of
light is therefore connected to the mechanical position and,
furthermore, to the position of a classical piston. Altogether,
it is a theoretical limit of a one-way von Neumann chain,
where one part drives the next one, but not vice versa.
At this point, we simply ignore all the backactions, which
could be the subject of further studies. Our first goal is to
describe how the inherent quantum uncertainty of the states

of light translates into a classically uncertain position of the
classical piston and classical average work on the ensemble
of independently repeated experiments. It is a gedanken
experiment going towards more complicated and realistic
considerations at this mechanical border between quantum and
classical.

At the beginning of the challenging experiment, both
classical and quantum uncertainty of virtual position and
momentum quadrature variables of an electric field of light
or microwaves have to be translated to the real uncertainty
of the mechanical position and momentum of the mechanical
system. Quantum optomechanics has already experimentally
tested the dedicated preparation and precise estimation of
mechanical position with small uncertainty approaching quan-
tum limits [29–37]. Recently, quantum entanglement between
radiation and mechanical systems and also quantum squeezing
of mechanical uncertainty have been demonstrated [14,16,17].
These experiments can be extended to prepare various quantum
states of the mechanical system [38–45]. To reach a high
quality of transfer for any state of light to mechanical systems,
universal interfaces have been proposed as well [46–49]. The
remaining main experimental challenge, therefore, is the direct
coupling of the mechanical system at the quantum level to a
classical thermodynamic system. A direct coupling between
mechanical oscillators has been investigated in [50–53].
Alternatively, mediated coupling between two mechanical
systems, possibly representing the mechanical oscillator (or
cantilever) and mechanical piston in the future, has been
proposed [54–60]. Currently, progress in the research of
levitating mechanical oscillators opens the door to such types
of mechanical couplings [37,61–66].

All of these points fully legitimate theoretical thoughts of
a future experiment testing the simplest physical connection
between quantum optics and classical thermodynamics. In
this way, different forms of energy of light represented by
thermal, coherent, squeezed, and Fock states of light [67] can
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be physically translated to thermodynamic work performed
by a real device. It is a novelty for quantum optics because
classical and nonclassical states of light can be seen from a
perspective of classical thermodynamics through a specific
physical chain. The simplest classical version of this chain
(an interconnection between mechanics and thermodynamics)
can be considered in terms of a mechanical cantilever whose
single variable (mechanical position or momentum) drives
a piston compressing an ideal gas in a solid container
during a standard isothermal process. This process of energy
transformation interestingly has a nonlinear response, although
the optomechanical coupling between the light and mechanical
oscillator remains typically linear.

Considering an ensemble of such independent chains,
the classical or quantum uncertainty of light translates to
an uncertainty of the piston position and, finally, to an
uncertainty of work in the classical isothermal process. In
principle, this uncertainty can be present only on the ensemble,
and hence any individual chain in the ensemble does not
principally fluctuate in time [68]. The piston-gas container can
therefore follow the simplest isothermal process in standard
thermodynamics [8]. On the ensemble, the position of the
piston and accessible work on the testing body, however, have
to be fully characterized by a statistical distribution over the
ensemble. Classical average work on the ensemble of the
repeated experiments can therefore be seen as an operational
thermodynamic characterization of the uncertainty present
in the light. Beyond this basic level, analysis of the piston
fluctuations driven by an environment can be added. In this
sense, the piston can be understood as an overdamped particle
under a Brownian motion [68]. This can be viewed as an
equivalent of the noise in a detector, which can affect the results
of the detection process. It is an important test of stability
of this chain under the fluctuations in time at the border of
thermodynamics.

In this paper, we describe a gedanken but fully physical
chain going from quantum optics to classical equilibrium
thermodynamics. We investigate a position uncertainty of the
piston and, consequently, average work from the isothermal
process for several quadrature distributions of light. Our results
show that the amount and even the sign of work obtained from
the energy transfer through the chain depends nontrivially and
nonmonotonically on the uncertainty of the radiation state.
That is, contrary to what one might expect, the increase of
uncertainty can cause either an increase or decrease of the
average output work. In Sec. II, we describe the components
of our physical model of the chain. Section III describes the
approach of the piston subsystem to the thermal equilibrium.
Section IV describes the ensemble-averaged work as the partial
outcome of the light to piston+gas energy transfer through
the chain. Direct comparison for thermal, Fock, coherent,
squeezed, and phase-randomized states of light is performed.
The coherent states are the candidates for the most efficient
average-energy-to-work transfer.

II. DESCRIPTION OF THE MODEL

Initially, we assume that the quantum state of light mode is
ideally transferred onto the state of the mechanical membrane.
This fact causes the virtual absence of the light mode in

FIG. 1. Schematic of the physical model of the chain. Initially,
the quantum state of the light is ideally transferred to the state of the
mechanical membrane. This assumption causes the virtual absence
of the light in our chain. The membrane position (together with its
uncertainty) is transferred to the classical piston sealing the container
with a classical ideal gas.

our model and allows us to keep our toy model consisting
of only three components, namely, the membrane subsystem,
where the quantum projection to mechanical position happens,
described quantum mechanically, the piston subsystem with
stochastic description, and the classical nonfluctuating gas
subsystem described in the thermodynamic language. Our
model therefore describes a one-way transfer of energy from
the different quantum states of the membrane through the
classically (and possibly stochastically) evolving piston, into
the compression of the ideal gas stored in a container enclosed
by the low-mass piston (Fig. 1).

A. The membrane

We describe the quantum part of the system, i.e., the
membrane, by the quantum mechanical Hamiltonian of a
harmonic oscillator,

ĤM = P̂ 2
M

2mM

+ mMω2

2
X̂2

M, (1)

where XM is measured from the membrane potential min-
imum. The quantum nature of XM can be omitted in the
following, since we consider position distribution after perfect
quantum projection of the membrane state by its environment,
destroying any information about PM . Therefore, we use
only its position distribution. However, XM does represent
the variable with a position uncertainty. We assume the
membrane to be coupled to a piston (described below) by
the position-position type of coupling, typical for coupled
harmonic oscillators. We consider this linear coupling to
ensure that it cannot itself generate any nonlinear effects on
the piston position. This type of coupling can be used for both
quantum mechanical and classical oscillators. It reads

HMP = κXMX. (2)
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This interaction Hamiltonian leads to the equation of motion
for the piston position operator X which contains the linear
force −κXM acting on the piston.

The membrane is a conceptually important part of our
gedanken experiment. It mediates the quantum-to-classical
transition from the quantum state of light to the classical
position distribution of the piston. The membrane undergoes
a collapse in the position pointer basis on a time scale smaller
than any other time scale assumed in the chain. After this
projection, the membrane description is effectively classical.
The direct transfer of quantum states of light onto the piston
would be difficult to describe.

B. The piston

As the next level of our chain, we assume that the membrane
acts on a very light microscopic piston. The one-way chain
structure of our model implies that the backaction of the piston
on the membrane can be neglected. In other words, we assume
that the mass of the piston is much smaller compared to the
membrane mass, mP � mM . This is the standard physical
limit in which the large membrane drives the smaller piston.
The piston represents a moving boundary used to compress a
certain amount of a classical ideal gas in a cylinder. To test
the basic robustness of the chain under fluctuations of the
piston in time, we introduce stochastic Brownian motion of
the piston caused by the piston environment. We assume that
the dynamics of the piston position X is described by the
classical overdamped Langevin equation [69]

γ Ẋ = F (X,t) +
√

2γ kBT ξ (t). (3)

Thus, we model the fluctuations of the piston as if it would
be a classical overdamped Brownian particle immersed in
a heat bath of temperature T . In Eq. (3), γ stands for the
damping coefficient, kB is the Boltzmann constant, F (X,t) is
the nonfluctuating, but possibly uncertain, force acting on the
piston, and ξ (t) is the Gaussian white noise which accounts
for the thermal fluctuations of the surroundings [〈ξ (t)〉 = 0,
〈ξ (t)ξ (t ′)〉 = δ(t − t ′)]. The force F (X,t) is specified below
in Eq. (5). The force uncertainty arises from the uncertainty of
the mechanical system prepared by light. Such an approximate
description of the dynamics is appropriate on the time scale
t � mP /γ , where mP is the mass of the piston.

C. The ideal gas

The third part of our model is the cylinder (container sealed
by the piston) containing a certain amount (N particles) of
the classical ideal gas. The walls of the cylinder are kept
at the constant temperature T . Throughout the paper,
we assume the particle number N to be sufficiently low and
the heat bath temperature T high. Under these assumptions,
the state of the gas is well described by the equation of state
PV = NkBT , with P , V = SX being the pressure and volume
of the gas, respectively, with S the piston cross section and X

the piston position with respect to the bottom of the container.
Thus, this equation can be readily recast into the form

PS = NkBT

X
. (4)

The left-hand side of Eq. (4) represents the pressure force
that the gas exerts on the piston, while the right-hand side,
strongly nonlinear in piston position X, defines the piston
position dependence of that force. Further, we assume that the
medium surrounding the gas container exerts a pressure force,
−F0, on the piston as well, allowing for the establishment of
mechanical equilibrium of the piston.

III. EVOLUTION OF THE PISTON TOWARDS
THERMAL EQUILIBRIUM

In this section, we describe the piston dynamics and
characterize its equilibrium position distribution. To begin
with, we specify the form of the force F (X,t) in Eq. (3),

F (X,t) = −κXM − F0 + NkBT

X
. (5)

The first right-hand side (RHS) term comes from the Hamilto-
nian (2). We assume throughout the paper that XM changes at
such time scale that it can be considered constant on the time
scale of equilibration of the piston. Thus, we can consider an
ensemble of equilibrating pistons whereas, for each member
of this ensemble, the value of XM on the RHS of Eq. (5) is
constant and sampled from some probability density function
(PDF). In other words, XM is an uncertain (random) but not
fluctuating variable, throughout the paper.

The second and third terms in Eq. (5) come from Eq. (4) and
the discussion below it. These terms describe the possibility
that the gas equilibrates mechanically with its surroundings.
The Langevin equation for the piston position, given by Eq. (3),
using Eq. (5) as the RHS, gets its final form,

γ Ẋ = −κXM − F0 + NkBT

X
+

√
2γ kBT ξ (t). (6)

Equation (6) is a stochastic differential equation describing the
time dependence of the stochastic process X(t). It simultane-
ously takes into account both the uncertainty of the membrane
and the fluctuations of the piston. This equation is equivalent
to the Fokker-Planck (FP) equation for the PDF ρ of the piston
position, X(t), ρ ≡ ρ(X,t). The FP equation equivalent to
Eq. (6) has the form

∂ρ

∂t
= − 1

γ

∂

∂X

[(
− κXM − F0 + NkBT

X

)
ρ

]

+ kBT

γ

∂2ρ

∂X2
. (7)

The deterministic forces on the RHS of Eq. (6) acting on
the piston can be derived from the potential

V (X) = (κXM + F0)X − NkBT ln (X/L), (8)

where XM represents the membrane position and L is
the integration constant making the argument of the ln(x)
function dimensionless. We choose the value of L such that
it corresponds to the position of the potential minimum for
κ = 0, defining the length unit as

L ≡ NkBT/F0. (9)

063822-3
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With this definition, we can introduce dimensionless variable
x ≡ X/L and rewrite Eq. (8) into the form

V (x) = NkBT (αx − ln x), α ≡ 1 + κXM

F0
. (10)

It is not possible to solve for time-dependent ρ(X,t) from
Eq. (7) analytically, but one can obtain the equilibrium position
PDF of the piston ρ(X) ≡ limt→∞ ρ(X,t) as the equilibrium
Gibbs distribution,

ρ(X) = 1

Z
exp

[
−V (X)

kBT

]
,

Z ≡
∫ ∞

−∞
exp

[
−V (X)

kBT

]
dX. (11)

Note that the equilibrium solution appears as the result
of the diffusion process. If the diffusion can be neglected,
we obtain the case of the piston drifting to minimum of
the potential under an external force with uncertainty of the
mechanical membrane. We will go back to this simplification
later.

A. The membrane without uncertainty

In this section, we consider XM to be constant and derive the
equilibrium PDF for the position of the piston in two cases. The
first one is comprised of the membrane coupled to the piston,
i.e., κ 
= 0, while the second one describes the situation with
the two subsystems uncoupled, κ = 0.

The nonlinear potential V (x), given by Eq. (10), allows for
the piston equilibration only if it possesses a local minimum
with respect to x. This is equivalent to the constraint on the
value of the membrane position, yielding α > 0. Taking the
potential for α = 1 as a reference, we can deduce the following.
For XM > 0 (α > 1), the membrane compresses the piston
(the potential is tighter). If −F0/κ < XM < 0 (0 < α < 1),
the piston is expanded (the potential is more open). In the case
XM � −F0/κ (α � 0), the potential has no local minimum,
and thus no equilibrium piston position distribution ρ(x)
exists; cf. Fig. 2.

FIG. 2. An example of the behavior of the potential V (x)/
NkBT = αx − ln x, for α = {−1,0,0.5,1,1.5}. For α � 0, no local
minimum exists. For increasing α, the potential is tighter and the
position of its minimum shifts towards 0.

Further, we always assume that the equilibrium PDF, given
by Eq. (11), for the piston position exists (α > 0). In the
dimensionless variables, it is given by the gamma distribution,

ρ(x) = 1

Z
xN exp[−αNx], x � 0, (12)

Z = 
(N + 1)

(αN )(N+1)
. (13)

The mean x and the variance σ 2 = x2 − x2 of this distribution
are given by

x = N + 1

αN
, σ 2 = N + 1

(αN )2
. (14)

The description of the time sequence of one experimental
run can be the following. Initially, the piston is coupled to the
membrane, κ 
= 0, which is determining the value of α > 0,
in the potential (10) during the whole equilibration process.
After the waiting time long enough for the equilibration, the
piston approaches the initial equilibrium position distribution,
denoted ρ(xi), where the subscript “i” stands for “initial.” It
is defined by the initial set of parameters N and α. From this
initial distribution, we perform a sufficiently slow (quasistatic)
and isothermal transformation of the piston state into the
“final” state, labeled by the subscript “f ,” of the piston
position distribution, denoted ρ(xf ), by slowly decreasing
κ → 0, corresponding to α → 1. Thus, changing the value of
κ (α) allows us to tighten or open the potential and therefore
compress or expand the piston with respect to the reference
state α = 1. The position PDF, ρ(x), is illustrated in Fig. 3 for
different values of α.

Notice that for high values of N , higher statistical moments
of ρ(x) tend to be negligible, as evident from Fig. 3. In the
limit N � 1, the variances vanish as well [cf. Eq. (14)] and
the distributions approach

lim
N→∞

ρ(xi) = δ(xi − 1/α),

lim
N→∞

ρ(xf ) = δ(xf − 1), (15)

FIG. 3. The equilibrium position distribution, given by Eq. (12),
for α = {0.5,1,1.5} and N = 500. For α = 1, the state is equivalent
to the final ρ(xf ) distribution. Note that due to the high value of N ,
the expected distribution skewness is not well distinguishable.
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where δ(x) represents the delta function. The piston then
always reaches the minimum of the potential without any
fluctuations. The same result can be obtained if the diffusion
in Eq. (7) can be neglected. These deterministic results are
valid in the thermodynamic limit and describe the standard
textbook situation of the piston with a precise, nonfluctuating
position. The limit N → ∞ is rather straightforward in
the dimensionless coordinates. In physical units, all three
quantities N , κXM , F0 become large and the latter two are
proportional to N .

Using Eq. (14), we can determine, as well, the value of the
mechanical signal-to-noise ratio (SNR) of the state ρ(xi) as

SNR = xi

σi

= √
N + 1, (16)

which is independent of α for fixed N . The interpretation
of this result is such that for fixed N , the change (increase
or decrease) in the mean value xi is always accompanied
by the same change (increase or decrease) in the standard
deviation σi .

B. The membrane with uncertainty

In this section, we assume XM to take random values
sampled from its PDF, corresponding to the fluctuations of
α in Eqs. (10)–(14). These α fluctuations have to have the
time scale separated with respect to the piston equilibration
time scale, in the sense discussed below Eq. (5). Hence,
the potential felt by the piston during each equilibration,
given by Eq. (10), remains constant, as well as the form
of the piston position distribution ρ(xi), given by Eq. (12).
Thus, the final form of the PDF ρ(xi) for the initial piston
position will be the result of the averaging over the random
values of α,

ρ(xi) =
∫ ∞

0 p(α)Z−1
i xN

i exp[−αNxi]dα∫ ∞
0 p(α)dα

. (17)

The presence of the denominator in Eq. (17) ensures the
correct normalization of the ρ(xi). This factor reflects the
cutoff (neglection) of p(α) for α � 0 because for these
values no stationary piston state exists. It is because the
piston position can be unstable and therefore we have the
probability

ps ≡
∫ ∞

0
p(α)dα (18)

of a successful experimental run less than unity. It is common
for many conditional experiments with unstable systems.
We can rectify the membrane position to be sure that the
equilibrium piston position will exist. All results from now on
will therefore be conditioned by such rectifier. Note that the
rectification and subsequently the success probability depends
on F0. It can be optimized to reach an optimal regime of
the transfer from mechanical uncertainty to thermodynamic
average work.

Now, we can proceed to discuss the specific choice of
p(α) in Eq. (17). The most natural family of states of the
membrane is the Gaussian states, characterized by the mean
value X0 and the variance ε2. They characterize, e.g., the
thermal as well as the coherently displaced squeezed ground

FIG. 4. The example of the probability distributions ρ(xi) and
ρ(xf ), N = 500, for different values of ε [cf. Eq. (19)] if Gaussian
with α0 = 1 is assumed (thermal state). The success probabilities ps ,
given by Eq. (18), are shown. We see that the increasing variance ε

of p(α) distribution increases the variance of ρ(xi), positively skews
the ρ(xi) distribution, and causes the shift of the mean value of
ρ(xi) towards 0. As the integration in Eq. (17) suggests, the resulting
ρ(xi) is a weighted sum of γ distributions with different parameter
α. Distributions with small α have large mean value and variance
creating fat tails of ρ(xi), whereas large α implies very narrow p(α)
distributions with small mean values, causing the peaks of ρ(xi)
moving to the origin.

states of the mechanical membrane. For the above-mentioned
Gaussian state, we obtain from the original membrane position
distribution ρ(XM ) the induced p(α) distribution,

ρ(XM ) = 1√
2πε

exp

[
− (XM − X0)2

2ε2

]

⇒ p(α) = 1√
2πε

exp

[
− (α − α0)2

2ε2

]
,

ε = κε

F0
, α0 =

(
1 + κX0

F0

)
. (19)

Below, we will recognize two cases for p(α). For the
membrane coherent state, ε is fixed to the standard position
deviation of the mechanical ground state ε0 = √

�/(2mω) and
α0 is a free parameter, representing the “coherent” shift of
the mean value. In contrast, the thermal state is characterized
by α0 = 1 kept constant and ε changed as a free parameter,
reflecting the increase in fluctuations of the thermal state
corresponding to p(α).

The effect of changing ε > 0, keeping α0 = 1 (thermal
state), can be seen in Fig. 4. The distribution ρ(xi), given
by Eq. (17), is a weighted sum of the gamma distributions,
given by Eq. (12), with p(α) as the weights. The shapes of the
resulting ρ(xi) on Fig. 4 result from their composition of the
type of functions seen in Fig. 3. The gamma distributions with
small αi sum up to the thick distribution tails, while large αi

create the positively skewed maxima closer to x = 0.
One may naively tend to expect that while the modes (max-

ima positions) of the distributions ρ(xi), given by Eq. (17), tend
to decrease monotonically (Fig. 4), so do their mean values.
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FIG. 5. The dependence of the mean value xi from Eq. (17), on
the parameter ε, given by Eq. (19), for fixed α0 = 1 and N = 500.

Figure 5 shows that this is not the case. Dependent on the
parameter ε, the mean value xi increases initially above xi = 1
(the mean value for the final distribution as well) and then falls
back below this value. One may interpret such behavior as an
increase or decrease of the average piston position with respect
to the final position distribution and its xf . The behavior,
nontrivial as well, of the standard deviation, σi , is plotted in
Fig. 6. The SNR, given by Eq. (16), for the piston states (17),
using different p(α) distributions of the type (19), are shown
in Fig. 7.

It shows that for intuitive understanding of the piston
mechanics, it is better to keep in mind that the thermal energy
of the membrane is transformed into the shift of the piston
distribution maximum. Simultaneously, the local convexity
around the maximum increases as well. It is therefore not
easy to predict how much average work can be obtained.

IV. WORK OF THE GAS AND PISTON

This section examines the thermodynamic consequences
of the results of nonlinear stochastic mechanics, derived in

FIG. 6. The dependence of the standard deviation σi from
Eq. (17), on the parameter ε, given by Eq. (19), for fixed α0 = 1
and N = 500.

FIG. 7. The mechanical SNR plotted for different states (17),
compared to the result (16). The p(α) distributions correspond to the
coherent and thermal states, given by Eq. (19), with different values
of the parameter n; see Sec. IV C.

Sec. III, first in the limit of large N (with suppressed position
fluctuations) and second with these fluctuations taken into
account.

In the previous section, we have understood the mechanical
motion of the piston with increasing uncertainty. Our main goal
in this section is therefore to quantify the average work done
by the gas and piston expanding from the positions distributed
with ρ(xi) into the positions distributed with ρ(xf ) during
the reversible isothermal expansion of the piston enclosing
the ideal gas of N particles and driven by the position of the
membrane, XM , distributed with ρ(XM ), given by Eq. (19).
We discuss examples of how this average work depends on the
type of the ρ(XM ) distribution and, hence, p(α) distribution; cf.
Eq. (19). In this respect, we consider an ensemble of reversible
expansion or compression processes of an ideal gas in contact
with the heat reservoir of the temperature T (Fig. 1), where
the particular realizations of the ensemble are characterized by
different values of the membrane position XM , and thus the
parameter α determining the potential, given by Eq. (10). The
ensemble average is taken over these α values. We point out
that we do not take into account the work used to create the
complete chain, i.e., the work necessary to map the state of the
light onto the membrane and to establish the membrane-piston
interaction. The reversibility condition can be satisfied by
adiabatic switching off the piston coupling to the membrane,
α → 1, in Eq. (12).

A. The thermodynamic limit

This section describes the results stemming from the limit of
N � 1. This limit implies for the piston position distributions
the form of Eq. (15), represented by the δ functions. Further,
we distinguish two regimes: (i) without any uncertainty in
XM , with ρ(XM ) being a δ function, and (ii) with possible
uncertainty in XM .

First, let us analyze the deterministic case, i.e., the mem-
brane being characterized by a sharp value of XM , and thus α,
without any uncertainty. In such case, one can apply the results
of macroscopic equilibrium thermodynamics describing the
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isothermal, reversible expansion (compression) of the ideal
gas [8], yielding the mechanical work, with the ideal gas
pressure, given by Eq. (4),

W ≡ −
∫ xf

xi

P S dx = −NkBT ln
xf

xi

,

w(α) ≡ W

NkBT
= − ln α, α = 1 + κXM

F0
. (20)

Equation (20) forms an important result of our thermodynamic
analysis. It represents the (macroscopic) thermodynamic work
done on the ideal gas, i.e., when W is positive, the positive
amount of work is done by an external agent on the ideal gas.
In the thermodynamic limit (N � 1), the work W has a sharp
(deterministic) value for given xf , xi , α. The normalized work
is w(α) = − ln α.

The second case described in this section has logic similar
to Sec. III B. In this case, each thermalization of the piston is
realized in a different potential, given by Eq. (10), due to the
uncertainty in the parameter α, the slope of the thermalization
potential. Each member of the ensemble characterized by
different value of α, given by Eq. (10), is realized with the
probability p(α), given by Eq. (19). For any α-dependent
physical quantity, we can observe its values only on this
ensemble and represent such quantity by its mean value. This
is the case for w(α), given by Eq. (20), as well, leading to

w = −ln α = −
∫ ∞

−∞
ln(α)p(α)dα,

p(α) ≡ θ (α)p(α)∫ ∞
−∞ θ (α)p(α) dα

, (21)

where θ (α) is the Heaviside step function ensuring the
cutoff α > 0 necessary for the successful thermalization. The
denominator of p(α) represents the probability of successful
experiment, given by Eq. (18). The average work w̄ is therefore
defined on a subensemble of successful experimental runs.
Equation (21) yields the average work done by the piston
during the isothermal reversible transition from limN→∞ ρ(xi),
given by Eq. (17), to ρ(xf ) = δ(xf − 1), given by Eq. (15). For
each value of α from the ensemble, w(α) yields a certain value
of the mechanical work, but these values are sampled randomly
from the distribution p(α). Equation (21) is the functional
relation p(α) → w, yielding w for given p(α). Note that if the
diffusion process for the piston can be neglected, we arrive
at the same formula, given by Eq. (21), for the average work
extractable from position distribution of the membrane in our
physical chain.

In order to evaluate w, given by Eq. (21), we have to
restrict ourselves to numerical results. As an example of the
distribution p(α), we take again the Gaussian family of the
membrane states, given by Eq. (19).

B. The piston as a Brownian particle

This section describes the thermodynamic consequences
for the work done in our scheme by the gas and fluctuating
piston for the finite number of particles N . In this case, to
correctly determine the average work, one has to naturally take
into account the fluctuations of the piston position neglected
in Sec. IV A, which we do in a standard manner [69].

The piston equilibrium state ρ(x; α), given by Eq. (12), is
characterized by the mean potential energy V (x; α), given by
Eq. (10), for the fixed parameter α,

V (α) =
∫ ∞

0
V (x; α)ρ(x; α)dx,

v(α) ≡ V (α)

NkBT
, (22)

in the overdamped regime assumed here. The infinitesimal
dimensionless work, given by Eq. (20), done by the piston is
the infinitesimal change of average energy for the infinitesimal
change of the parameter α,

δw ≡ ∂v(α)

∂α
dα (23)

=
∫ ∞

0

∂v(x; α)

∂α

∣∣∣∣
ρ

ρ(x; α)dxdα, (24)

where the last partial derivative ∂/∂α is taken under constant
piston distribution condition. The total work done by the piston
during the transition ρ(xi) → ρ(xf ) [see the discussion bellow
Eq. (14)] is

w(α) =
∫ 1

α

δw = −N + 1

N
ln α, (25)

yielding

w = −N + 1

N
ln α = −N + 1

N

∫ ∞

−∞
ln(α)p(α)dα, (26)

resembling the results (20) and (21) in the limit N � 1. The
summand 1 in the nominator of (25) reflects the fact that the
piston itself, treated microscopically as a Brownian particle,
performs average work on its surroundings.

In the general case for w, given by Eq. (21), i.e., the case
when α is uncertain and distributed with p(α), the results in
Figs. 8 and 9 describe the behavior of w with high precision,
even in the case of non-negligible piston fluctuations, e.g., for
N ≈ 103.

Equation (21) also implies that for the states of the
membrane with similar p(α), namely its statistical moments,
the value of the mean work w “extractable” from p(α) is

FIG. 8. Numerically obtained value w from Eq. (21). The
independent parameter is ε = κε/F0, the standard deviation of the
thermal state given by Eq. (19); its mean value α0 = 1 is fixed.
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FIG. 9. Numerically obtained value w from Eq. (21). The
independent parameter is the mean value α0 of the coherent state
in Eq. (19). The different curves are parametrized by the values of
variance ε = εκ/F0 = {0,1.5,3} of this state. The behavior of w for
α0 ≈ 1 is determined by the ε dependence of w shown in Fig. 8. Note
the asymptotic behavior of all curves being the same, w ≈ − ln(α0).

also similar. This is the case, e.g., for the thermal state of the
membrane and the Fock state of the membrane, when both
states possess the same value of average energy. This fact is
demonstrated in the next section for several possible states of
the membrane.

C. Work performed by different membrane states

In this section, we discuss the average work performance
w of different mechanical membrane states. We examine the
Gaussian family of states as an example, plus two represen-
tatives of non-Gaussian states. The reader may have intuition
about the results already, stemming from Figs. 8 and 9. The
coherent and thermal states used here are examples of the
classical states of the mechanical membrane. Can the quantum
mechanical coherence and nonclassicality of the membrane
state play any role in the work performance? As an example
of the nonclassical state, we examine the harmonic-oscillator
eigenstate, the Fock state, the coherent-squeezed state, and
the phase-randomized coherent state [67] as the distribution
of the membrane positions. To make a fair comparison of the
work performance, we parametrize all assumed states by the
same mean number of photons n they have. The mean photon
number determines the average energy of the state, as well.

The distribution of the coherent state is of the form (19),
with ε = 1 and α0 = 1 + 2

√
n. The thermal state parameters

are α0 = 1 and ε = √
1 + 2n. Although the mean energy of

each state mentioned is the same, the way that these states
sample the value of w(α) = − ln(α), given by Eq. (21), through
distribution p(α) is different.

The coherent state can be typically envisaged like a peaked
Gaussian distribution, p(α), with large mean value relative to
its standard deviation. Thus, the coherent state samples the
function w(α) = − ln(α) in a relatively narrow region of α

values around α0; cf. Eq. (19). In comparison, the thermal
state represents a Gaussian state with the vanishing mean
value. Hence, the thermal state samples the function w(α) in
a very wide region of α. Because of the cutoff at α = 0, p(α)

FIG. 10. Numerically obtained value w from Eq. (21) for the
subensemble of the successful thermalizations. The independent
parameter is the photon mean number n. The coherent states, number
states, and thermal states with the same n, i.e., the same average
energy, are used at each point.

samples w(α) in a region α < 1, where the integral converges
to a positive value, whereas in a region α > 1, the resulting
integral is strictly negative and possibly divergent. These two
contributions add, and for a wide enough distribution p(α) the
negative part dominates.

A similar situation appears in the case of the Fock state [67].
It has formally the same standard deviation as the thermal
state, even though it is an oscillating function with increasing
amplitude for an increasing magnitude of the argument,
in contrast to the thermal state. Due to this increase, the
contribution to the negative part of the integral (21) increases
faster in magnitude compared to the thermal state. This effect
is resulting in the set of the Fock-state data points located
bellow the thermal state data points in Fig. 10.

Figure 11 presents the results for other possible mem-
brane states, namely, the squeezed coherent state and phase-
randomized coherent state [67]. The squeezed coherent state
belongs to the family of the Gaussian states, given by Eq. (19),
with ε = exp(−r) and α0 = 1 + 2

√
n − sinh2(r), where r

FIG. 11. Numerically obtained value w from Eq. (21) for the
subensemble of the successful thermalizations. The same variables as
in Fig. 10 are shown for the same oscillator. The squeezing parameter
r = 2 for the squeezed state and the phase distribution variance τ =
π/4.
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FIG. 12. Numerically obtained value of the experiment success
probability ps from Eq. (18). The independent parameter is the photon
mean number n for the states used in Fig. 10.

is the squeezing parameter [67]. The expression for α0 reflects
the fact that squeezing is an active transformation changing
the mean number n of photons with the squeezing parameter
r . This has to be taken into account when comparing different
state types with the same n. In our example, squeezing reduces
fluctuations of position distribution, so one can therefore
naively expect that they can produce more average work. We
show the dependence of the average work w on the mean
number n for the coherent-squeezed state with r = 2.

The last type of state to be compared is the phase-
randomized coherent state, belonging to the family of non-
Gaussian states [67]. In our example, we use the phase-
randomized coherent state with Gaussian phase distribution,
namely,

p(α)dα =
∫ ∞

−∞

dφ

2πτ
exp

(
− φ2

2τ 2

)

× exp

{
− [α − (1 + 2

√
n cos φ)]2

2

}
dα, (27)

where τ 2 is the variance of the phase φ distribution. Phase
randomization is broadening the position distribution of the
coherent state; it is therefore important to check how sensitive
the average work is to phase instability of the coherent state
of the membrane. Figure 11 shows the phase-randomized
coherent state with τ = π/4.

For both squeezed and phase-randomized states, we note
that the w values, shown in Fig. 11, lie above the date
for the coherent state. In the asymptotic regime n � 1, the
approximate value of the integral (21) for the coherent states
is

wcoh ≈ − ln α0 = − ln 2 − 1

2
ln n, n � 1,

placing the coherent state into the candidate position for
the state with the most effective energy transfer through the
assumed chain. If one is interested in the work done on the
whole ensemble, it is necessary to multiply the subensemble
work values, shown in Figs. 10 and 11, by the respective

FIG. 13. Numerically obtained value of the experiment success
probability ps from Eq. (18). The independent parameter is the photon
mean number n for the states used in Fig. 11.

success probabilities ps , given by Eq. (18), plotted on Figs. 12
and 13. This favors the coherent states again.

Thus, within the limits of our scheme, the nonclassicality
of the states does not seem to represent any considerable
advantage with respect to the work performance. It is a very
interesting and unexpected result, considering the complexity
of the nonlinear way to obtain the average work from the
position distribution.

V. CONCLUSIONS

We have presented a physical model of a von Neumann
one-way chain consisting of the following parts: (i) The
quantum state of radiation swapped to (ii) the quantum
mechanical membrane (oscillator), linearly coupled to (iii)
a one-dimensional piston sealing a certain number of (iv)
classical ideal gas particles. The gas can be compressed or
expanded as an effect of the membrane pressure exerted
through the mutual coupling on the piston. This process is
assumed to take place at constant temperature, due to the
presence of a heat bath.

The mechanical effect of the membrane on the piston
position distribution under the isothermal conditions is studied
for different position distributions of the membrane. The result
is comprehensively expressed by the formula (26) for rectified
distribution of membrane position ensuring existence of the
equilibrium state. It can be simply used to operationally
determine achievable thermodynamic work corresponding
to any position distribution of the membrane or any other
mechanical object.

For an ensemble of the membrane positions, we determine
the average work done by the gas and piston when the
isothermal reversible process of switching off the membrane-
piston coupling is assumed. The average reversible work done
by the gas isothermal transformation from the initial into
the final states is compared for different membrane position
distributions. Namely, the work is compared for some states
from the Gaussian family of the membrane states, for its Fock
states, and for the non-Gaussian phase-randomized coherent
state.
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From our results, we conclude several facts. We observe a
nontrivial, strongly nonlinear and nonmonotonic relationship
between the quantum and classical uncertainty of light and
average work. We observe a clear advantage of Gaussian
coherent states of light over thermal states, squeezed states, or
even highly nonclassical Fock states of light to transform their
energy into average work. We confirm that for large energy of
light, we asymptotically reach the classical limit. The coherent
states are the candidates for the most efficient mean energy to
work transfer among the states assumed in our work. As a
goal of our future work, we plan to examine the effect of

finite-time (irreversible) dynamics of the piston and hence the
work distribution and irreversible-work losses.

All of these theoretical results are important for further,
more realistic development of the physical interconnection
between quantum optics, optomechanics, and classical ther-
modynamics.
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