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Control of the size of the coherence area in entangled twin beams
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We study the effect of a change in size and spatial profile of the pump beam in an atomic-based four-wave
mixing process on the size of the coherence area of the generated entangled twin beams. We perform experiments
and develop a theoretical model to obtain a measure of the linear extent or “radius” of the coherence area from
noise measurements of the twin beams as a function of transmission through a variable size slit. Our results show
that an increase in the size of the pump reduces the size of the coherence area. More interestingly, we find that
the use of a flat-top pump beam of the same size as a Gaussian pump beam leads to a reduction by a factor of
more than 2 in the linear extent of the coherence area. This in turn leads to an increase by a factor of more than
4 in the number of spatial modes that make up the twin beams and a resolution enhancement of the entangled
images that can be generated with the four-wave mixing process.
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The study of the spatial quantum correlations in entangled
beams of light has become an active research area due to
the role that these quantum correlations play in the field of
quantum imaging [1,2], which promises to improve optical
resolution [3] and image detection [4] and to enhance quantum
information through quantum holographic teleportation [5],
quantum holograms [6], and parallel quantum information
encoding [7]. Spatial quantum correlations are a result of
having entangled beams of light composed of multiple spatial
modes. Each of these modes can be viewed as an independent
quantum channel that can be used to transmit information
or to probe different spatial regions of a two-dimensional
sample for enhanced imaging [8]. The study of these spatial
quantum correlations has also extended to the field of matter
waves, where the spatial properties of matter four-wave mixing
in ultracold atoms have been studied both theoretically and
experimentally [9–11].

The presence of spatial quantum correlations in entangled
beams of light is an indication that different corresponding
subregions of the beams are independently entangled with
each other. The smallest size of these independently correlated
subregions is known as the coherence area. The coherence
area limits the resolution of the entangled images that can
be generated and is ultimately linked to the number of spatial
modes that make up the entangled beams [12]. Thus the ability
to control the size of the coherence area provides a method
to control the number of spatial modes and the information
density of a quantum channel.

The possibility of modifying the size of the coherence area
was first realized theoretically [13] when studying the effects of
focusing the pump beam for the generation of entangled photon
pairs with parametric down conversion (PDC). Since then,
there have been a number of experiments that have studied the
dependence of the spatial quantum correlations on the spatial
profile of the pump using PDC [14–18]. The work done to
date, however, has been mainly limited to the discrete domain
and the changes on the spatial quantum correlations have been
limited due to the phase-matching condition in PDC.
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In this paper we study the effect of the size and shape
of the pump beam in a four-wave mixing process (FWM)
on the size of the coherence area. This process leads to
the generation of bright entangled beams of light, or twin
beams, which are the foundation for continuous-variable (CV)
quantum information. The use of CVs offers advantages over
the discrete regime of entangled photon pairs, such as the
possibility of deterministically generating entangled states that
can be measured with high efficiency and that can be efficiently
mapped onto atomic ensembles. We perform experiments and
develop a model that allows us to extract the linear extent or
“radius” of the coherence area based on noise measurements of
one of the twin beams after propagation through a variable size
slit. Finally, we study the effect of the size of the coherence
area on the resolution of the entangled images that can be
generated with the FWM process.

I. EXPERIMENTAL SETUP

We use FWM in a double-� configuration in atomic
rubidium vapor to generate bright entangled twin beams, which
we call probe and conjugate [19]. We have previously shown
that this process generates entangled twin beams that are
highly multi-spatial-mode [12], which makes it possible to
generate entangled images [20]. This makes this system ideal
for controlling the size of the coherence area, which translates
into the ability to control the number of spatial modes that
make up the twin beams.

We implement the FWM process by intersecting a strong
pump beam and a weak probe beam inside a 85Rb cell at a small
angle, as shown in Fig. 1. In this configuration, the strong pump
beam acts as the two pumps that are required for the FWM
process. The pump and the probe, with angular frequencies
ω0 and ωp < ω0, respectively, are tuned around 1 GHz to
the blue of the D1 line at 795 nm. The pump and probe are
resonant with a two-photon Raman transition between the two
electronic ground states F = 2 and F = 3, which are separated
by 3 GHz. As a result of the FWM process, the probe beam
is amplified and a new beam, the conjugate, is generated. The
coupling between the light fields and the atomic levels follows
a double-� configuration [21–24] that converts two photons
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FIG. 1. Experimental setup. A FWM process is used to generate
quantum-correlated bright twin beams. After the Rb cell, lenses are
used to obtain the Fourier transform of the center of the cell to
study the spatial quantum correlations in the far field through noise
measurements after transmission through variable size slits. PBS =
polarizing beam splitter.

from the pump into one probe photon and one conjugate photon
at frequency ωc = 2ω0 − ωp.

The spatial quantum correlations between the generated
probe and conjugate are a result of the conservation of mo-
mentum, or phase-matching condition, in the FWM process.
For a pump beam that can be approximated as a plane wave
(single k-vector) the phase-matching condition dictates that
a single k-vector of the probe is anticorrelated with a single
k-vector of the conjugate. This means that in the far field
the spatial correlations between the probe and the conjugate
are point-to-point correlations. For a finite-size pump beam,
such as one with a Gaussian transverse profile, there will be
a spread of k-vectors for the pump that in turn will lead to a
spread of the spatial quantum correlations between the probe
and the conjugate. This will make a point in the probe be
correlated with a region in the conjugate, which corresponds
to the coherence area [25]. The number of coherence areas
that fit into the angular bandwidth of the process (given by
the angular range due to the phase-matching condition over
which the FWM can occur) gives a measure of the number of
spatial modes that make up the twin beams [12]. As a result,
controlling the size of the coherence area also controls the
number of spatial modes. In particular, if a single coherence
area makes up the entire beam then the twin beams are single
mode; otherwise they are spatially multimode.

Formally, for an intrinsically multimode state of light there
does not exist a basis that can describe the system as having
all the photons reside in a single mode with a wave function
of the form [26]

|ψ〉 �= |φ〉0 ⊗ |0〉1 ⊗ · · · ⊗ |0〉i · · · , (1)

where the subscript indicates the optical mode coupled to the
medium. In order to study the multi-spatial-mode nature of a
beam of light it is necessary to perform a noise analysis of
different spatial regions of the beams. While the coherence
area is a concept that relates the spatial correlations between
the twin beams, it also has an impact on the noise properties
of the individual beams and sets a length scale for the noise
properties of each beam.

After the Rb cell, a 1 m focal length lens is used to obtain
the Fourier transform of the center of the cell in order to
study the spatial properties of the twin beams in the far field,
as shown in Fig. 1. We analyze the spatial distribution of
the quantum correlations by placing a slit of variable width
at the Fourier plane of either the probe or the conjugate
beam. We then use a photodiode to detect the probe or the
conjugate beam as we change the size of the slit. Finally,

TABLE I. Experimental parameters for the FWM process for the
different pump beams.

Gaussian Flat top

Pump diameter (mm) 1.5 2.3 3.2 3
Pump power (W) 0.24 0.47 0.86 2.25
FWM gain 3.5 3.5 3.5 3.5
Squeezing (dB) 4.0 4.5 4.0 3.0

we use a spectrum analyzer to obtain the noise properties of
the beam as a function of the transmitted power through the
variable slit. The dependence of the noise on the transmission
provides a direct confirmation of the multi-spatial-mode nature
of the twin beams. In the case of a single spatial mode,
the noise changes linearly as a function of transmission,
independently of the attenuation mechanism. However, for the
case of a multi-spatial-mode beam a deviation from the linear
dependence is obtained [12,26]. Similar experiments related to
determining the number of modes by cutting the beams have
been previously performed both for the spatial domain [12]
and the temporal domain [27].

We perform a series of measurements with different sizes
and profiles for the pump beam to study the effect of a change
of the pump on the coherence area. In particular, we consider
a pump beam with a Gaussian profile and a 1/e2 diameters of
1.5 mm, 2.3 mm, and 3.2 mm as well as a pump with a flat-top
profile and a diameter of 3.0 mm. The flat top was generated by
using a refractive optical beam shaper that allows us to transfer
over 90% of the power from the Gaussian profile to the flat-top
profile. After the beam shaper a 4f optical system is used to
image the flat top to the center of the cell, such that the pump
field at the center of the cell has a flat-top profile with a flat
uniform wave front. We verified that the flat-top profile of the
pump remains nearly unchanged throughout the length of the
cell. The total power for each of the different pump beams used
was selected such that a similar gain and intensity-difference
squeezing was obtained from the FWM process. This makes it
possible to compare each of the configurations under similar
conditions, as effects such as gain narrowing [28] can lead
to a modification of the size of the coherence area. Table I
shows the specific values for the pump power, FWM gain, and
intensity-difference squeezing for each of the pump beams.
For all the measurements, the probe beam had a 1/e2 diameter
of 0.37 mm at the center of the cell and an input power of
∼40 μW. The temperature of the cell was 117 ◦C, which
corresponds to a number density of ∼2 × 1013 cm−3.

II. EXPERIMENTAL RESULTS

To characterize the noise properties of the probe or
conjugate beam after transmission through the slit we use the
Mandel Q parameter defined as

Q = 〈(�N̂)2〉
〈N̂〉 − 1, (2)

where N̂ is the number photon operator. The Q parameter
represents the intensity noise normalized to the noise of a
coherent state of the same intensity (i.e., the standard quantum
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limit or SQL) minus one, such that Q = 0 corresponds to
the SQL. When a beam of light is uniformly attenuated
with a beam splitter or a neutral density filter, Q varies
linearly as a function of the transmitted intensity from its
initial value for unit transmission to 0 for no transmission.
As shown in Ref. [29], for a single-spatial-mode beam the Q

parameter varies linearly independently of how the beam is
attenuated. This means that if a single-spatial-mode beam is
partially blocked its Q parameter varies as if the beam had
been uniformly attenuated, that is, linearly as a function of
transmission. On the other hand, for a multi-spatial-mode field
the change of the Q parameter as a function of attenuation
will be different depending on the method that is used to
attenuate it. In particular, if a variable slit is used to attenuate
the beam, the Q parameter will no longer change linearly with
the transmitted power.

While we performed measurements on both the probe
and the conjugate, we concentrate on the conjugate since it
provides a cleaner system to perform the measurements due
to the cross-Kerr effect with the pump. Even though this effect
is present for both the probe and the conjugate, it is only
significant for the probe given that the conjugate is around
4 GHz away from resonance. The cross-Kerr effect introduces
additional complications when performing measurements on
the probe beam that can be ignored for the conjugate beam.

Figure 2 shows the normalized Q parameter, QN , as a
function of transmission through the variable slit for the
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FIG. 2. Experimental results and fit to theoretical model. Nor-
malized Q parameter, QN , as a function of transmission through the
variable size slit for the 1.5 mm Gaussian pump (black triangles,
�), 2.3 mm Gaussian pump (red diamonds, �), 3.2 mm Gaussian
pump (green squares, �), and 3.0 mm flat-top pump (blue circles, •).
The solid lines show the fits obtained with the theoretical model for
each of the different pump beams. The ratio of the linear extent or
“radius” of the coherence area, a, to the radius of the conjugate beam,
ω0, obtained from the model is given for each pump configuration.
The only free parameter in the model is the linear extent a of the
coherence area. The dashed line corresponds to the behavior that
would be obtained in the case of a single spatial mode beam.

different pump beams when measurements are performed on
the conjugate beam. For these measurements the variable slit
was always centered on the conjugate beam and its size was
changed from 2 mm, which corresponds to twice the diameter
of the conjugate beam, to completely closed. After the slit an
optical system was used to image the slit onto to the detector.
For each of the measurements the intensity noise, 〈(�N̂ )2〉, of
the transmitted conjugate was measured with an RF spectrum
analyzer at a frequency of 500 kHz, RBW of 30 kHz, and VBW
of 100 Hz. The Q parameter was then calculated by measuring
the corresponding SQL and using it to normalize the intensity
noise according to Eq. (2). Finally we normalize the calculated
Q parameter to its maximum value, Q0, which occurs when the
slit is completely open such that it does not introduce losses.

As can be seen, all the measurements deviate from the
straight line that would be obtained if the conjugate were a
single mode (dashed line in Fig. 2). In addition, as the pump
beam becomes larger, the behavior of Q deviates more and
more from the single-mode behavior. More importantly, for
the flat-top pump we obtain an even more significant change
than for a Gaussian beam of a similar size. While these
measurements do not directly provide an estimate of the size of
the coherence area, they confirm that for all the different pump
beams used the generated twin beams are spatially multimode
and that a change of the pump beam has an impact on the
spatial structure of the generated conjugate and thus on the
coherence area.

We performed similar measurements on the probe beam.
While the results we found for the probe were consistent with
the ones for the conjugate, care had to be taken to select
the correct plane to perform the measurements. Different
size pumps led to a different effective focusing due to the
cross-Kerr effect between the probe and the pump, which
in turn affected the optical system that was used to obtain
the Fourier transform. As a result, the position of the Fourier
transform plane changed as the size of the pump beam changed.
If this change of plane is not properly taken into account
then the measurements performed will not provide a correct
estimation of the coherence area. The concept of a “localized”
coherence area only makes sense in the far field, such that if
we are at a different plane the spatial quantum correlations will
be more spread out.

We verified the location of the Fourier plane by using an
input probe beam with a given pattern, placing its Fourier
transform at the center of the cell with an optical system, and
then finding the location of the best image after performing
the Fourier transform with the 1 m lens after the cell. We
also verified that the plane where we obtain the best imaging
coincides with the plane where the noise measurements
with the variable slit resulted in the smallest size for the
coherence area. The location of the correct plane to perform
the measurements for the probe shifts closer to the expected
location as the pump beam diameter is increased and thus the
lensing effect due to the cross-Kerr effect is reduced. For the
flat top the location was found to corresponds to the expected
plane. We verified that for the conjugate beam, which is far
away from atomic resonance, the cross-Kerr effect does not
play a significant role and the image as well as the smallest
size of the coherence area occur at the expected location
independent of the pump beam that is used.
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III. THEORETICAL MODEL

In order to obtain a measure of the size of the coherence
area from the measurements of the noise as a function of
transmission through the variable slit we need to understand
the functional form of the Q parameter. To this end we
developed a model based on the concept of a localized
coherence area. We first expand the field operators in terms
of a complete set of transverse spatial modes Ai(x,y)
[30]:

â(x,y) =
∑

i

Ai(x,y)âi , (3)

where âi is the field operator for mode i. After going through
the slit each mode will experience a different loss, such that
mode i transforms according to

âi → √
ηiâi +

√
1 − ηiâv,i , (4)

where ηi is the transmission of mode i through the aperture
and âv,i is the corresponding vacuum mode that couples in as a
result of losses. With this expansion, the Mandel Q parameter
takes the form

Q =
∑

i η
2
i [〈(�n̂a,i)2〉 − 〈n̂a,i〉]∑

i ηi〈n̂a,i〉 =
∑

i η
2
i 〈n̂a,i〉Q0

i∑
i ηi〈n̂a,i〉 , (5)

where Q0
i is the Mandel Q parameter for mode i before the

slit.
Next, we assume that all the spatial modes have the same

normalized noise properties, that is, the same initial Mandel
Q parameter: Q0

i ≡ Q0. From Eq. (5) it is clear that Q0

corresponds to the noise in the absence of losses, that is, when
ηi = 1 for all modes. This assumption is valid for our system
given the small portion of the angular bandwidth that is covered
by the generated bright conjugate beam. Given the size of the
probe beam inside the cell, the angular spread of the conjugate
is of the order of 2 mrad, while the angular bandwidth of the
process is in excess of 10 mrad [12]. With this assumption we
find that the normalized Q parameter, QN , given by the ratio
of the Q parameter after the slit to its maximum value Q0,
takes the form

QN = Q

Q0
=

∑
i η

2
i 〈n̂a,i〉∑

i ηi〈n̂a,i〉 . (6)

As can be seen from this equation, the functional form of QN

depends only on the shape of the aperture and how it attenuates
the different modes as its size is reduced.

In order to model the concept of a coherence area we need
to use a set of spatial modes that are spatially localized and
that form a complete orthonormal basis. This can be done
by using a basis set that consists of two-dimensional rect
functions, analogous to the pixels in an image. The use of
these modes allows us to develop a model that is independent
of the pump configuration of the FWM and to extract a
measure of the coherence area based only on the intensity
noise measurements. This results in a direct comparison
between the different pump beams used as it does not require
any assumptions about other competing effects, such as the
cross-Kerr effect, that can directly affect the effective size
of the coherence area. In particular, we consider a set of
square “pixels” of size 2a × 2a as the basis, as shown in

x0

2a(a)

(b)

2a

FIG. 3. Theoretical model used for extracting size of coherence
area. (a) A discrete basis in the form of square “pixels” of size
2a × 2a is used to model the concept of a localized coherence area.
In the model a corresponds to the linear extent or “radius” of the
coherence area. (b) Projection along the horizontal direction. The
model integrates over the vertical direction as the size of the slit
remains constant in that direction. x0 corresponds to the distance
between the center of the projection of the beam and the edge of
the closest pixel. The red dotted line shows the discretization of the
spatial profile of the beam, shown as a Gaussian, onto the effective
one-dimensional pixel basis. The shaded areas represent the region
blocked by the variable size slit.

Fig. 3(a), where a corresponds to the linear extent or “radius”
of the coherence area. Given that the coherence area sets the
minimum transverse spatial dimension of any structure on
the twin beams, there is no need to consider a basis of a
smaller size. In this model we assume each square to be an
independent single spatial mode, such that its noise scales lin-
early with losses, consistent with the concept of the coherence
area.

For the problem at hand we can reduce the above analysis
to a one-dimensional problem as the size of the slit is only
changed in one direction. Effectively we integrate over the
spatial profile of the beam along the direction over which the
size of the slit remains constant, as illustrated in Fig. 3(b).
Given the discrete nature of the basis, the alignment of the
center of the spatial profile of the beam with respect to the
“pixel” basis plays a role in the evaluation of Eq. (6) in part
due to the discretization of the beam onto the pixel basis, as
shown by the red dotted line in Fig. 3(b). In order to avoid these
discretization effects we average over all the possible values
of x0, the distance between the center of the spatial profile of
the beam and the pixel basis (see Fig. 3).

The only free parameter in this model is the linear extent
of the coherence area a. As a result, it allows us to extract a
measure of the “radius” of the coherence area by performing
a fit to the data while changing the value of a, as shown in
Fig. 2. As can be seen, the behavior of QN as a function of
transmission obtained from the model provides a very good
fit to the measured data. From the model we estimate that the
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ratio a/ω0, where ω0 is the radius of the conjugate beam at the
position of the measurements, is equal to 0.48 for the 1.5 mm
Gaussian pump, 0.37 for the 2.3 mm Gaussian pump, 0.27 for
the 3.2 mm Gaussian pump, and 0.12 for the 3.0 mm flat-top
pump, as indicated in Fig. 2. We have verified that the size of
the coherence area obtained with our model for the 1.5 mm
pump is consistent with the one estimated in [12] through
different techniques for a similar configuration.

As expected, the size of the coherence area is reduced as the
size of the pump beam is increased, consistent with the effect
on the phase-matching condition of a reduced uncertainty in
the k-vector distribution of the pump for larger beam sizes.
What is surprising is the reduction in the linear extent of the
coherence area by a factor of more than 2 when the Gaussian
profile of the pump is changed to a flat-top profile while
keeping the size constant. While this large reduction is in part
due to the difference in the spread of k-vectors of the different
spatial profiles of the pump, it is mainly due to the quadratic
dependence of the FWM on the pump field. When the flat-top
field profile is squared, its shape is not changed and thus its
k-vector distribution stays the same. On the other hand when
the Gaussian field profile is squared, its profile gets narrower,
which translates into an increase in the spread of k-vectors and
thus a larger coherence area.

The reduction in the linear extent of the coherence area
obtained with the flat-top pump results in an increase in the
number of spatial modes that make up the twin beams by a
factor of more than 4. This can be understood by considering
that the number of modes that are generated by the process can
be estimated by dividing the area of the angular bandwidth of
the FWM by the area of the coherence area in the far field [12].
The angular bandwidth is determined by the phase-matching
condition, which in turn is mainly determined by the FWM
process and is not significantly modified by a change in the
pump beam.

IV. EFFECT OF COHERENCE AREA ON RESOLUTION
OF ENTANGLED IMAGES

An important aspect of the ability to control the size of
the coherence area is the role that it plays in the number of
spatial modes that make up the twin beams and thus their
information capacity. This dependence can be illustrated by
studying the effect of the size of the coherence area on
the entangled images that can be generated with the FWM
process. In particular, given that the size of the coherence area
determines the smallest transverse length scale in the probe
and conjugate beams, a change in the size of the coherence
will lead to a change in the resolution of the entangled images.
To study the effect on the resolution we place a slit pattern in
the path of the input probe beam and use an optical system
to place its Fourier transform at the center of the cell. After
the cell we use a second optical system to perform a second
Fourier transform to obtain the image of the slit pattern on the
conjugate beam that is generated by the FWM.

We again concentrate on the conjugate beam since all
the photons in this beam are generated by the FWM. On
the other hand, the probe beam contains a contribution from
both the photons generated by the FWM and the input probe
photons that do not participate in the FWM. In particular,

(b) 1.5 mm Gaussian (c) 2.3 mm Gaussian

(d) 3.2 mm Gaussian (e) 3.0 mm flattop

(a) Input probe

10.50.25 57.00

FIG. 4. Effect of size of coherence area on resolution of entangled
images. (a) Slit pattern used as an input image for the FWM. Output
entangled images for (b) 1.5 mm Gaussian pump beam, (c) 2.3 mm
Gaussian pump beam, (d) 3.2 mm Gaussian pump beam, (e) 3.0 mm
flat-top pump beam. The images show normalized intensities.

any of the input k-vectors for the probe that are outside
the angular bandwidth of the process will not be amplified.
The interaction with the atomic system leads to a different
focal plane for the components that participate in the FWM
and the ones that do not, leading to some background that
contaminates the image for the probe beam. In addition, the
spatial pattern of the amplified probe beam is altered by the
cross-Kerr effect between the pump and the probe. As a result,
a cleaner measure of the effect of the coherence area on
the resolution can be obtained through measurements on the
conjugate.

We record the generated image for the four different pumps
used to perform the noise measurements. The results are shown
in Fig. 4. For the smallest diameter pump beam the fringes
cannot be resolved. As we increase the size of the pump
the contrast becomes higher and the pattern more closely
resembles the input pattern. As can be seen, the best resolution
is obtained with the flat-top pump beam, consistent with
obtaining the smallest coherence area. This shows that an
enhancement in resolution results from a reduction in the size
of the coherence area.

V. CONCLUSION

Through a study of the noise properties of entangled twin
beams after propagation through a variable size slit, we have
shown that it is possible to change the size of the coherence
area by changing both the size and spatial profile of the pump
beam. In order to extract a measure of the coherence area from
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these noise measurements we developed a model based on the
concept of a localized coherence area.

Our results show that an increase in the size of the pump
leads to a reduction in the size of the coherence area. While this
result is expected, we found that a change in the spatial profile
of the pump from a Gaussian to a flat top led to a reduction in
the linear extent of the coherence area by a factor of more than
2. Such a reduction corresponds to an increase in the number
of spatial modes that make up the twin beams by a factor of
more than 4.

As we have shown, it is possible to control the number
of spatial modes that make up the twin beams, which has an
impact on the resolution of the generated entangled images
and provides a mechanism to control the information capacity
of the twin beams.
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