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Indirect measurement of three-photon correlation in nonclassical light sources
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We observe the three-photon correlation in nonclassical light sources by using an indirect measurement scheme
based on the dead-time effect of photon-counting detectors. We first develop a general theory which enables
us to extract the three-photon correlation from the two-photon correlation of an arbitrary light source measured
with detectors with finite dead times. We then confirm the validity of our measurement scheme in experiments
done with a cavity-QED microlaser operating with a large intracavity mean photon number exhibiting both
sub- and super-Poissonian photon statistics. The experimental results are in good agreement with the theoretical
expectation. Our measurement scheme provides an alternative approach for N -photon correlation measurement
employing (N − 1) detectors and thus a reduced measurement time for a given signal-to-noise ratio, compared
to the usual scheme requiring N detectors.
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I. INTRODUCTION

Photon correlation measurement has played an important
role in physical science. Since the second-order correlation
(SOC) or two-photon correlation measurement was first
devised by Hanbury-Brown and Twiss to resolve the size of
stars [1], it has been utilized in various fields, from ultracold
atomic systems [2] to single-molecule fluorescence [3]. As
more efficient measurement schemes have been developed [4],
many researchers has begun to address higher-order corre-
lation functions in various aspects. M. Assmann et al. [5]
observed higher-order photon bunching effects in a semi-
conductor microcavity laser. Asymmetric temporal behavior
of three-photon correlation in a strongly driven atom-cavity
system was studied by M. Koch et al. [6]. Higher-order
photon correlation is also used in Doppler optical coherence
tomography [7] as well as in high-order ghost imaging [8,9].
In matter-wave experiments, the third-order correlation of
Bose-Einstein condensates was investigated to confirm its
Bose statistics [10].

One of the main benefits obtainable from photon correlation
measurement is information on the photon statistics. For
instance, the normalized variance of photon statistics is
simply described in terms of the SOC as (�n)2/〈n〉 − 1 =
〈n〉(g(2)(0) − 1). Here, n is the photon number, g(N)(0) with
N = 2 is the second-order correlation, and the left-hand side
is usually called the Mandel Q factor. The second-order and,
furthermore, the higher-order correlation functions give us
useful information on the photon statistics of a light source.
In describing the statistical distribution of photon numbers,
people frequently use the more generalized quantities called
skewness and kurtosis, which are related to the third and
fourth-order correlations, respectively. These quantities give
graphical and intuitive information on the photon statistics,
describing how much the distribution is asymmetrical and
sharp, respectively.

In photon correlation measurements, N separate photode-
tectors are used for the N th-order correlation function in most
configurations. For SOC measurement, a Hanbury-Brown-
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Twiss-type measurement is often used. It might seem that
this configuration would remove the detector dead-time effect
because two successive photons detected at separate detectors
appear to be free of the dead-time effect of each detector.
Unfortunately, the dead-time effect on the SOC, nevertheless,
exists even in this usual configuration and the distortion in
the SOC is known to depend on the higher-order (N � 3)
correlation functions [11–14]. From this consideration, one
would expect that it might be possible to extract information
on higher-order correlations from the SOC measurement by
analyzing the dead-time effect. This possible new scheme
to measure the correlation by using the detector dead-
time effect is called “indirect measurement” throughout the
paper.

However, most of the discussions in the literature [11–14]
are restricted to the case where the light source is classical and
the correlation time is much longer than the mean waiting time
or the inverse of the photodetection flux. On the other hand,
our previous study [15] considered the dead-time effect on
nonclassical light but neglected the higher-order correlations in
deriving a correction formula. It is thus desirable to generalize
all of these previous studies to cover both nonclassical light
sources and higher-order correlations.

In this paper, we theoretically derive an indirect measure-
ment scheme for the third-order correlation by generalizing the
previous studies on the dead-time effect. We then apply it to
the three-photon correlation measurement in a cavity-QED
(quantum electrodynamics) microlaser [16]. We observe a
relation between g(2)(0) and g(3)(0,0) experimentally, which
agrees well with our theoretical expectation.

This paper is organized as follows. In Sec. II, our in-
direct measurement scheme for the third-order correlation
is theoretically discussed. We first show how the distortion
of photodetection flux is connected to g(2)(0) and then
extend the discussion to the distortion of g(2)(0) itself. This
distortion eventually gives the information on the third-order
correlation g(3)(0,0). In Sec. III, we then prove the relation
3(1 − g(2)(0)) � 1 − g(3)(0,0) in the cavity-QED microlaser
when it operates at a large mean photon number. In the
following section, we describe an experiment performed with
the cavity-QED microlaser, where we extract g(3)(0,0) by using
the indirect scheme and then show that the observed g(3)(0,0)
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satisfies the above relation derived in Sec. III. Concluding
remarks are given in Sec. IV.

II. THEORY OF THE INDIRECT MEASUREMENT
SCHEME

In this section, we derive how the photodetection flux and
g(2)(0) are distorted under the detector dead-time effect, which
eventually provides a theoretical background for the indirect
measurement scheme below.

A. g(2)(0) dependence of photodetection flux distortion

In this subsection, we first reveal that the dead-time
effect on photodetection flux is related to g(2)(0), which is
generalized to a relation between g(3)(0,0) and g(2)(0) in
the subsequent subsection. Figure 1 depicts photodetection
events in a two-detector configuration, where the black circles
indicate observed photodetection events and the gray circles
indicate missed events due to the detector dead time of duration
τ . The second and fourth rows refer to the corresponding
dead-time-free photodetection events. For further discussion,
we hereby define

g′(N)(t12, . . . ,tN−1,N ; φ1, . . . ,φN ; τ1, . . . ,τN ), (1)

an observed N -photon correlation function in the usual N -
photodetector configuration when the dead-time-free photode-
tection flux and the dead time of the kth detector are denoted
φk and τk , respectively. Here, tk−1,k means the photodetection
time delay between the (k − 1)th and the kth detector. For
example, the correlation between the black circles in the first
and third rows in Fig. 1 is given by g′(2)(t ; φst,φsp; τst,τsp).
When it comes to the correlation between the black circles in
the first and those in the second rows (for the identical incident
photon streams), it can be expressed as g′(2)(t ; φst,φst; τst,0).

The probability of finding dead-time-free photodetection
events is apparently the sum of the probability of finding the
black circles and the probability of finding the gray circles.
The former is related to the observed photodetection flux φ′(τ )
with dead time τ . The conditional probability of finding a gray
circle in a time interval t (<τ ) after the appearance of a black
circle is given by g′(2)(t ; φ,φ; τ,0). Note that the correlation
between the black and the gray circles is the same as that

FIG. 1. Illustration of photodetection events and dead-time effect
in a two-detector configuration. Black circles represent the observed
photodetection events, whereas gray circles indicate the missed events
caused by detector dead time, whose duration is shown by blue arrows.
The correlation between the observed photodetection events (black
circles in the first and third rows) corresponds to g′(2)(t). The second
and fourth rows are copies of the first and third rows, respectively,
without distinction between observed and missed photodetection
events.

between the observed events (black circles in the first and third
rows) with associated flux φ′(τ ) and the corresponding dead-
time-free events (black circles in the second and fourth rows)
with associated flux φ. From this consideration, we derive the
following relation:

φ = φ′(τ ) + φ′(τ )φ
∫ τ

0
g′(2)(t ; φ,φ; τ,0)dt. (2)

The first derivative of φ′(τ ) at τ = 0 is then given by

dφ′(τ )

dτ

∣∣∣∣
τ=0

= −φ2g′(2)(0; φ,φ; 0,0) = −φ2g(2)(0), (3)

where we have used the relation

d

dτ

∫ τ

0
f (t,τ )dt = f (τ,τ ) +

∫ τ

0

∂f (t,τ )

∂τ
dt (4)

in deriving Eq. (3), with f (t,τ ) referring to an arbitrary
multivariable function of t and τ . L. Mandel derived a formula
similar to Eq. (2) for resonant fluorescence detection [17]. The
only difference from our formula is that the integrand in Eq. (2)
is g(2)(t), not g′(2)(t). This difference mainly comes from
the fact that Mandel neglected the effect of the higher-order
correlation.

B. g(3)(0,0) dependence of SOC distortion

In the following, we define the observed coincidence
photodetection flux 〈φ′

st(τst)φ′
sp(τsp)〉, which refers to the

number of simultaneous photodetection events at the start and
stop detectors per unit time when the start and stop detectors
have dead time τst and τsp, respectively. Then g′(2)(0) measured
in the two-detector configuration can be expressed as

g′(2)(0; φst,φsp,τst,τsp) = 〈φ′
st(τst)φ′

sp(τsp)〉
φ′

st(τst)φ′
sp(τsp)

. (5)

In Fig. 2, we illustrate how the coincidence photodetection
flux is distorted by the dead time while assuming τst = 0 for
simplicity. Missing of coincidence events occurs when events
a and b (both are detected events) and event c (a missed event)
satisfy the configuration depicted in Fig. 2(a). The probability
of having three such events is apparently the same as the
probability of having event a first and then events b and c

FIG. 2. (a) Illustration of the missed coincidence photodetection
when only the stop detector has a dead time indicated by the blue
arrow. For a photodetection scenario like a, b, and c, we miss a
coincidence event. (b) A third row, a duplicate of the second row, has
been added to show that the correlation among a, b, and c in (a) is
the same as that in (b). Therefore, the correlation among these three
events is given by g′(3)(t,0; φsp,φst,φsp; τsp,0,0).
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simultaneously after time t(<τsp) as depicted in Fig. 2(b),
which is given by the expression

φstφspφ
′
sp(τsp)g′(3)(t,0; φsp,φst,φsp; τsp,0,0), (6)

where g′(3)(t,0) approaches g(3)(t,0) as τsp decreases to 0.
Accordingly, 〈φ′

st(0)φ′
sp(τsp)〉 and the dead-time-free coinci-

dence photodetection flux 〈φstφsp〉 = 〈φ′
st(0)φ′

sp(0)〉 satisfy the
following relation

〈φstφsp〉 = 〈φ′
st(0)φ′

sp(τsp)〉 + φstφspφ
′
sp(τsp)

×
∫ τsp

0
g′(3)(t,0; φsp,φst,φsp,τsp,0,0)dt. (7)

Note that Eq. (7) still holds after exchanging the indices start
and stop. Differentiating both sides by τsp(τst) at τsp(τst) = 0
then gives

d
〈
φ′

st(0)φ′
sp(τsp)

〉
dτsp

∣∣∣∣∣∣
τsp=0

= −φstφ
2
spg

(3)(0,0), (8a)

d〈φ′
st(τst)φ′

sp(0)〉
dτst

∣∣∣∣
τst=0

= −φspφ
2
stg

(3)(0,0), (8b)

and thus, we can directly obtain the differentiation of Eq. (5),
utilizing Eq. (3), as

dg′(2)(0; 0,τsp)

dτsp

∣∣∣∣
τsp=0

= φsp([g(2)(0)]2 − g(3)(0,0)), (9a)

dg′(2)(0; τst,0)

dτst

∣∣∣∣
τst=0

= φst([g
(2)(0)]2 − g(3)(0,0)). (9b)

In the linear approximation regime (φτ � 1), we can express
Eq. (5) as

g′(2)(0; τst,τsp) − g(2)(0)

� τst
∂g′(2)(0; τst,τsp)

∂τst

∣∣∣∣
τst,sp=0

+ τsp
∂g′(2)(0; τst,τsp)

∂τsp

∣∣∣∣
τst,sp=0

,

(10)

and thus

g′(2)(0) − g(2)(0) � {[g(2)(0)]2 − g(3)(0,0)}(φstτst + φspτsp).

(11)

Combining Eq. (2) and Eq. (9) readily gives the second
differentiation of φ′(τ ), and the result is

d2φ′(τ )

dτ 2

∣∣∣∣
τ=0

= 2φ3g(3)(0,0) + φ2 dg(2)(t)

dt

∣∣∣∣
t=0

, (12)

which clearly shows that the dead-time effect on photodetec-
tion flux also depends on the higher-order correlation. The
first-order derivative of the SOC function at zero time delay,
dg(2)(t)

dt
|
t=0

, normally gives the inverse of the correlation time
(an example is the cavity-QED microlaser), and thus Eq. (12)
approaches Flammer and Ricka’s result [14] in the limit of a
long correlation time (τw � τc), where τw is the mean waiting
time in consecutive photodetections.

Please note that g′(2)(0) is a function of φst,sp as well, but we
omit these in the above equations for simplicity of expression.

We do not give further consideration of g′(2)(0) with a large
τ , for which the linear approximation no longer works. We
should consider the fourth- or even higher-order correlations
in this case, and that goes beyond the scope of the present
work. We also neglect the dead-time effect on the temporal
dependence of SOC, because in the linear approximation
regime the correlation time is much longer than the dead time,
and consequently the dead-time effect on the correlation time
is negligible.

We have not assumed anything about the photon source
until now. Therefore, all the results here can be applied to any
kinds of photon sources. Particularly, Eq. (11), valid as long as
φτ � 1, is broadly applicable, as the information on g(3)(0,0)
can be extracted from the first-order coefficient of g′(2)(0) as a
function of the detector dead time.

The discussion heretofore can be generalized to the case
of an N -detector configuration with only the N th detector
having the dead time τN . Then the following relation should
hold:

〈φ1 . . . φN 〉 = 〈φ′
1(0) . . . φ′

N (τN )〉 + φ1 . . . φNφ′
N (τN )

×
∫ τN

0
g′(N+1)(0, . . . ,t,0; φ1, . . . ,φN−2,φN,

×φN−1,φN ; 0, . . . ,0,τN ,0,0)dt. (13)

Differentiating both sides by τN gives

dg′(N)(0; 0, . . . ,τN )

dτN

∣∣∣∣
τN=0

= φN [g(2)(0)g(N)(0) − g(N+1)(0)].

(14)

The subscripts N can be replaced with arbitrary indices i

(1 � i � N ), and thus

dg′(N)(0; 0, . . . ,τi, . . . ,0)

dτi

∣∣∣∣
τi=0

= φi(g
(2)(0)g(N)(0) − g(N+1)(0)). (15)

Finally, under the linear approximation φiτi � 1 we obtain

g′(N)(0) − g(N)(0) � [g(2)(0)g(N)(0) − g(N+1)(0)]

(
N∑

i=1

φiτi

)
.

(16)

This is a generalized form of Eq. (11). Note that we omit the
detector dead times in the argument of the observed correlation
function for simplicity.

According to Eq. (16), the constant term and the first-order
coefficient of g′(N)(0) as a function of the dead times {τi}
provide the information on the dead-time-free g(N)(0) and
g(N+1)(0), respectively. The detector dead time is fixed in
general. However, we can emulate various detector dead
times on the record of observed photodetection events by
deliberately deleting events. By plotting g′(N)(0) as a function
of these emulated dead times, we can then extract both the
dead-time-free g(N)(0) and the dead-time-free g(N+1)(0). The
detailed procedure is presented in Sec. IV.
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III. PHOTON CORRELATION IN THE CAVITY-QED
MICROLASER

The cavity-QED microlaser is a microscopic laser con-
sisting of a high-Q optical cavity and a beam of two-level
atoms traversing the cavity mode. The two-level atoms pumped
by a conventional laser serve as the gain medium. It is an
optical analogy of the micromaser [18]. In the cavity-QED
microlaser, lasing is possible even when only one atom on
average [16] or a true single atom [19] is present in the
cavity. The coherent interaction between atoms and the cavity
mode is still maintained even when the mean atom number
in the cavity is much larger than unity [20], exhibiting novel
properties such as quantum jumps [21], sub-Poisson photon
statistics [22], the atomic Šolc filter [23,24], and quantum
frequency pulling [25,26] distinct from the conventional
laser.

Quantum micromaser theory (QMT) [27] and semiclassical
rate equation analysis predict various interesting features of
the cavity-QED microlaser. The oscillatory gain function as
the photon number of the cavity-QED microlaser represents
the coherent interaction between the atom and the cavity mode,
mainly accounting for the non-Poissonian properties of its
intracavity photon statistics. The experiment done by W. Choi
et al. [22] successfully observed these properties.

In this section, we show that g(2)(0) and g(3)(0,0) satisfy a
simple relation when the cavity-QED microlaser is operating
at a large mean photon number. Let us first note that g(3)(0,0)
can be expressed as follows in general:

g(3)(0,0) = 〈n3〉 − 3〈n2〉 + 2〈n〉
〈n〉3 . (17)

Meanwhile, the skewness γ of photon statistics is defined as

γ = 〈n3〉 − 3〈n2〉〈n〉 + 2〈n〉3

〈�n〉3 . (18)

We can rewrite Eq. (17) in terms of the skewness as

g(3)(0,0) = 1 + 3Q

〈n〉 − (3Q + 1)

〈n〉2 + (Q + 1)3/2

〈n〉3/2 γ. (19)

In the following, we only consider the case where the Mandel
Q factor is not close to 0 since the cavity-QED microlaser
shows non-Poissonian photon statistics except for a few special
atom numbers. In the case where 〈n〉 is much larger than |Q|
[i.e., |1 − g(2)(0)| � 1], the third term in Eq. (19) becomes
negligibly small compared to the second term. The skewness
contained in the last term reflects the degree of asymmetry
of the distribution. It becomes 0 for a perfectly symmetrical
distribution whose median and mean are the same, such as a
Gaussian or a delta-function distribution. With a large mean
photon number and with a nearly symmetric photon number
distribution, we can also neglect the last term in Eq. (19)
compared with the second term.

The photon statistics of the micromaser as well as the
cavity-QED microlaser have been calculated in many previous
studies [28,29]. Under the condition that the atom number
is large enough to generate a large intracavity mean photon
number but still insufficient to lead to a quantum jump, all of
the previous studies give a symmetric single-peak distribution,
which implies that the skewness may have a tiny value. Based

on QMT, we calculated the skewness for the cavity-QED
microlaser in the case where 〈n〉 is sufficiently large (Fig. 3),
where γcqm is the skewness (black dots) of the cavity-QED
microlaser photon statistics at various atom numbers Na , and
γpoi = 〈n〉−1/2 is that of the corresponding Poisson distribution
(red dots) having the same mean photon number.

Figure 3 reveals that the order of magnitude of γcqm is
similar to or less than that of γpoi when 〈n〉 is large enough.
Therefore, we can now neglect the last term in Eq. (19) for the
cavity QED microlaser as well, as long as it operates well away
from the regions where quantum jumps occur. Equation (19)
is then approximated as

g(3)(0,0) � 1 + 3Q

〈n〉 (20)

for a large mean photon number. Equation (20) then readily
gives

3(1 − g(2)(0)) � 1 − g(3)(0,0) (21)

because we have g(2)(0) = 1 + Q/〈n〉 by definition. The
relation can also be expressed as

[g(2)(0)]3 � g(3)(0,0) (22)

since we already assume that g(2)(0) and g(3)(0,0) are close
to unity. Direct calculation of g(2)(0) and g(3)(0,0) based on
QMT also gives a result consistent with ours [30].

Meanwhile, QMT completely ignores nonideal effects
including the cavity dissipation and atomic velocity distri-
butions. For this reason, the validity of Eq. (20) might be
questioned under the realistic conditions since nonideal effects
would considerably change the photon statistics. However,
we expect that there is no dramatic change, at least in the
symmetric shape of the photon number distribution, based on
the following reasoning.

Incoherent and inhomogeneous effects tend to reduce the
oscillatory behavior of the gain function. One example can be
found in Ref. [31], where, with inclusion of the atomic velocity
distribution, the amplitude of the gain function decreases
as 〈n〉 increases. As these effects become severe, the gain
function of the cavity-QED microlaser will approach that of
the conventional laser whose photon statistics is Poissonian,
and thus the skewness of the cavity-QED microlaser will get
closer to γpoi. Therefore, we can still have γcqm ∼ 〈n〉−1/2 and
thus Eq. (20) under nonideal effects. To summarize, although
nonideal effects evidently influence the photon statistics,
Eq. (21) still holds.

By plugging Eq. (22) into Eq. (11) we then obtain

g′(2)(0) − g(2)(0) = {[g(2)(0)]2 − [g(2)(0)]3}(φst + φsp)τ,

(23)

where we assume τ = τst = τsp. Since g(2)(0) is close to unity,
Eq. (23) is numerically equivalent to

g′(2)(0) � g(2)(0){1 + [1 − g(2)(0)](φst + φsp)τ }, (24)

which is the result independently derived in Ref. [15].
The result obtained in this section is specific to the cavity-

QED microlaser in the large-photon-number limit. Although
the result is not general, it can still serve as a cross-check
reference for the indirect measurement method discussed in
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FIG. 3. Photon statistics of the cavity-QED microlaser operating in the large-photon-number region (black dots), well away from the
regions where quantum jumps occur, compared to the Poissonian distributions (red dots) that have the same mean photon number. Here, Na

refers to the mean atom number. The photon statistics of the cavity-QED microlaser shows a near-symmetric single-peak distribution in both
(a) super-Poissonian and (b–d) sub-Poissonian regions when the mean photon number is sufficiently large. Skewness values of the cavity-QED
microlaser are similar to or less than the γpoi of the Poissonian distributions. The coupling constant and interaction time between the cavity mode
and the impinging atoms assumed in the calculation were 2π × 190 kHz and 0.1 μs, respectively, while the cavity line width was assumed to
be 138 kHz. These operating parameters are basically the same as in Ref. [22].

the previous section and the experimental results discussed in
the following sections.

IV. RESULTS AND DISCUSSION

A. g(3)(0,0) measurement of the cavity-QED microlaser

In typical photon-counting SOC measurements, the detec-
tor dead time is fixed for a given detector. Nonetheless, we
can simulate various detector dead times by computationally
deleting photodetection events in the observed photodetection
records. Even with this approach, we still miss photodetection
events near the origin within the physical detector dead time.
However, if g′(2)(0) as a function of the dead time τ shows
sufficiently linear variation near the origin, one can then
approximate its variation in low-order polynomials of τ and
obtain reliable values of the constant term and the first-order
coefficient by performing a least-chi-square fitting.

Our experimental setup is basically the same as that in
Ref. [15]. Figure 4(a) shows g′(2)(0) as a function of the
dead time measured in the regime of sub-Poisson photon
statistics of the cavity-QED microlaser. A similar plot appeared
in our previous work [15]. The red square was obtained
in the experiment where the mean photon number of the
cavity-QED microlaser was approximately 600. Observed
photodetection fluxes on the start and stop photodetectors
are 2.6 Mcps (mega counts per second) and 3.3 Mcps,
respectively, and the dead time is 28 ns for both detectors.

The dead-time-free photodetection flux was calculated using
Eq. (2) in Ref. [15] while approximately treating the output of
the cavity-QED microlaser operating at a large mean photon
number as coherent light. We simulated the prolonged dead
times, corresponding to the black circles, in the same way
as in Ref. [15]. The prolonged dead times imposed on both
detectors were the same. At the photodetection fluxes given
above, the emulated g′(2)(0) increases almost linearly until the
128-ns dead time. The fitting errors for the black circles are
roughly 10% of |1 − g′(2)(0)|.

In Fig. 4(b) we performed a least-chi-square fit of the
data points in Fig. 4(a) with a second-order polynomial
(a parabolic curve) from the red square to the 14th black
circle, corresponding to the 128-ns dead time. Here, the x

axis refers to the number of data points participating in the
fit. Since the number of data points is limited in Fig. 4(a),
fitting with polynomials higher than third order tends to give
a fitting error larger than the fitting parameters. From the
values of g(3)(0,0) and g(2)(0) in Fig. 4(b), we then obtain
the ratio [1 − g(3)(0,0)]/[1 − g(2)(0)] as shown in Fig. 4(c).
We observed that the relation 3[1 − g(2)(0)] � 1 − g(3)(0,0)
in Eq. (21) is well satisfied with a reasonably large number
of data points used in the fitting. The observed ratio with the
fitting to the 14th data point was 2.98 ± 0.07. The error bars
in Figs. 4(b) and 4(c) indicate the fitting errors.

We have also performed the g(3)(0,0) measurement with
super-Poissonian light. Data in Fig. 5 correspond to g′(2)(0)
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FIG. 4. (a) Relation between g′(2)(0) and dead time, observed
by experiment and by prolonged dead times. Red squares indicate
experimentally observed results in the cavity-QED microlaser. Ob-
served photodetection fluxes at each detector were 2.6 and 3.3 Mcps,
respectively. We simulated the prolonged dead-time results (black
circles) by deleting photodetection events from the actual data. The
resulting g′(2)(0) is almost linearly increasing up to 128 ns dead time.
The solid blue line indicates the least-chi-square fit curve when the
data points up to the 14th participate in the fitting process. (b) Values
of g(3)(0,0) (filled circles) and g(2)(0) (open circles) obtained by
performing second-order polynomial fitting over the data points in
(a) and by using Eq. (11). Here, the horizontal coordinate indicates
the number of data points participating in the fitting process. (c) Ratio
of g(3)(0,0) − 1 to g(2)(0) − 1 based on the results in (b). The higher
the number of data points used in the fitting, the more reliable the
results will become. Eventually the ratio converges to the theoretical
expectation (dashed red line). The mean photon number in the cavity
was roughly 600.

FIG. 5. (a) Relation between g′(2)(0) and the dead time, observed
in the super-Poissonian regime of the cavity-QED microlaser (black
circles). (b) Values of g(3)(0,0) (open circles) and g(2)(0) (filled circles)
obtained by performing second-order polynomial fitting over the data
points in (a) and by using Eq. (11). Fitting errors for individual black
circles are less than 1% of g′(2)(0) − 1. Here, the horizontal coordinate
indicates the number of data points participating in the fitting process.
The solid blue line in (a) is the second-order polynomial fitting
curve when all the presented data points are involved in the fitting
process. (c) Ratio of g(3)(0,0) − 1 to g(2)(0) − 1. The obtained values
of |1 − g(3)(0,0)|/|1 − g(2)(0)| from the fitting with all data points
is 3.00 ± 0.03.

measurements of the cavity-QED microlaser with a reduced
mean intracavity atom number so as to generate super-
Poissonian photon statistics. The observed photodetection
fluxes were 870 kcps (kilo counts per second) and 1380 kcps
for the start and stop detectors, respectively. The intracavity
mean photon number for each data point was about 200. We
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obtained g(3)(0,0) and g(2)(0) the same way as for Fig. 4.
The fitting range was restricted up to the 200-ns dead time.
The solid blue line is a second-order polynomial fit curve. The
value of |1 − g(3)(0,0)|/|1 − g(2)(0)| obtained in the fitting is
3.00 ± 0.03 when the data points up to 200 ns dead time are
involved in the fitting, again well consistent with the theoretical
expectation of Eq. (21). The dark count was only 500 cps and
the contribution of the afterpulse was only 0.5% of the total
photodetection flux, so we did not consider their effects in our
data analysis.

B. Advantage of the current indirect measurement scheme

In the usual N -detector configuration for N th-order correla-
tion measurement, the signal-to-noise ratio (SNR) is given by√

(T0/τw)N/(T0/tb)N−1 =
√

(T0/τw)(tb/τw)N−1 [15], where tb
is the bin time used in the calculation of the N th-order
correlation function and T0 is the total measurement time. The
bin time tb should be small enough to resolve the temporal
dependence of the correlation function, and thus it typically
satisfies tb � τw. Therefore, in order to get a comparable
SNR for the third-order correlation compared with the SOC
measurement, the measurement time should be increased by a
factor of τw/tb. However, if the measurement time T0 is limited
for some technical reason such as a finite oven lifetime as in the
cavity-QED microlaser, third-order correlation measurement
will then be impossible. In this regard, our approach presented
here provides a useful alternative for measurement of the
higher-order (N > 2) correlation.

V. CONCLUSION

We have developed a universally applicable theory which
describes how the dead time distorts the second-order photon
correlation in the usual two-detector configuration. Our for-
mula relates g(2)(0) and g(3)(0,0) to g′(2)(0) as a function of
the dead time, and thus, we can measure unknown g(3)(0,0)
from g′(2)(0). We call this new approach of obtaining g(3)(0,0)
indirect measurement. In order to check the validity of our
theory, we carried out an experiment with the cavity-QED
microlaser in the large-photon-number regime and obtained
g(2)(0) and g(3)(0,0) from g′(2)(0) utilizing our formula. Mean-
while, we have also shown that the cavity-QED microlaser
satisfies 3(1 − g(2)(0)) � 1 − g(3)(0,0) when it operates at a
large intracavity photon number. The observed g(2)(0) and
g(3)(0,0) values in our experiments agree well with the relation,
thereby confirming the validity of our indirect measurement
scheme. Since our indirect approach is based on second-order
correlation measurement, it can greatly reduce the otherwise-
much-longer measurement time for the third-order correlation
for a desired SNR, and thus it is particularly useful when
the operation time of the photon source is limited for some
scientific or technical reason.
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