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Giant enhancement of optical high-order sideband generation and their control in a dimer
of two cavities with gain and loss
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Parity-time (PT ) symmetric systems, which rely on the balanced gain-loss condition and render the
Hamiltonian non-Hermitian, have provided a new platform to engineer effective light-matter interactions in recent
years. Here we explore the high-order sideband features of the output fields obtained from a PT -symmetric
optical system consisting of a passive nonlinear cavity coupled to an active linear cavity. By employing a
perturbation technique, we derive analytic formulas used to determine the nonlinear transmission coefficient of
optical second-order sideband in this structure. Using experimentally achievable parameters, it is clearly shown
that the efficiency of the second-order sideband generation can be greatly enhanced in the PT -symmetric dimer,
extremely in the vicinity of the transition point from unbroken- to broken-PT regimes. Moreover, we further
analyzed the influences of the system parameters, including the photon-tunneling rate between two cavities,
Kerr nonlinearity strength, and optical detuning, on the second-order sideband generation. Subsequently we
investigate the higher-order sideband output spectrum by numerical simulations, where the sideband amplitude
also is largely enhanced in the PT -symmetric arrangement, compared with the passive-passive double-cavity
system. Our obtained results provide a new avenue for acquiring optical high-order sidebands and operating light,
which may inspire further applications in chip-scale optical communications and optical frequency combs.
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I. INTRODUCTION

As one of mainly branches of optics science, nonlinear
optics describes the light features in the nonlinear media,
giving rise to abundant novel optical phenomena [1]. From
laser technology to optical spectroscopy to quantum optics,
the nonlinear interactions have been at the forefront of many
research disciplines. As one of prominent nonlinear effects,
optical high-order harmonic generation was first discovered by
Franken [2] and has developed potential applications in optical
communication and atto-physics. Similar to optical high-order
harmonic generation in atoms or molecules, optical high-order
sideband generation is also a process of new frequencies
generation when a photonic system (e.g., photonic crystal
molecule or cavity optomechanical system) is illuminated
by lasers with different frequencies [3–6]. However, these
nonlinear optical effects only can be observed at very high light
intensities for the weak nonlinearity in bulk materials, which
poses a serious hurdle to implement relative applications in
digital optical computing.

Bender and Boettcher showed that some non-Hermitian
Hamiltonians can exhibit real eigenvalue spectra as long as
they preserve the parity-time (PT ) symmetry [7–9]. Since
then, considerable researches have been motivated in a variety
of physical systems due to the great potential ofPT -symmetric
system in both fundamental physics and practical applications
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[10–20]. The particularity of a PT -symmetric system lies in
that the system processes a phase transition (spontaneous PT -
symmetry breaking) as the system parameters are properly
tuned. The spontaneous PT -symmetry breaking point is also
called an exceptional point (EP), which can significantly
influence the dynamics of system and distinguish the PT -
symmetric phase and PT -broken phase. When the parameter
controlling the degree of the non-Hermiticity exceeds the
so-called EP, the system Hamiltonian has completely real
eigenvalues and shares uniform eigenfunctions with the PT
operator. Otherwise, the eigenvalues become complex, and
the eigenfunctions of the Hamiltonian and PT operator
are different from each other. As the most productive and
versatile platform to explore PT -symmetric applications, an
optical PT -symmetric system was theoretically proposed
and experimentally demonstrated by coupled optical wave
guides [21,22], transmission lines, whispering-gallery-mode
resonators [23–25], cavity optomechanical systems [26], and
optical lattices [27–31]. Remarkable advances have been made
in those optical components, such as nonreciprocal light trans-
mission [32–35], low-power optical diodes [36–38] or sensors
[39,40], efficient photon and phonon lasing [41–45] or laser
absorbers [46,47], loss-induced or gain-induced transparency
[48,49], optical parametric amplification via non-Hermitian
phase matching [50], andPT -broken chaos [51], just to name a
few examples. Naturally this raises a question whether greatly
enhanced high-order sideband generation can appear in such
an optical PT -symmetric system. Clearly seeking an easy and
robust way to control the high-order sidebands is an undoubted
challenge from both scientific and technological viewpoints.

In order to answer and address the above-mentioned issue,
in the present work we systematically explore the nonlinear
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transmission characteristics of optical high-order sidebands in
an optical PT -symmetric system. The system employed is
composed of two directly coupled microcavities, coherently
driven by a bichromatic laser field. Gain in one of the
two cavities is provided by optically pumping the doped
erbium ions; the other one without dopant exhibits passive
loss [38]. Moreover, the weak nonlinearity is assumed to
exist only in the passive cavity. By taking advantage of
the perturbation approach, we present an explicit method to
calculate the nonlinear transmission coefficient of an optical
second-order sideband. The efficiency of the second-order
sideband generation shows a giant amplitude enhancement
of about six orders of magnitude with respect to the passive-
passive double-cavity system. Also, we explore the higher-
order sideband output spectrum by numerical simulations.
It is found that the higher-order sideband amplitude is
largely enhanced in the PT -symmetric arrangement as well.
The physical mechanism underlying this is rooted in the
localization-induced dynamical intensity accumulation in the
PT -symmetric system. Comparing with the passive-passive
double-cavity system, strong effective optical nonlinearity can
be achieved in the PT -symmetric optical system at a very low
input level [52,53]. Consequently, the amplified second-order
sideband as well as optical higher-order sideband signals can
be achieved efficiently in the PT -symmetric architecture.

We note that the nonlinearity improved by an optical PT -
symmetric system also has been studied in Ref. [54], where a
passive microcavity containing a single quantum emitter (QE)
couples with an active microcavity. The linear transmission
rate and the optical third-order nonlinearities derived from the
QE-cavity coupling were enhanced efficiently in the system
when the phase transition occurs. Nevertheless, in the present
proposedPT -symmetric system (see Fig. 1), greatly enhanced
optical high-order sideband generation and their easy and
robust control by properly adjusting the system parameters
have remained elusive for this pursuit so far. Compared to
Ref. [54], the driving approach of the system and the method
of the optical nonlinearity produced are quite different. Here

FIG. 1. Schematic illustration of a PT -symmetric device includ-
ing a passive cavity coupled to an active cavity with coupling strength
J (also called photon-tunneling rate). The passive cavity A has a weak
nonlinearity where a Kerr nonlinear optical medium is embedded and
is driven with a bichromatic field at a rate of κe. Here κa denotes the
total loss rate of the cavity A, which contains an intrinsic loss rate and
an external loss rate. κb denotes the effective loss rate of the cavity B,
which is reduced by external gain g with the relationship κb = κi

b − g

(κi
b is the intrinsic loss rate of the cavity B). We suppose that κb > 0

corresponds to a passive loss cavity, and κb < 0 corresponds to an
active gain one.

we use a device of optical coupled microcavities with weak
Kerr-type nanostructure materials, where the nonlinearity
comes from the interactions between the light and three-order
nonlinear materials, and the device is coherently driven by a
bichromatic (i.e., two-tone) laser. However, in Ref. [54] the
nonlinearity derived from photon-photon interactions via a
single quantum emitter coupled to a monochromatic driven
cavity. As is well known, both multichromatic driving and
optical nonlinearity are necessary conditions for generating
optical high-order sideband. Namely, the device in Ref. [54]
cannot generate the optical high-order sidebands by means of
such a monochromatic driving laser.

This paper is structured as follows: In Sec. II we present the
physical model of a nonlinear PT -symmetric cavity dimer.
Making use of the perturbation technique, we give the de-
tailed derivation of analytical expression for the transmission
coefficient of the second-order sideband and describe the
physical quantities of interest. In Sec. III, by comparing
with the passive-passive double-cavity system, we study the
enhancement of the second-order and higher-order sideband
generation in the PT -symmetric system. We also discuss the
influences of the coupling strength between two cavities, Kerr
nonlinearity strength, and optical detuning on the second-order
sideband generation in this section. In Sec. IV we give the
feasibility of implementing our theoretical method in this
PT -symmetric system. Finally, we conclude our results in
Sec. V.

II. PROPOSED MODEL AND BASIC FORMULA

As schematically shown in Fig. 1, the system is composed
of two coupled single-mode cavities, one of which has cavity
loss and weak nonlinearity, and the other has cavity gain
but no nonlinearity. Owing to the finite overlap of the cavity
modes, two cavities can directly couple by the coherent photon
tunneling with strength J , which can be efficiently modulated
by the distance between them. We assume that the cavity A is
simultaneously driven by a strong control field of frequency
ωc and a weak probe field of frequency ωp, denoted by
Sin = sce

−iωct + spe−iωpt . sc and sp are the amplitudes of the
control field and the probe field, which are directly related to
the control-field power Pc = �ωcs

2
c and the probe-field power

Pp = �ωps2
p.

The Hamiltonian describing this composite system is
yielded in a rotating frame at the frequency of the control
laser ωc by

H = ��(â†â + b̂†b̂) + Uâ†â†ââ + �J (â†b̂ + âb̂†)

+ i�
√

κe[(sc + spe−i�t )â† − H.c.], (1)

where â (b̂) and â†(b̂†) are the annihilation and creation
operators of the cavity A (B) with resonance frequency ωa (ωb),
respectively, with the commutation relations [â,â†] = 1 and
[b̂,b̂†] = 1. For the PT -symmetric structure, above we have
assumed that the resonance frequencies of both cavities are
equal, i.e., ωa = ωb = ω. U is the Kerr nonlinear interaction
strength. κe denotes the external loss rate of the passive
cavity A, derived from the interaction between the cavity A
and the external field, related to the coupling quality factor
Qe by κe = ωa/Qe (see Fig. 1). The frequency detunings
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between the cavity field, the control laser, and the probe
laser are represented by � = ω − ωc, �p = ωp − ω, and
� = ωp − ωc = �p + �, respectively.

In our work, we apply the semiclassical Heisenberg-
Langevin equations to describe the evolution of this PT -
symmetric system and consider the expectation values of all the
operators. Taking the cavity damping and the cavity excitation
processes into consideration, we can get the equations of
motion for the PT -symmetric system as follows:

da

dt
= −

(
i� + κa

2

)
a − 2iU |a|2a − iJ b

+ √
κe(sc + spe−i�t ), (2)

db

dt
= −

(
i� + κb

2

)
b − iJ a, (3)

where κa and κb are total loss rates of the cavity A and B,
respectively. Note that, κa > 0, κb > 0 in the Eqs. (2) and (3)
correspond to a passive-passive double-cavity system, and yet
κa > 0, κb < 0 correspond to a passive-active double-cavity
system.

It be should pointed out that, the above nonlinear equations
(2) and (3) cannot be solved exactly, because the steady-
state response contains an infinite number of components of
different frequencies. As the control field is much stronger
than the probe filed, we can use the perturbation method [55]
to deal with Eqs. (2) and (3). To this end, the total solution of the
intracavity field can be written as a = as + δa, b = bs + δb,
where as , bs are the steady-state solutions when sp = 0. By
using the above ansatz, we obtain the following steady-state
solutions

as =
√

κesc

�a + J 2

�b
+ 2iU |as |2

, (4)

bs = −iJ as

�b

, (5)

where we have defined �a = i� + κa/2 and �b = i� +
κb/2, respectively.

We assume that the perturbation terms δa and δb have the
following forms [55]:

δa = A−
1 e−i�t + A+

1 ei�t + A−
2 e−2i�t + A+

2 e2i�t + · · · ,

(6)

δb = B−
1 e−i�t + B+

1 ei�t + B−
2 e−2i�t + B+

2 e2i�t + · · · .

(7)

The physical picture of such an ansatz (6) or (7) is that
when the control field and the probe field are incident upon
the cavity A, there are the output fields generated with a series
of frequencies ωc ± n�, due to the nonlinear interaction of
this system, where n is an integer representing the order of
the sideband. The first upper sideband is referred to as the
anti-Stokes field, and the first lower sideband is know as the
Stokes field. The output field with a frequency ωc + 2� is the
second-order upper sideband, while the frequency ωc − 2� is
the second-order lower sideband. We consider only the first

and second-order sidebands; the higher-order sidebands are
ignored here because they can be obtained in a similar fashion.
The signals at the second- and high-order sidebands are of great
importance in understanding the nonlinear interactions. Here
the parameters A−

1 and A+
1 are the coefficients of first upper

and lower sidebands, and much smaller than as . Similarly,
A−

2 and A+
2 are the coefficients of the second upper and

lower sidebands and much smaller than A−
1 and A+

1 . These
parameters can be obtained by substituting Eqs. (6)–(7) into
Eqs. (2)–(3) and comparing the coefficients of the same order.
After some calculations, we can get the result

A−
1 = (F+

1 )∗

F−
1 (F+

1 )∗ − 4U 2|as |4
√

κesp, (8)

and A+
1 can be expressed with A−

1 as

A+
1 = −2iUa2

s

F+
1

(A−
1 )∗, (9)

with

F−
1 = −i� + J 2

−i� + �b

+ �a + 4iU |as |2, (10)

F+
1 = i� + J 2

i� + �b

+ �a + 4iU |as |2. (11)

The amplitude of the second-order optical sideband A−
2 , the

quantity of interest here, can be obtained as (in terms of A−
1 )

A−
2 = M + N

[F−
2 (F+

2 )∗ − 4U 2|as |4][(F+
1 )∗]2

(A−
1 )2, (12)

and A+
2 can be expressed with A−

1 , A+
1 , and A−

2 as

A+
2 = − 2iU [2asA

+
1 (A−

1 )∗ + a∗
s (A+

1 )2]

F+
2

− 2iUa2
s

F+
2

(A−
2 )∗,

(13)

where the parameters F−
2 and F+

2 are defined by

F−
2 = −2i� + J 2

−2i� + �b

+ �a + 4iU |as |2, (14)

F+
2 = 2i� + J 2

2i� + �b

+ �a + 4iU |as |2, (15)

and from Eqs. (14)–(15) the parameters M and N are given by

M = −16U 4|as |6a∗
s + 8U 2|as |2a∗

s (F+
1 )∗(F+

2 )∗, (16)

N = 16iU 3|as |4a∗
s (F+

1 )∗ − 2iUa∗
s (F+

2 )∗[(F+
1 )∗]2. (17)

By applying the input-output relation Sout = Sin − √
κea,

the output field can be written as

Sout = c0 + c−
1 e−i�t + c+

1 ei�t + c−
2 e−2i�t + c+

2 e2i�t , (18)

with the coefficients c0 = sc − √
κeas , c−

1 = sp − √
κeA

−
1 ,

c+
1 = −√

κeA
+
1 , c−

2 = −√
κeA

−
2 , and c+

2 = −√
κeA

+
2 , respec-

tively. It should be emphasized that these results have a shift of
a frequency ωc, because the Heisenberg-Langevin equations
describe the evolution of the optical field in a rotating frame
at the frequency ωc. c0 is one of components corresponding
to the control field with frequency ωc. And c−

1 responding to
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the probe field with frequency ωp, is the coefficient of the
first upper sideband (anti-Stokes field). The transmission of
the probe field is defined as tp = c−

1 /sp. Since A−
1 has been

given by Eq. (8), the optical transmission rate can be expressed
as

|tp|2 =
∣∣∣∣1 − κe(F+

1 )∗

F−
1 (F+

1 )∗ − 4U 2|as |4
∣∣∣∣
2

. (19)

Finally, the term c−
2 describes the second-order upper

sideband process, in which the output field with frequency
ωc + 2� can be produced. The term c+

2 describes the second-
order lower sideband process, in which the output field with
frequency ωc − 2� is produced. In order to discuss the effect
induced by the second-order sideband in this PT -symmetric
system, we introduce the dimensionless quantity

η = | − √
κeA

−
2 /sp| (20)

and

β = | − √
κeA

+
2 /sp| (21)

to describe the efficiency of the optical second-order sideband
process. In the following, we will discuss in detail the
generation of the second-order upper sideband, where Eq. (20)
is the central result of this paper. One also can investigate
the generation of the second-order lower sideband by using
Eq. (21) with the same method, while the results of β are
not shown here due to similar characteristics and the space
limitation.

III. ENHANCEMENT OF THE HIGH-ORDER SIDEBAND
GENERATION IN THE PT -SYMMETRIC SYSTEM

In this section, we first focus on the properties of the second-
order sideband for two possible configurations (passive-
passive double cavity and PT -symmetric cavity arrangement)
based on the analytical expression (20). In this situation, we
in details analyze the influences of the system parameters,
including the photon-tunneling rate between two cavities, Kerr
nonlinearity strength, and optical detuning, on the second-
order sideband generation. Note that an ultralow control-field
power is used in our proposal, choosing Pc = 0.1μW. At the
same time, the amplitude of the probe field is hundred times
less than the amplitude of the control field, e.g., sp/sc = 0.01.
Next, we turn to illustrate the higher-order sideband output
spectrum by numerical simulations directly based on Eqs. (2)
and (3).

A. Dependence of the second-order sideband on the
photon-tunneling rate J

First, we start by evaluating the efficiency of the second-
order sideband generation η as a function of the probe detuning
�p (�p = ωp − ω) for a passive-passive double-cavity system
(i.e., non-PT -symmetric system) by plotting Figs. 2(a) and
2(b). For a small value of the coupling strength J , the spectrum
of η shows two symmetric sideband peaks and a shallow
resonance dip as shown in Fig. 2(a). With the increase of
J , the peaks shift towards both sides, and the dip becomes
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2.5
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J/κa = 0.4 (c)

(d)

(a)

(b)

×10−5

×10−6

×10−2

×10−3

J/κa = 0.4

J/κa = 0.7 J/κa = 0.7

FIG. 2. Calculation result of η as a function of the detuning �p/κa

under two different values of the coupling strength J for the passive-
passive double-cavity system (i.e., κb/κa = 0.8) in panels (a) and (b)
and the passive-active double-cavity PT system (i.e., κb/κa = −0.8)
in panels (c) and (d). According to recent microcavity experiments
[36,38], we use the coupling strength J/κa = 0.4 in panels (a) and (c)
and J/κa = 0.7 in panels (b) and (d). The other system parameters
are ωc/2π = 200 THz, κa/2π = 100 MHz, κe/κa = 0.5, � = 0, and
U/κa = 10−6, respectively.

wider. Alternatively, the value of η is reduced rapidly, denoting
that the generation of the second-order sideband tends to
be suppressed by the strong photon-tunneling effect in the
passive-passive double-cavity system as shown in Fig. 2(b).
Then we focus on the second-order sideband generation in
a passive-active double-cavity system (i.e., PT -symmetric
system) with a fixed gain-to-loss ratio κb/κa = −0.8. By
changing the coupling strength J between two cavities, we
can tune the optical system transiting from the PT -broken
phase to the PT -symmetric phase. When J/κa < 0.45, the
system is in the PT -broken phase. It can be seen from
Fig. 2(c) that the second-order sideband features a single
sideband peak, which reaches its maximum at �p = 0. As
J increases from 0.4κa to 0.7κa in Fig. 2(d), the system enters
into the PT -symmetric phase for J/κa > 0.45. The spectrum
of η displays two sideband peaks, each of which has a small
peak nearby. Particularly, the sideband peak on the left side is
slight higher than the right one. Moveover, in sharp contrast to
Figs. 2(a) and 2(b), the values of η in Figs. 2(c) and 2(d)
are greatly improved for about three orders of magnitude.
This implies that PT -symmetric structure can amplify the
second-order sideband signal effectively.

The logarithm of the maximum value of η varying with
the coupling strength J is plotted in Fig. 3(a) corresponding
to a passive-passive double-cavity system and Fig. 3(b)
corresponding to a passive-active double-cavityPT system. In
the limit of J/κa → 0, the composite system can be reduced
to an isolated passive cavity. We find that, in the passive-
passive double-cavity system, a strong photon-tunneling effect
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FIG. 3. The logarithm of the maximum value of η varies with the
coupling strength J for (a) the passive-passive double-cavity system
and (b) the passive-active double-cavityPT system. The other system
parameters are the same as in Fig. 2.

is adverse to the second-order sideband generation: ηmax

decreases exponentially with the increase of J . However, the
obtained results for the PT -symmetric double-cavity system
are quite different from the passive-passive double-cavity
system. It is obvious from Fig. 3(b) that, with the increase
of J , ηmax goes through exponential growth in the PT -broken
phase and exponential reduction in the PT -symmetric phase,
reaching its maximum value in the vicinity of J/κa = 0.5.
Apparently the PT -symmetric structure can enhance the
second-order sideband significantly, especially in the vicinity
of EP.

Physically the Kerr nonlinearity strength of the system plays
an important role in generating the second-order or higher-
order sideband processes. Generally speaking, in an optical
cavity with an embedded nonlinear medium, a biharmonic
control and probe laser launched into a cavity mode can
excite multiwave-mixing processes via an optical nonlinearity
effect [1], which thus produce a series of optical high-order
sidebands. On the other hand, as shown in Ref. [53], in the
vicinity of EP, the field localization can induce the dynamical
accumulations of optical energy in the two supermode-based
cavities, corresponding to an increasing intracavity nonlinear-
ity. Hence the enhanced high-order sidebands can be generated
by this PT -induced strong nonlinearity. It should be pointed
out that, owing to the existence of an additional nonlinear term
[see Eq. (2)] in thePT -symmetric system, the maximum value
of η is not achieved exactly at the EP but shifts a small value
[53].

Finally, in order to illustrate the impact of the photon-
tunneling effect on the second-order sideband generation in
the PT -symmetric system more detail, we plot the logarithm
of η versus the detuning �p and the coupling strength J in
Fig. 4. In the PT -broken phase, η shows a marked increase
at �p = 0 with the increase of J . The emergence of the
yellow zone confirms that the robust second-order sideband
can be achieved around the EP. As the system enters into
the PT -symmetric phase, four cyan bright lines split from
the yellow zone, representing four peak values of η. Moreover
the positions of sideband peaks are far away from �p = 0 with
the increasing J , and the peak values are gradually decreased
as shown in Fig. 4.

-1 0 1
Δp/κa

0

0.2

0.4

0.6

0.8

1

J
/
κ

a

-10

-5

0

FIG. 4. The logarithm of η versus the detuning �p/κa and the
coupling strength J/κa for the PT -symmetric system. The other
system parameters are the same as in Fig. 2.

B. Dependence of the second-order sideband on the
Kerr nonlinearity U

It is well known that the EP marks thePT -symmetric phase
and PT -broken phase. The EP is obtained by diagonalizing
the coefficient matrix of Eqs. (2) and (3) without considering
the nonlinear term induced by the Kerr nonlinearity. However,
when the nonlinear term is taken into account, the phase
transition point of the PT - symmetric system is upper shifted
slightly [32,57], under which thePT -broken phase is enlarged
and the PT -symmetric phase is narrowed. In view of this, the
parameters we chosen in Fig. 5 and all the other figures in
the paper are far from the phase transition point to ensure
the correctness of the results. In addition, we have shown
in the above discussion that the spectrums of the second-order
sideband in the PT -broken phase and PT -symmetric phase
are different, and its value increases in the PT -broken phase
and decreases in the PT -symmetric phase with the increasing
coupling strength J . Those characteristics of the second-order
sideband may offer a new method to distinguish the PT -
symmetric phase and PT -broken phase.
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FIG. 5. The logarithm of η versus the detuning �p/κa and the
nonlinearity strength U/κa for the PT -symmetric system. We use the
coupling strength J/κa = 0.4 in panel (a) and J/κa = 0.7 in panel
(b), corresponding respectively to the PT -broken phase (PT BP) and
PT -symmetric phase (PT SP). The other system parameters are the
same as in Fig. 2.
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For the present PT -symmetric system, the logarithm of η

varying with �p and U is plotted in Fig. 5(a) corresponding
to the PT -broken phase (PT BP) and Fig. 5(b) corresponding
to the PT -symmetric phase (PT SP). As we can see from
Fig. 5 the increased nonlinearity can arouse considerable
enhancement of η in both PT BP and PT SP. We note that
the yellow zone in Fig. 5(a) is brighter than that in Fig. 5(b).
This is due to the effect of field localization in the PT BP,
where the intracavity intensity can be accumulated, giving
rise to strong effective nonlinearity [17,53]. Therefore, in
this condition, the efficiency of the second-order sideband
generation in the PT BP is more improved. We also note
that, in the PT SP, the two yellow lines on the left are
gradually brighter than the right two with the increase of U .
The nonlinearity-induced enhancement of the second-order
sideband seems mainly concentrated on the left side of
�p = 0. The basic reason for these phenomena is that the
phase transition point shifts with the increase of the Kerr
nonlinearity strength U and gradually approaches J = 0.7κa .
This aggravates the asymmetric structure of the second-order
sideband, as can be seen in Fig. 2(b).

C. Dependence of the second-order sideband on the
cavity detuning �

The cavity detuning � (� = ω − ωc) also has a significant
influence on the second-order sideband generation. In the
following, we present the variation of η when the control field
is modulated to be off-resonance with the cavity field (� �= 0)
under three different regimes as shown in Figs. 6–8.

First, in the non-PT -symmetric regime (see Fig. 6), we
find that the symmetric structure of η in Fig. 6(a) is broken
when � �= 0. One of the left peaks higher than the right one is
displayed in Fig. 6(b) where three sideband peaks are observed.
As � becomes large, we find four sideband peaks in Fig. 6(c),
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indicating that the sideband peaks split again. However, the
number of the sideband peaks is only up to four even though we
further increase the detuning �. Meanwhile, the off-resonant
laser weakens the intracavity field, resulting in the reduction
of η. Second, we concentrate on the case that the control field
is off-resonance with the cavity field in the unbroken-PT -
symmetric regime (see Fig. 7). With the increase of �, two of
the sideband peaks shift towards the direction of �p < 0, far
away from the resonance condition, while the other two remain
unchanged still. The stronger � is, the more the peaks shift. At
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the same time, the second-order sideband generation becomes
less efficient. The phenomenon of the sideband peak shift can
also be observed when � < 0. The only difference is that they
move in the opposite direction (i.e., the direction of �p > 0).
Alternatively, we adjust the coupling strength to J/κa = 0.4,
which puts the system in the broken-PT -symmetric regime.
From Fig. 8, we find that the single sideband peak splits into
two asymmetric peaks: one stationary peak at �p = 0 and one
mobile peak traveling with the change of �.

In view of these discussions above, we can summarize
the following features under the influence of � on η: (i)
the reduction of the second-order sideband generation is
obvious when the control laser is off-resonance with the
cavity field, and η decreases as the detuning � increases;
(ii) the cavity detuning brings out multipeak structure of η

in the non-PT -symmetric regime and broken-PT -symmetric
regime, which complicates the spectrum of the second-order
sideband; and (iii) the amount of the detuning-induced peak
has a ceiling, and furthermore those peaks are shifted according
to the variation of �.

D. Generation of optical higher-order sidebands in
PT -symmetric arrangements

In all of the above discussions, we focus on the second-
order sideband in the output field based on the analytical
solution (20) by the perturbation method. Now we turn to
discuss the higher-order sideband generation by the numerical
simulations according to Eqs. (2) and (3). Figure 9 shows the
higher-order sideband spectra generated for the two different
configurations: (i) the passive-passive double-cavity system
[see Fig. 9(a)] and (ii) the PT -symmetric (i.e., passive-
active) double-cavity system [see Fig. 9(b)]. As can be
seen in Fig. 9, the introduction of the PT -symmetric ideas
affects significantly the magnitude of the respective high-order
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FIG. 9. Transmitted output (in logarithmic scale) of the generated
higher-order sidebands for (a) the passive-passive double-cavity
system (i.e., κb/κa = 0.8) and (b) the passive-active double-cavity
PT system (i.e., κb/κa = −0.8) when �/κa = 0.25 and �p = �.
Care was taken in normalizing the amplitude of the high-order
sidebands to the input laser amplitude. The other system parameters
used for the simulations are the same as in Figs. 2(b) and 2(d).

sidebands in the output spectra. Specifically, for the case
of the passive-passive double cavity (κb/κa = 0.8) in Fig. 9(a),
the positive and negative second-order sidebands (n = ±2),
the third-order sidebands (n = ±3), and the higher-order
sidebands are created. The observed sidebands are spaced at
multiples of the beating frequency � between the two-tone
driving components around the rotating frequency ωc. As a
result, the frequency of the high-order sideband of order n

can be formulated by the relationship ωn = ωc ± n�, where
n is the number of the sideband, n = 0 corresponds to the
control field ωc, and n = 1 corresponds to the probe field
ωp = ωc + �. It is obvious that the amplitude of the sidebands
decreases quickly as the order of the sidebands increases
gradually. For the case of the PT -symmetric double cavity
(κb/κa = −0.8) in Fig. 9(b), the amplitude of the high-order
sidebands is largely enhanced with respect to Fig. 9(a) due
to the PT -induced strong nonlinearity [53]. Furthermore, the
number of the high-order sidebands increases obviously. From
what has been analyzed above, we can reach the conclusion
that the significantly enhanced high-order sidebands can be
achieved by introducing the PT symmetry, compared with
the configuration of the passive-passive double cavity.

IV. EXPERIMENTAL REALIZATION OF OUR
PROPOSED SCHEME

In this section we give a concise description that our
proposal can be realized with the existing experimental
techniques of microcavities with Kerr-type nanostructured
materials. Optical macrocavities, such as Fabry-Perot macro-
cavities, whispering gallery macrocavities, and photonic crys-
tals macrocavities, are widely used in variety of devices on
account of its relatively high-quality factor Q and small mode
volume V , which have the potential to enhance the light-matter
interactions or cavity-atom coupling [58]. They usually have
Q factors between 104 and 108 (a quality factor Q of 109 has
been realized in silica microspheres resonators). The quality
factor can be simplified as Q = ω/κ (κ is the cavity field decay
rate). For the telecom wavelength of 1550 nm, the decay rates
of microcavities range from 106 to 1010.

Two directly coupled whispering gallery modes of silica
can be used to implement our proposal. The whispering
gallery modes can be found in cavities with geometries of
spheres, disks, rings, and others. In Refs. [36,38,59,60], two
whispering gallery microtoroidal resonators manufactured at
the edges of two separate silicon chips are used to construct
a PT -symmetric dimer. The coupling strength between the
resonators can be tuned by controlling the distance between the
chips. One of the resonators doped with rare-earth ions (Er3+),
is pumped by a laser in 1460 nm wavelength band, which can
provide optical gain to the resonator with an effective gain in
1550 nm band. In addition, the two resonators are coupled only
in the latter wavelength band. The other one without dopant
has passive loss.

In addition, a Kerr-type nonlinear material will be embed-
ded in the passive resonator. The simplified photon-photon

interaction can be approximated as Unl = 3(�ω)2χ (3)

4ε0Veffεr
2 . Veff is the

effective mode volume. χ (3) and εr are the average real part of
the nonlinear susceptibility and relative dielectric permittivity,
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respectively [61,62]. The order of magnitude for the real part
of the third-order susceptibility of the materials (such as Si
or GaAs) is in the range of 10−19–10−18 in Si units (m2/V2)
[1]. For a near infrared wavelength (i.e. λ = 1550 nm), and
the diffraction limited confinement volumes [Veff = (λ/2nr )3],
Unl is estimated on the order of 10−3 μeV. The largest Kerr
nonlinearity interaction strength in the proposal for the passive
resonator is about U = 3 KHz, which can be achieved easily by
the Si and GaAs material. We believe that other types of optical
microcavities also can be used to implement the proposal, even
if no corresponding experiments have been reported.

V. DISCUSSION AND SUMMARY

Before ending this paper, we give a few brief discussions
on the notion of broken and unbroken PT symmetries in the
present nonlinear dimer of two coupled single-mode cavities
with gain and loss. First, we would like to point out that
the passive-active double-cavity system we consider here
possesses a phase transition from PT -broken phase to the
PT -symmetric phase. This critical phase transition point is
often referred to the spontaneousPT symmetry breaking point
and also called the EP. The EP is obtained by diagonalizing
the coefficient matrix of Eqs. (2)–(3) under the condition of
ignoring the small EP shift induced by the nonlinear term
2iU |a|2a. Generally speaking, PT -symmetric systems are
investigated under the balanced gain and loss. However, it is
difficult to implement the balanced gain-to-loss ratio exactly
in the experiment. Various uncontrolled loss mechanisms,
pump inhomogeneities, and other reasons [38,56] may be
obstacles of the operation on the ideal balanced condition.
In order to guarantee the feasibility of the experiment, we
operate our work under the case that the gain-to-loss ratio
is equal to −0.8 (or 0.8), which is very close to the ideal
balanced condition. Moreover, the situation of unbalanced
gain and loss in the cavity dimer is an extension of the
balanced condition, also called PT symmetry [51,56]. In
fact, a few works about PT -symmetric lasers have broadened
the definition of PT -symmetric concepts to those without
physically balanced gain and loss, such as the ones considered
in Refs. [13,43–45,63]. For the unbalanced gain and loss
(κa �= −κb), the EP can be defined by J = (κa − κb)/4 when
ωa = ωb [43]. Second, the so-called broken and unbroken
PT symmetries in all of the above discussions hold only
in the linear limit [without considering Kerr nonlinearity in
Eq. (1)]. That is to say, the dimer system is appropriately
tuned so that it would be PT -symmetric phase or PT -broken
phase in the linear regime (assuming U = 0). This method has
described quantitatively the results of several experimental
papers [36,38,44] and has been used in several theoretical
literatures [17,32,51,53]. Strictly speaking, in the nonlinear
regime here (with considering essential Kerr nonlinearity),
the introduced nonlinearity will affect the PT -symmetric
structure of the dimer system including distinctPT -symmetric
or PT -broken phases. However, the actual correspondence is
not shown further for our proposed nonlinear model due to

some tediously long calculations. It should be emphasized
that, in our case, since we consider the dimer system in which
a gain cavity is coupled to a lossy cavity with very weak
Kerr nonlinearity, and hence this nonlinearity slightly shifts
the transition point of the PT -symmetric system as can be
easily verified in Fig. 3(b). In this regard, for convenience we
neglect the shift of the PT -transition point induced by this
weak nonlinearity. Addressing the correspondence of the two
distinguished phases between the linear and nonlinear regimes
is beyond the scope of the present work, and it will be taken
into account more rigorously in future investigation by means
of the numerical simulations.

In summary, we have theoretically explored the second-
order and higher-order sideband generation and their robust
control in a PT -symmetric nonlinear structure composed
of two directly coupled microcavities, with realistic system
parameters. The analytical expression describing and featuring
the second-order sideband is obtained by means of the
perturbation method. We analyze the influences of the photon-
tunneling rate, Kerr nonlinearity strength, and optical detuning
on the second-order sideband generation. We find that the
second-order sideband signal can be amplified considerably
in the PT -symmetric system. Since the effective optical
nonlinearity can be greatly enhanced with the help of field-
localization effect in the PT -broken phase, the second-order
sideband is improved sharply in vicinity of the phase transition
point. We also illustrate the optical higher-order sideband
generation by means of numerical simulations, where the
higher-order sideband amplitude indeed is largely raised in
thisPT -symmetric arrangement. Finally, an experimental fea-
sibility of the proposed double cavity scheme is presented. Our
study provides a new method of strong second- and high-order
sideband generation with PT -symmetric phase transition and
relaxes the requirement of strong laser input, which is very
meaningful for chip-scale optical communications and optical
frequency combs.

Note added. Recently, we became aware of a related work
on the arXiv preprint by Jiao et al. [64], in which a vibrational
mechanical mode is used to induce optical nonlinearity for
producing the delaying or advancing second-order sideband
signal in active cavity optomechanics.
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Rotter, Pump-Induced Exceptional Points in Lasers, Phys. Rev.
Lett. 108, 173901 (2012).

[46] S. Longhi and L. Feng,PT -symmetric microring laser-absorber,
Opt. Lett. 39, 5026 (2014).

[47] Y. Chong, L. Ge, and A. D. Stone, PT -Symmetry Breaking
and Laser-Absorber Modes in Optical Scattering Systems, Phys.
Rev. Lett. 106, 093902 (2011).

[48] A. Guo, G. Salamo, D. Duchesne, R. Morandotti, M. Volatier-
Ravat, V. Aimez, G. Siviloglou, and D. Christodoulides,
Observation of PT -Symmetry Breaking in Complex Optical
Potentials, Phys. Rev. Lett. 103, 093902 (2009).
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