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Temporal photonic crystals with modulations of both permittivity and permeability
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We present an in-depth study of electromagnetic wave propagation in a temporal photonic crystal, namely,
a nonconducting medium whose permittivity ε(t) and/or permeability μ(t) are modulated periodically by
unspecified agents (these modulations not necessarily being in phase). Maxwell’s equations lead to an eigenvalue
problem whose solution provides the dispersion relation ω(k) for the waves that can propagate in such a dynamic
medium. This is a generalization of previous work [J. R. Zurita-Sánchez and P. Halevi, Phys. Rev. A 81, 053834
(2010)] that was restricted to the electric modulation ε(t). For our numerical work (only) we assumed the harmonic
modulations ε(t) = ε̄[1 + mε sin(�t)] and μ(t) = μ̄[1 + mμ sin(�t + θ )], where � is the circular modulation
frequency; mε and mμ are, respectively, the strengths of the electric and magnetic modulations; and θ is the
phase difference between these modulations. An analytic calculation for weak modulations (mε � 1,mμ � 1)
leads to two k bands, k1(ω) and k2(ω), that are separated by a k gap. If the modulations are in phase (θ = 0),
this gap is proportional to |mε − mμ|, while the gap is proportional to (mε + mμ) if the modulations are out of
phase (θ = π ). The gap thus disappears for equal, in-phase, modulations (mε = mμ). An exact solution of the
eigenvalue equation confirms that these approximations hold reasonably well even for moderate modulations.
In fact, there are no k gaps for equal modulations even if these are very strong (mε,μ � 1). The photonic band
structure k(ω) is periodic in ω, with period �, and there is an infinite number of bands k1(ω), k2(ω), . . . Further,
by allowing ε(t) and μ(t) to have imaginary parts, we examined the effects of damping [Im k(ω)] on the k bands.
We also determined the optical response of a temporal photonic crystal slab, applying the above harmonic model
for ε(t) and μ(t). The reflected and transmitted light represent a frequency comb of frequencies ω, |ω ± �|,
|ω ± 2�|, . . . The transmission coefficients Tn(ω) for these harmonics n� of the modulation frequency strongly
depend on the parameters mε , mμ, and θ , as well as on the thickness of the slab. Moreover, they can much
exceed unity, as a result of energy transfer from the source of modulation. In a particularly interesting case,
Tn(ω) exhibits oscillations with peaks that resemble parametric resonances, rather than the usual Fabry-Perot
resonances.

DOI: 10.1103/PhysRevA.93.063813

I. INTRODUCTION

Tuning and modulation of material media and metamate-
rials are topics of intensive interest, with the expectation of
varied applications. It has been posited that modulation of
the permittivity could lead to many exotic effects: resonant
cavity photon creation via the dynamic Casimir effect [1];
the stopping and time-reversal of light [2]; complete optical
isolation [3] and other topological effects [4]; transitions
between discrete modes of a silicon optical microcavity,
achieved by ultrafast tuning of the refractive index of the cavity
[5]; and the photonic Aharonov-Bohm effect [6]. Moreover, a
split-ring resonator can be converted into a dynamic element by
placing in its capacitive gap a varactor or a nonlinear material.
Such a metamaterial can be then externally modulated by
means of an ac voltage or intense pulses. This can be
exploited to achieve several important effects: switching the
properties of the substrate material by THz or GHz pulses [7],
phase conjugation and negative refraction [8], and parametric
oscillations [9]. Very recently, it was demonstrated that a
moderately intense laser pulse can modulate the dielectric
constant of a molecular monolayer, adsorbed on a metallic
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substrate, by as much as 10%, returning the monolayer to its
initial state after the pulse [10].

The importance of tuning metamaterials is evidenced by the
numerous reviews on this subject [11]. In particular, Kozyrev
et al. [12] achieved parametric amplification in distributed
high-pass transmission lines that exhibited metamaterial be-
havior. Employing (nonlinear) varactors, the same group [13]
also reported other interesting features: harmonic and sub-
harmonic generation, modulational instabilities, and envelope
solitons. Further, English et al. [14] showed experimentally
and numerically that stable localized modes can be produced in
a nonlinear bandpass transmission line. Gorkunov and Lapine
[15] studied a metamaterial slab composed of an array of split-
ring resonators tuned by an external microwave magnetic field.

In the past few years, one of the authors (P.H.) and
collaborators have studied theoretically the behavior of a
medium whose permittivity ε(t) is a periodic function of time,
terming such a dynamic medium a “temporal photonic crystal”
(TPC). A TPC exhibits wave vector k (or propagation constant
β) gaps, and, upon excitation with monochromatic light, the
reflected light and the transmitted light take the form of a
frequency comb with the spacing equal to the modulation
frequency [16]. The latter behavior has also been reported
for surface plasmons in a thin oscillating piezoelectric film
inside a metallic waveguide [17]. Further, we have shown
that a TPC displays parametric resonances that are subject to
a special geometric condition [18]. Also, a pulse transmitted
through a TPC slab separates into harmonics of the modulation
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frequency, and it turns out that the peaks of these harmonics
can emerge on the other side faster than light in vacuum [19].

The study of TPCs is challenging and results in interesting
new physics. However, it is difficult to achieve appreciable
modulations with dielectric materials in the optical regime.
An attractive alternative, though, is provided by a dynamic
transmission line (DTL) where it is easy to obtain high
modulations of the parameters in the microwave region at
modulation frequencies �/2π on the order of the signal
frequency ω/2π . With the proper choice of parameters, a
DTL can mimic a TPC in the long wavelength limit and
hence can reproduce all the interesting effects predicted for
the TPC. Indeed, very recently we fabricated such a DTL and
demonstrated experimentally the existence of a k(β) gap [20].
In our experiment, the dependence on time of the capacitance
C(t) was realized by varactors that are all fed in tandem by
identical modulation voltages. By choosing C(t)/a = ε(t),
where a is the length of the unit cell of the DTL, and L/a = μ

(relating the inductance L and the permeability μ), the DTL
mimics the TPC very well for ka � 1. This correspondence
is, however, imperfect because the imaginary parts attributed
to ε and μ (see Sec. IV B) cannot mimic perfectly the complex
resistive effects in a transmission line [21]. We also measured
the harmonics � − ω of the excitation frequency ω and beats
for ω � �/2 [21].

In the present paper, we generalize the concept of the TPC
to periodic modulation of the permeability μ(t), in addition
to modulation of the permittivity ε(t). As will be shown, the
dispersion relation or photonic band structure k(ω) depends
qualitatively on the modulation strengths mε and mμ of ε(t)
and μ(t), the widths of the k gaps being roughly proportional to
|mε − mμ|. We note that these effects should be observable in a
DTL with a modulated inductance L(t), as well as a modulated
capacitance C(t), in every unit cell.

In the next section we derive the eigenvalue equation for
the Fourier coefficients of the electric field in the bulk TPC. It
is solved analytically, assuming weak modulations mε � 1
and mμ � 1, in Sec. III. An exact numerical calculation
provides the photonic band structures for both the lossless
and the lossy media (see Sec. IV). Then, in Sec. V, we
investigate the transmission of light through a TPC slab, and
we conclude the paper in Sec. VI.

II. FROM MAXWELL’S EQUATIONS
TO THE EIGENVALUE EQUATION

This paper concerns a boundless, uniform, isotropic, and
dispersionless medium. It is distinguished by its electric and
magnetic properties both being dynamic; specifically, we
assume that the permittivity ε(t) and the permeability μ(t)
are periodic functions of time. Hence, the constitutive relations
for the fields are D(r,t) = ε(t)E(r,t) and B(r,t) = μ(t)H(r,t).
The relevant Maxwell’s equations are then

∇ × E(r,t) = − ∂

∂t
[μ(t)H(r,t)], (1a)

∇ × H(r,t) = ∂

∂t
[ε(t)E(r,t)]. (1b)

Eliminating the magnetic field H we get the wave equation for
the electric field E:

∇2E − 1

c2

∂

∂t

{
μr (t)

∂

∂t
[εr (t)E]

}
= 0, (2)

where ε(t) = ε0εr (t), μ(t) = μ0μr (t), and c = (ε0μ0)−1/2

is the speed of light in vacuum. The medium being uni-
form, it must have plane wave solutions, namely E(r,t) =
E(t) exp(ik · r), where k is the wave vector. Then Eq. (2)
reduces to

k2c2E(t) + d

dt

{
μr (t)

d

dt
[εr (t)E(t)]

}
= 0. (3)

Now assuming that the relative permittivity εr (t) and the
relative permeability μr (t) are periodic functions, these can be
expanded in complex Fourier series:

εr (t) =
∑
m

εmeim�t , (4)

μr (t) =
∑

l

μle
il�t . (5)

Here, � is the circular modulation frequency, namely, � =
2π/T , where T is the period of both εr (t) and μr (t). Equatio
(3) is solved by the Bloch-Floquet theorem, which implies that
E(t) is a superposition of harmonic oscillations of frequencies
ω − n�, n running over all integers:

E(t) =
∑

n

en(ω)e−i(ω−n�)t . (6)

Here, ω can be defined as the “Bloch frequency,” akin to the
“Bloch wave vector” in the case of spatial periodicity. It plays
the role of an arbitrary excitation frequency.

Substituting Eqs. (4)–(6) in Eq. (3) we get that

k2c2
∑

n

ene
in�t −

∑
l,m,n

μlεmen[ω − (l + m + n)�]

× [ω − (m + n)�]ei(l+m+n)�t = 0.

This equation is satisfied at any instant of time t provided that

k2c2en −
∑
l,m

μlεmen−l−m(ω − n�)[ω − (n − l)�] = 0 (7)

for all n. Manipulating the indices l, m, and n one can find that∑
m,n

[μl−mεm−n(ω − l�)(ω − m�) − k2c2δlnδm0]en(ω) = 0,

l = 0, ± 1, ± 2, . . . , (8)

where δln is the Kronecker delta function. Equation (8) is
our eigenvalue equation. It is a set of an infinite number of
linear equations for an infinite number of eigenfunctions en(ω);
these are the field amplitudes in Eq. (6). The eigenvalues
k(ω) or ω(k) are gotten by requiring that the determinant
of the coefficients of the en(ω) vanishes. These eigenvalues
constitute the photonic band structure that is characteristic
of the plane waves that can propagate in a medium with
periodically modulated permittivity and permeability. It is
instructive first to study the analytic solutions of Eq. (8) that
can be derived for weak modulation.
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III. WEAK MODULATION APPROXIMATION

If ε(t) and μ(t) are weakly modulated then most harmonics
n� of the modulation frequency in Eq. (8) contribute very
little to the field E(t). In order to judiciously select the
important values of n, first we turn to the extreme assumption
of vanishing modulation. In this limit εr (t) and μr (t) reduce
to their average values ε̄r and μ̄r , respectively, so that their
Fourier coefficients in Eq. (8) are

εm−n = ε̄r δmn, (9)

μl−m = μ̄rδlm. (10)

Substitution in Eq. (8) gives

[ε̄r μ̄r (ω − l�)2 − k2c2]el(ω) = 0,

hence

ω = l� ± kc/(ε̄r μ̄r )1/2, l = 0,±1,±2, . . . (11)

For l = 0, the “+” and “−” solutions describe plain waves
propagating to the “right” and to the “left” in a medium with the
refractive index (ε̄r μ̄r )1/2. For l �= 0, these straight dispersion
lines of positive and negative slopes are displaced along the
frequency axis by integer multiples of �. This is the result
of the temporal periodicity and corresponds to the “empty
temporal lattice” model, analogous to the “empty (spatial)
lattice” model of Ref. [22].

Which are the most important partial modes that contribute?
The answer depends on the ranges of interest of ω and k.
Because small values of ω (<�) and k [<�(ε̄r μ̄r )1/2/c] are
most easily accessed experimentally, our choices are

ω = +kc/(ε̄r μ̄r )1/2 (for l = 0) (12)

and

ω = � − kc/(ε̄r μ̄r )1/2 (for l = 1). (13)

These modes intersect at ω = 1
2� and k = 1

2�(ε̄r μ̄r )1/2/c,
suggesting strong interaction at the intersection point for finite
modulations.

For weak modulation, the important harmonics are then
n� = 0 and n� = � and hence we restrict all the integers
(l,m,n) in Eq. (8) to the values 0 and 1. Now allowing for
finite modulation, this equation reduces to the following set of
two equations:

[ε̄r μ̄rω
2 − k2c2 + ε1μ−1ω(ω − �)]e0(ω)

+ [μ̄rε−1ω
2 + ε̄rμ−1ω(ω − �)]e1(ω) = 0, (14)

[ε̄rμ1ω(ω − �) + μ̄rε1(ω − �)2]e0(ω) + [ε̄r μ̄r (ω − �)2

+ ε−1μ1ω(ω − �) − k2c2]e1(ω) = 0. (15)

In the present approximation, the dispersion relation ω(k)
is gotten from the requirement that the determinant of the
coefficients of e0(ω) and e1(ω) vanishes. This gives rise
to a quadratic equation for k2, to which there correspond
two solutions k±(ω) for a given frequency and propagation
direction.

Henceforth, we limit the generality to harmonic modula-
tions:

εr (t) = ε̄r [1 + mε sin(�t)], (16)

μr (t) = μ̄r [1 + mμ sin(�t + θ )]. (17)

Here, mε and mμ are the strengths of the electric and
magnetic modulations or, briefly, modulations. We also assume
a phase difference θ between the magnetic and the electric
modulations. Because of our assumption of weak modulation,
we can expect the approximation to give reasonably accurate
results for 0 � mε,mμ � 1. It follows from Eqs. (16) and (17)
that

ε±1 = ±mεε̄r/2i, μ±1 = ±mμμ̄r exp(±iθ )/2i. (18)

The aforementioned quadratic equation then reduces to

(k2c2)2 − ε̄r μ̄r

[
ω2 + (� − ω)2 − 1

2mεmμ cos θ ω(� − ω)
]

× (k2c2) + ε̄2
r μ̄

2
r

(
1 − 1

4m2
ε − 1

4m2
μ + 1

16m2
εm

2
μ

)
×ω2(� − ω)2 = 0. (19)

The last equation shows that ε̄r and μ̄r are interchangeable, and
so are also mε and mμ. Further, it is seen that k(ω) = k(� −
ω), implying that the bands possess mirror symmetry about
ω = 1

2�. This suggests a gap between the k bands, k+( 1
2�) −

k−( 1
2�), at this frequency. In order to explore this possibility,

now we restrict the calculation to ω = 1
2�. Neglecting the

extremely small term proportional to m2
εm

2
μ, the solution of

Eq. (19) is

k2c2 = 1
4 ε̄r μ̄r�

2
[
1 − 1

4mεmμ cos θ

± 1
2

(
m2

ε − 2mεmμ cos θ + m2
μ

)1/2]
. (20)

It follows that

k � (ε̄r μ̄r )1/2�

2c

[
1 ± 1

4

(
m2

ε − 2mεmμ cos θ + m2
μ

)1/2
]
.

(21)

We conclude that there is a band gap:


k = k+ − k− � (ε̄r μ̄r )1/2�

4c

(
m2

ε − 2mεmμ cos θ + m2
μ

)1/2
.

(22)

The midpoint between k−( 1
2�) and k+( 1

2�) is

k̄ � (ε̄r μ̄r )1/2�

2c
, (23)

independent of the modulation in this approximation. Com-
pactly, the relative gap is then


k

k̄
� 1

2

(
m2

ε − 2mεmμ cos θ + m2
μ

)1/2
. (24)

The behavior strongly depends on the phase difference θ

and on the modulations mε and mμ. We consider three cases:
(a) θ = 0,


k

k̄
� 1

2
|mε − mμ|; (25)
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TABLE I. Comparison between accurate and approximate values
of the normalized band gap 
k/k̄ and the normalized midgap ˆ̄k =
k̄c/�(ε̄r μ̄r )1/2 for the phase difference θ = 0.

θ Solutions of Eq. (28) Eqs. (23)–(27)

mε mμ 
k/k̄ ˆ̄k 
k/k̄ ˆ̄k

0.1 0.2 0.0512 0.4940 0.0500 0.5
0.1 0.3 0.1043 0.4888 0.1000 0.5
0.1 0.4 0.1611 0.4814 0.1500 0.5
0.2 0.3 0.0533 0.4838 0.0500 0.5
0.2 0.4 0.1103 0.4756 0.1000 0.5
0.3 0.4 0.0570 0.4679 0.0500 0.5
0.4 0.3 0.0570 0.4679 0.0500 0.5

(b) θ = π
2 or 3π

2 ,


k

k̄
� 1

2

(
m2

ε + m2
μ

)1/2
; (26)

(c) θ = π ,


k

k̄
� 1

2
(mε + mμ). (27)

We conclude that, if the electric and magnetic modulations
are in phase (θ = 0), then the k gap is proportional to the
difference |mε − mμ| of these modulations and thus disappears
entirely (
k = 0) for equal modulations (mε = mμ). On the
other hand, if the modulations are out of phase, then the relative
gap is equal to the arithmetic average of the two modulations.

In Sec. IV A we compare the predictions of the approximate
Eqs. (23)–(27) with exact solutions of the eigenvalue problem;
see Tables I–III. This confirms that these approximations are
unexpectedly good.

IV. THE PHOTONIC BAND STRUCTURE

In this section we proceed to solve Eq. (8) numerically
for the harmonic model of modulation introduced in Eqs. (16)
and (17). Now, however, we do not restrict the modulations mε

and/or mμ to small values as we did in the previous section. The
approximation assumed there led to two solutions, k−(ω) and
k+(ω), for the wave vector k for every value of the frequency ω.
Now we find that, actually, the number of solutions is infinite.
Hence, it is convenient to label these solutions as kp(ω), where
p = 1,2,3, . . . in order of increasing value of kp. Similary, the

TABLE II. Same as Table I but for the phase difference θ = π/2.

θ Solutions of Eq. (28) Eqs. (23)–(27)

mε mμ 
k/k̄ ˆ̄k 
k/k̄ ˆ̄k

0.1 0.1 0.0710 0.4983 0.0706 0.5
0.1 0.2 0.1131 0.4956 0.1118 0.5
0.1 0.3 0.1624 0.4912 0.1580 0.5
0.2 0.2 0.1435 0.4931 0.1414 0.5
0.2 0.3 0.1852 0.4886 0.1802 0.5
0.2 0.4 0.2348 0.4821 0.2236 0.5
0.4 0.2 0.2348 0.4821 0.2236 0.5

TABLE III. Same as Table I but for the phase difference θ = π .

θ Solutions of Eq. (28) Eqs. (23)–(27)

mε mμ 
k/k̄ ˆ̄k 
k/k̄ ˆ̄k

0.1 0.1 0.1003 0.4990 0.1000 0.5
0.1 0.2 0.1512 0.4972 0.1500 0.5
0.1 0.3 0.2040 0.4935 0.2000 0.5
0.1 0.4 0.2601 0.4877 0.2500 0.5
0.2 0.2 0.2019 0.4962 0.2000 0.5
0.2 0.3 0.2543 0.4933 0.2500 0.5
0.3 0.2 0.2543 0.4933 0.2500 0.5

eigenfunctions are labeled as epn(ω). Then we rewrite Eq. (8)
as ∑

m,n

[
μ̂l−mε̂m−n(ω̂ − l)(ω̂ − m) − k̂2

pδlnδm0
]
epn(ω̂) = 0,

l = 0, ± 1, ± 2, . . . , (28)

where μ̂n = μn/μ̄r and ε̂n = εn/ε̄r , with μ̄r and ε̄r being, re-
spectively, the averages of μr (t) and εr (t), and the normalized
frequency ω̂ and the wave vector k̂p are defined as

ω̂ = ω

�
, (29)

k̂p = kpc

�
√

ε̄r μ̄r

. (30)

It is readily seen (by shifting l, m, and n by 1) that k̂p(ω̂ + 1) =
k̂p(ω̂) or

k(ω + �) = k(ω). (31)

This means that the entire band structure is periodic in the
circular frequency, the period being the circular modulation
frequency �. This periodicity mirrors, of course, the temporal
periodicity of ε(t) and μ(t), and, unlike the case of spatial
periodicity, where the band structure is periodic in k (not,
however, in ω), temporal modulation does not result in
periodicity of the wave vector k.

A. Lossless medium

First we neglect losses, assuming that εr (t) and μr (t) are
real functions, in fact given by Eqs. (16) and (17). Due to
the normalization procedure carried out in Eq. (28), the only
parameters are the electric and magnetic modulations mε and
mμ and the phase difference θ between these modulations. In
Figs. 1–5 we present the photonic band structures and band
gaps for various values of these parameters. The periodicity
with ω, according to Eq. (31), is explicit from the two periods
shown in Figs. 1, 2, and 4. In the case of Fig. 1, the modulations
are in phase (θ = 0) and mε is larger than mμ. For every value
of ω̂ there is an infinite number of solutions k̂(ω), namely,
k̂1(ω̂), k̂2(ω̂), etc. The salient feature is a wide gap 
k̂21

that separates the k bands p = 1 and p = 2. Such a gap has
already been reported in Ref. [16] for the extreme situation of
only electric modulation (mμ = 0). The gap increases with the
difference |mε − mμ|, as has been found in Eq. (25) for weak
modulations. We observe that there also exists a very narrow

063813-4



TEMPORAL PHOTONIC CRYSTALS WITH MODULATIONS . . . PHYSICAL REVIEW A 93, 063813 (2016)

FIG. 1. Photonic band structures for different modulations
mε �= mμ with ε(t) and μ(t) in phase (θ = 0).

gap 
k̂43 between the bands p = 3 and p = 4; however, it is
not perceptible on the scale of the figure. Also note that the
modulations mε and mμ are interchangeable, as we have seen
from Eq. (19).

Surprisingly, there is a qualitative change in the behavior
for equal modulations, mε = mμ ≡ m, even for very strong
modulations, m � 1. The band structure is now constituted by
a series of almost straight lines, as seen in Fig. 2. The slopes
of these lines rapidly increase with m and the group velocity
becomes infinite in the limit m → 1. On the other hand, in
the limit m → 0 the dispersion reduces to the empty temporal
lattice model discussed at the beginning of Sec. III. There are
no k gaps for equal modulations.

Figure 3 compactly summarizes the dependencies of the
size of the gap 
k̂21 on the modulations mε and mμ for θ = 0.
As |mε − mμ| increases, the increase in 
k̂21 becomes stronger
than linear.

The vanishing of the band gap for mε = mμ no longer
holds true if θ �= 0, as is manifest in Fig. 4 for three values
of the phase difference. The dependence of the normalized
gap 
k̂ on θ is shown in Fig. 5 for a series of values of
the modulation. It is interesting to make comparisons with
the weak modulation approximation, Eq. (24), which, for
equal modulations, reduces to 
k/k̄ � m sin( 1

2θ ). Clearly, this
sinusoidal behavior is confirmed even for m � 1.

How good in practice is the approximation presented in
Sec. III for weak modulations (mε,μ � 1)? This question is
answered in Tables I–III, where we compare the approximate
results for the band gap and the midgap point with accurate

FIG. 2. Same as Fig. 1 for equal modulations, mε = mμ.

Δ

FIG. 3. Variation of first forbidden band gap with mμ and mε

assuming the ε(t) and μ(t) are in phase (θ = 0).

numerical solutions of Eq. (28). A close examination of these
Tables reveals that Eqs. (23)–(27) give reasonable results even
for substantial values of mε and mμ.

B. Lossy medium

Now we allow for losses in our dynamic medium, assuming
that the permittivity and permeability have the (constant)
imaginary parts ε′′ and μ′′. The real parts are still modeled
according to Eqs. (16) and (17); thus

εr (t) = ε̄r [1 + mε sin(�t)] + iε′′
r , (32)

μr (t) = μ̄r [1 + mμ sin(�t + θ )] + iμ′′
r . (33)

The frequency ω̂ being real, the solutions of Eq. (28) for
the wave vector k̂ now become complex. In Figs. 6(a) and
6(b) we present, respectively, Rek̂(ω̂) and Imk̂(ω̂) for electric
modulation (mμ = 0). We see that Rek̂ increases with ε′′

r /ε
′
r

and μ′′
r /μ

′
r , but more so for the first (p = 1) band than the

second (p = 2) band; as a result, the gap 
k̂21 decreases. We
also note that the dispersions for both Rek̂ and Imk̂ remain
unaltered if mε and mμ are interchanged, as we saw for real ε

and μ. On the other hand, the values of ε′′
r /ε

′
r and μ′′

r /μ
′
r are

not interchangeable. As for Imk̂, it is interesting that it can be
greater for the first band than for the second band, giving rise
to the loops seen in Fig. 6(b).

For equal modulations, mε = mμ, there is a remarkable
change in comparison to Fig. 2. Namely, the degeneracy at
the first point of mode intersections is lifted and a gap is

FIG. 4. Photonic band structures for equal modulations, mε =
mμ, and three values of the phase difference θ between μ(t) and ε(t).
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Δ

FIG. 5. Variation of first forbidden band gap with θ for mμ = mε .

created between the bands p = 1 and p = 2 [see Fig. 7(a)].
Moreover, this gap increases with ε′′

r /ε
′
r and μ′′

r /μ
′
r , contrary to

the behavior that we have seen in Fig. 6(a). Another difference
is that here ε′′

r /ε
′
r and μ′′

r /μ
′
r are interchangeable.

V. TRANSMISSION OF LIGHT THROUGH A PLATE WITH
MODULATED PERMITTIVITY AND PERMEABILITY

Here, we study the optical response of a slab whose
permittivity and permeability are periodically modulated in
time. As in the former sections, the mechanism of modulation
is not considered explicitly. The relative permittivity and
permeability are expanded in a Fourier series, Eqs. (4) and
(5); their values on the left (right) sides of the plate are ε1

and μ1 (ε2 and μ2). We wish to calculate the reflection and
transmission coefficients for normal incidence at a plate of
thickness D occupying the region 0 � x � D.

The electric and magnetic fields of the incident plane
harmonic wave are

Einc = E0e
i[k0(ω)x−ωt], (34)

Hinc = H0e
i[k0(ω)x−ωt], (35)

where k0 = (ε1μ1)1/2ω/c. The fields in the slab are superposi-
tions of plane waves propagating in the positive and negative
directions of the x axis with wave vectors ±kp(ω) (p =
1,2,3, . . .). The dispersion relation kp(ω) is still determined
from the solution of the eigenvalue equation, Eq. (28). The

temporal dependence of these fields obeys the Bloch-Floquet
theorem, as in Eq. (6):

Esl(x,t) =
∞∑

n=−∞

∞∑
p=1

(
Apeikp(ω)x + Bpe−ikp(ω)x

)
× epn(ω)e−i(ω−n�)t , (36)

Hsl(x,t) =
∞∑

n=−∞

∞∑
p=1

(
Cpne

ikp(ω)x + Dpne
−ikp(ω)x

)
× epn(ω)e−i(ω−n�)t . (37)

Here, the eigenfunctions epn(ω) also must be found from the
solution of the eigenvalue problem. The coefficients Ap, Bp,
Cpn, and Dpn are determined with the help of Faraday’s law
and the boundary conditions.

The reflected and transmitted waves contain all the harmon-
ics (ω − n�) (n = 0, ± 1, . . .). The reflected fields are

Er =
∑

n

Er
ne

−i[kr
n(ω)x+(ω−n�)t], (38)

Hr = −
∑

n

H r
ne−i[kr

n(ω)x+(ω−n�)t], (39)

while the transmitted fields are

Et =
∑

n

Et
ne

i[kt
n(ω)(x−D)(ω−n�)t], (40)

Ht =
∑

n

H t
ne

i[kt
n(ω)(x−D)+(ω−n�)t]. (41)

Here,

kr,t
n (ω) = (ε1,2μ1,2)1/2(ω − n�)/c

are the wave vectors of the nth harmonic of the reflected and
transmitted plane waves. Further, the amplitudes of the electric
and magnetic fields in Eqs. (34)–(41) are related by Faraday’s
law as follows:

E0 =
√

μ0μ1

ε0ε1
H0, Er,t

n =
√

μ0μ1,2

ε0ε1,2
Hr,t

n ,

[
Ap

Bp

]
epn(ω) =

∑
m

μ0μn−m(ω − n�)epm(ω)

kp(ω)

[
Cpm

−Dpm

]
. (42)

FIG. 6. Real and imaginary parts of the normalized wave vector k̂, with mε = 0.9, mμ = 0, and θ = 0 allowing for absorption.
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FIG. 7. Same as in Fig. 6 but for equal modulation strengths mε = mμ.

The boundary conditions imply that the electric and
magnetic fields are continuous at the interfaces x = 0 and
x = D at every instant of time t . With the help of Eqs. (42),
we get the following four equations:

H0δn0 + Hr
n =

∞∑
p=1

∑
m

μ0μn−m(ω − n�)

kp(ω)

×
√

ε0ε1

μ0μ1
[Cpm − Dpm]epm(ω), (43)

H0δn0 − Hr
n =

∞∑
p=1

[Cpn + Dpn]epn(ω), (44)

Ht
n =

∞∑
p=1

∑
m

μ0μn−m(ω − n�)

kp(ω)

√
ε0ε2

μ0μ2

× [
Cpmeikp(ω)D − Dpme−ikp(ω)D

]
epm(ω), (45)

Ht
n =

∞∑
p=1

[
Cpne

ikp(ω)D + Dpne
−ikp(ω)D

]
epm(ω). (46)

Now summing Eqs. (43) and (44) and subtracting Eq. (46)
from Eq. (45) we obtain

∞∑
p=1

{∑
m

μ0μn−m(ω − n�)

kp(ω)

√
ε0ε1

μ0μ1
[Cpm − Dpm]epm(ω)

+ [Cpn + Dpn]epn(ω)

}
= 2H0δn0, (47)

∞∑
p=1

{∑
m

μ0μn−m(ω − n�)

kp(ω)

√
ε0ε2

μ0μ2

× [
Cpmeikp(ω)D − Dpme−ikp(ω)D

]
epm(ω)

− [
Cpne

ikp(ω)D + Dpne
−ikp(ω)D

]
epn(ω)

}
= 0. (48)

This is an infinite system of inhomogeneous linear equations
that can be solved for the unknowns Cpm/H0 and Dpm/H0.
The reflection and transmission coefficients for the harmonic

(ω − n�) are then obtained directly from Eqs. (43) and (45):

Rn = Hr
n

H0
=

(
ε0ε1

μ0μ1

)1/2 ∞∑
p=1

∑
m

μ0μn−m(ω − n�)

kp(ω)

×
[
Cpm

H0
− Dpm

H0

]
epm(ω) − δn0, (49)

Tn = Ht
n

H0
=

(
ε0ε2

μ0μ2

)1/2 ∞∑
p=1

∑
m

μ0μn−m(ω − n�)

kp(ω)

×
[
Cpm

H0
eikp(ω)D − Dpm

H0
e−ikp(ω)D

]
epm(ω). (50)

Our numerical procedure involved the solution of 105
equations, taking an appropriate number of combinations for
the indeces p and m. It also required the solution of the
bulk eigenvalue problem, Eq. (28), for both the eigenvalues
ω̂(kp) and the eigenvectors epn(ω̂). This resulted in excellent
convergence for the transmission coefficientsTn(ω). In Figs. 8–
11 we present transmission spectra for a dynamic-periodic
slab characterized by the normalized thickness:

ν = D�(ε̄r μ̄r )1/2/c = 2k̄D, (51)

where D is the actual thickness and k̄ is the midgap wave vector
in the limit of vanishing modulation, as defined in Eq. (23).
The case of purely electric modulation (mε �= 0,mμ = 0)
was already explored in Ref. [16]. As pointed out there, for
weak modulation (mε � 1) these spectra can be interpreted
as modified Fabry-Perot resonances, with the fundamental
(n = 0) reflection coefficients vanishing and T0 = 1 whenever
an integer number of half-wavelengths fits in the width of the
slab. In the figures that follow we consider combinations of
electric and magnetic modulations (mε � 1,mμ � 1) so strong
that the Fabry-Perot resonances become unrecognizable.

In Figs. 8 and 9 the electric and magnetic modulations
are in phase (θ = 0); they differ in that in Fig. 8 mε �=
mμ, while in Fig. 9 mε = mμ. Two normalized thicknesses
(ν = 1 and ν = 4) are considered. The transmission spectra
are shown for the fundamental (n = 0) and three harmonics
(n = 0, ± 1,2). These correspond to light transmitted at the
frequencies ω, |ω ∓ �|, and |ω − 2�|. For ν = 1 there is a
qualitative difference between the Figs. 8 and 9; namely, the
Tn vanish at certain frequencies for equal modulations, while
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FIG. 8. Transmission spectra Tn(ω̂) for the fundamental n = 0
and the harmonics n = ±1,2 for two values of the normalized slab
thickness: ν = 1 (magenta dash) and ν = 4 (blue solid). The electric
and magnetic modulations are assumed to be in phase (θ = 0) and
their strengths are mε = 0.8 and mμ = 0.2.

they only exhibit minima if the modulations are different.
Also, the number of oscillations is greater for ν = 4 than for
ν = 1 because the average number of wavelengths decreases
in comparison to the thickness D. Finally T−1, T1, and T2 are
of the same order as T0 due to the very strong modulations
assumed.

FIG. 9. Same as in Fig. 8 but for equal modulations, mε = mμ =
0.5.

FIG. 10. Same as in Fig. 8 but for equal modulations, mε = mμ =
0.9, that are out of phase (θ = π ).

As has been already commented in Ref. [16], ours is an open
system that can receive energy from the source of modulation.
Hence, the reflection and transmission coefficients can be
greater than 1. In the presence of simultaneous electric and
magnetic modulations, this effect can be very strong for equal
modulations (mε = mμ) that are out of phase (θ = π ), as seen
in Fig. 10. Curiously, the transmitted harmonics (T±1 and T2)
can be even greater than the transmitted fundamental (T0).
The strong energy gain occurs for the normalized thickness
ν = 4, not, however, for ν = 1. Note that the pronounced
oscillations peak at, roughly, ω̂ = 1/2,3/2,5/2, . . . , thus
suggesting parametric resonances. These have been explored
in Ref. [18] for mμ = 0. The present situation is quite different
and merits deeper study, to be undertaken in the future. It
seems that Fig. 10 corresponds to a transition from Fabry-Perot
resonances to parametric resonances. Figure 11 demonstrates a
case of T0(ω) being greatest for θ = π and smallest for θ = 0,
with intermediate values for θ = π/2.

FIG. 11. The fundamental transmission coefficient Tn=0 for a
normalized thickness ν = 4, equal modulations mε = mμ = 0.5, and
three values of the phase difference: θ = 0, π/2, and π .
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VI. CONCLUSION

The subject of this paper is a generalized temporal photonic
crystal, assuming periodic modulations in the time of both
the permittivity and permeability. For greater versatility, the
electric and magnetic modulations can have an arbitrary phase
difference. Thus, the photonic band structure k(ω), obtained
from the solution of a complicated eigenvalue problem,
depends crucially on whether the two modulations are in
phase or out of phase and also on whether the strengths of
these modulations are different or equal. It is these differences
that lead to the existence or absence of band gaps between

the k bands. In addition to the dispersion k(ω) of the waves
we also studied their damping and transmission through
a dynamic slab. A particular case of transmission spectra
suggests the onset of parametric resonances, meriting further
investigation. The fact that k gaps were recently measured
and reported [20] in a transmission line with periodically
modulated capacitors implies that, by modulating the inductors
as well, the behavior and effects predicted here can be
reproduced at radio, microwave, and even THz frequencies.
We also anticipate analogous effects in periodically modulated
elastic (“phononic”), plasmonic, and other systems.
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