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Parity-time–symmetry breaking in two-dimensional photonic crystals: Square lattice
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We consider theoretically materials whose electromagnetic properties possess parity-time (PT ) symmetry and
are periodic in two dimensions. When designed for optical frequencies such structures are commonly known as
two-dimensional (2D) photonic crystals. With the addition of PT symmetry the optical modes of 2D photonic
crystals exhibit thresholdless spontaneous PT -symmetry breaking near the Brillouin zone boundary, which is
analogous to what has previously been studied in PT -symmetric structures with one-dimensional periodicity.
Consistent with previous work, we find that spontaneous PT -symmetry breaking occurs at band crossings in
the photonic dispersion diagram. Due to the extra spatial degree of freedom in 2D periodic systems, their band
structures contain more band crossings and higher-order degeneracies than their one-dimensional counterparts.
This work provides a comprehensive theoretical analysis of spontaneous PT -symmetry breaking at these points
in the band structure. We find that, as in the case of one-dimensional structures, photonic band gaps exist
at k = 0. We also find that at points of degeneracy with order higher than 2, bands merge pairwise to form
broken-PT -symmetry supermodes. If the degeneracy order is even, this means multiple pairs of bands can form
distinct (nondegenerate) broken-symmetry supermodes. If the order of degeneracy is odd, at least one of the
bands will have protected PT symmetry. At other points of degeneracy, we find that the PT symmetry of the
modes may be protected and we provide a spatial mode symmetry argument to explain this behavior. Finally, we
identify a point at which two broken-PT -symmetry supermodes become degenerate, creating a point of fourfold
degeneracy in the broken-PT -symmetry regime.
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I. INTRODUCTION

Since the discovery that quantum systems invariant under
a combined parity P and time-reversal T operation have real
eigenvalues [1–3], a variety of theoretical and experimental
studies of such systems have appeared in the literature.
Because of the duality of the electromagnetic wave equation
with the stationary Schrödinger equation and the mature state
of photonic materials processing, many of the experimental
studies of systems possessing PT symmetry have been
electromagnetic in nature [4–9]. One of the most fascinating
aspects of PT -symmetric systems is the observation of
spontaneousPT -symmetry breaking.PT symmetry is broken
when the magnitude of the balanced gain and loss is increased
and two nominally real eigenvalues merge into a complex-
conjugate pair. The point on a phase diagram at which
this merging occurs is known as an exceptional point [10].
Intuitively, the exceptional point occurs when the magnitude
of the rate of gain or loss is increased past the coupling rate
between the gain and loss regions of the system.

The structures studied in the majority of previous reports
of electromagnetic systems with PT symmetry possess this
symmetry along only one spatial direction. For example,
lossless propagation and PT -symmetry breaking have been
demonstrated in two coupled waveguides where one guide
is amplifying and the other is dissipative at a rate equal
but opposite in sign to the amplifying guide [11–13]. In
this case the single PT -symmetry plane is parallel to the
waveguides but perpendicular to the plane of the guides
and located at the midpoint between them. Several groups
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have exploited PT symmetry and PT -symmetry breaking
for device applications using microring resonators [14–19].
Previous reports have also studied metamaterials possessing
PT symmetry [20–22] where the gain and loss and their
associated spectral dependence provide another avenue for
engineering the optical properties of the material while also
providing theoretically lossless propagation.

A number of previous works have studied structures with
periodic PT symmetry. The majority of these studies have
dealt with periodicity in only one dimension [23–30]. To
date, there have been few investigations into the properties
of systems possessing PT symmetry in dimensions higher
than one. Makris et al. and Regensburger et al. have studied
PT -symmetric mesh-periodic networks in a fiber and 50:50
fiber coupler platform [31–33]. Agarwal et al. explored
PT -symmetry breaking in exactly solvable two-dimensional
(2D) problems [34]. Ge and Stone proved general conditions
for thresholdless PT -symmetry breaking in 2D disks and
three-dimensional spheres [35]. Ge et al. studied general
properties of multimode waveguides possessingPT symmetry
[36]. Xie et al. and Wang et al. have studied soliton formation
in nonlinear materials with a 2D sinusoidal modulation of the
loss and gain [37,38]. While these studies have touched on
various aspects of 2D PT -symmetric structures, studies of the
fundamental behavior of 2D periodic electromagnetic systems
possessing PT symmetry are lacking.

In the present work we conduct a comprehensive theoretical
analysis of structures possessing periodic PT symmetry in
two dimensions. Here we refer to such a structure as a
2D PT -symmetric photonic crystal (PC). An example of
such a structure is depicted in Fig. 1. In this case the 2D
PT symmetric PC is a square lattice whose basis consists
of two vertically oriented rods with circular cross section.
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FIG. 1. Schematic diagram showing the two-dimensional PT -
symmetric photonic crystal. Rods labeled n1 are the gain rods (n1 =
nr + ini) and rods labeled n2 are the loss rods (n2 = nr − ini) for
positive nr and ni . The structure possesses PT symmetry if the parity
operation is defined by the reflection σd or σd ′ .

The background refractive index is nr . The rods labeled n1

are amplifying (gain rods) and have a complex refractive
index given by n1 = nr + ini for positive nr and ni and the
rods labeled n2 are absorbing (loss rods) with a complex
refractive index given by n2 = nr − ini . We note that in this
study we consider geometries in which the real part of the
refractive index is uniform. The 2D PT -symmetric PC is
defined strictly by the imaginary part of the refractive index.
Figure 1 depicts two PT -symmetry planes labeled by σd and
σd ′ . Conventionally the symbol σ is reserved for the reflection
or P operation. The 2D PT -symmetric PC is not invariant
under σd or σd ′ alone. However, with the additional operation
of T that becomes a complex conjugation in the frequency
domain, the structure is indeed invariant.

We begin the analysis by obtaining exactly solvable results
for a 1D PT -symmetric periodic structure. We use these
analytical results to explain various features of the structure’s
photonic band structure. We then show that many of these
properties are retained in the 2D PT -symmetric PC. Further,
the 2D PT -symmetric PC band diagram contains a variety
of behavior not seen in the 1D case and we explore these
behaviors in detail. As pointed out by Ge and Stone, a
necessary condition for PT -symmetry breaking is degeneracy
in the eigenvalues when the gain and loss magnitude is zero
[35]. In a 2D PC, degeneracy occurs at band crossings. These
usually occur at high-symmetry points at the Brillouin zone
boundary. However, they also appear at low-symmetry points
within the Brillouin zone due to multidirectional band folding
[39] and we describe the PT symmetry of the modes at
these crossings. A particularly interesting discovery is the
identification of band crossings in which PT symmetry is
protected and we provide a spatial-field symmetry argument
to explain this behavior. We also find that at band crossings
involving more than two bands, PT -symmetry breaking is
manifested by pairwise band merging. When the band crossing

involves an odd number of bands, the pairwise criterion
still holds and the PT symmetry of the remainder band is
protected.

II. EXACTLY SOLVABLE MODEL: ONE-DIMENSIONAL
PERIODIC STRUCTURES WITH PT SYMMETRY

Figure 2(a) depicts a 1D periodic structure with PT
symmetry. Each layer has thickness L and the refractive
indices are complex and conjugate to each other n1 = nr + ini

and n2 = nr − ini . The PT -symmetry planes occur at the
interfaces between any of the layers. In this study the real part
will be set to nr = 2.0 while the imaginary part will take on
values between 0 and 0.2. These values are chosen to illustrate
the concepts of PT symmetry in periodic structures simply
and effectively while still being roughly consistent with typical
solid-state materials at optical frequencies. We acknowledge
that a gain coefficient corresponding to ni = 0.2 would be
about a factor of 5 larger than what is typically available
in semiconductor gain materials [40], but we proceed with
this number in the present work for purposes of illustration.
Also, we note briefly that the gain-loss pattern described in
Fig. 1 could be experimentally realized in semiconductor gain
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FIG. 2. (a) Schematic diagram showing a one-dimensional pe-
riodic PT -symmetric structure. Layers labeled n1 are the gain
layers (n1 = nr + ini) and layers labeled n2 are the loss layers
(n2 = nr − ini) for positive nr and ni . Each layer has a thickness
L and the period of the periodic structure is � = 2L. (b) Photonic
band diagram for propagation through the structure in (a). Bands for
ni = 0 (black dashed line) and ni = 0.2 (red solid line) are shown.
The light gray fine dashed line shows the exceptional point for various
bands with ni = 0.2. The green dots correspond to the fields shown
in Fig. 4.
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material with a spatially selective passivation technique [41]
or through masked regrowth [42].

To obtain analytical results we use the propagation matrix
method [43]. The electric field for normal incidence on
a 1D layered structure is given by forward and backward
propagating transverse electromagnetic plane waves. In layer
q, the electric field is given by

Eq(z) = E+
q exp(−ikqz) + E−

q exp(ikqz), (1)

where Eq(z) represents a transverse component of the electric
field and kq = k0nq , where k0 is the vacuum wave number.
The amplitudes E+

q and E−
q correspond to the field at the inner

side of the rightmost boundary of the qth layer. For example,
for layer q = 1 in Fig. 2(a), E1(0−) = E+

1 + E−
1 , where 0−

represents the layer 1 side of the z = 0 boundary. The fields in
the adjacent layer q = 2 can be related to those in layer q = 1
by a 2×2 propagation matrix P1,2. The elements in P1,2 result
from enforcing boundary conditions on E1,H1 and E2,H2 at
the boundary between layers 1 and 2 and propagating the fields
through layer 2. The ensuing field amplitudes E2,H2 apply to
the inner side of the rightmost boundary of the q = 2 layer.
Generally, for propagation from layer q to layer q + 1 one has

Pq,q+1

[
E+

q

E−
q

]
=

[
E+

q+1

E−
q+1

]
, (2)

where the right-hand side represents the field amplitudes at the
inner side of the rightmost boundary of the q + 1 layer.

If the 1D layered structure consists of equal length layers
with alternating refractive indices as indicated in Fig. 2(a), then
propagation through two adjacent layers constitutes traversing
one period of the periodic structure. In this case, Bloch’s
theorem as applied to electromagnetic waves [44] may be
invoked to write

Pq,q+2

[
E+

q

E−
q

]
=

[
E+

q+2

E−
q+2

]
= e−ik�

[
E+

q

E−
q

]
. (3)

Therefore, the eigenvalues of the two-layer propagation matrix
Pq,q+2 have the form exp(−ik�). Let the components of
Pq,q+2 be labeled as

Pq,q+2 =
[
p11 p12

p21 p22

]
. (4)

For the case shown in Fig. 2(a) we obtain

p11 = e−jk0n2L

n2
r + n2

i

[
n2

r e
−jk0n1L + n2

i e
jk0n1L

]
, (5)

p12 = 2nrnie
−jk0n2L

n2
r + n2

i

sin(k0n1L), (6)

p21 = −2nrnie
jk0n2L

n2
r + n2

i

sin(k0n1L), (7)

p22 = ejk0n2L

n2
r + n2

i

[
n2

r e
jk0n1L + n2

i e
−jk0n1L

]
. (8)

Because Pq,q+2 is unimodular (p11p22 − p12p21 = 1), its
eigenvalues are given by

e−jk� = 1
2 [p11 + p22 ±

√
(p11 + p22)2 − 4]. (9)

The quantity p11 + p22 can be simplified to

p11 + p22 = 2
n2

r cos(2k0nrL) + n2
i cosh(2k0niL)

n2
r + n2

i

. (10)

Now we consider a few points of interest. First consider the
Bragg wavelength λ0 = 2(n1L + n2L) = 4nrL:

[p11 + p22]λ0 = 2
−n2

r + n2
i cosh(πni/nr )

n2
r + n2

i

. (11)

For small values of ni such that πni/nr � 1,

[p11 + p22]λ0 ≈ −2
n2

r − n2
i

n2
r + n2

i

. (12)

From this one concludes that the quantity under the radical in
Eq. (9) is negative. Equating real parts of Eq. (9) yields

cos(k�) ≈ −n2
r − n2

i

n2
r + n2

i

> −1, (13)

so at the Bragg wavelength k < π/� and the dispersion
curve does not reach the Brillouin zone boundary k = π/�

for real frequencies (i.e., real k0). Furthermore, because the
Bloch wave number k remains purely real at this point,
Bragg reflection is not expected in this frequency region.
Figure 2(b) shows the photonic band diagram for this 1D
periodic structure. The band structure was calculated using
the plane-wave expansion method [45]. In principle, the
propagation matrix method can be used, but because it uses
frequency as an input parameter and determines the Bloch
wave vector k, the input parameter space is two dimensional
(real and imaginary parts of frequency), which complicates
the calculation. The plane-wave expansion method uses k as a
parameter and determines frequencies, which can be complex
in general.

Upon close inspection of Fig. 2(b) one can see the
presence of exceptional points near k�/π = 1. At these points,
adjacent bands merge and become degenerate in their real
frequency, while their complex components become nonzero
and complex conjugate to each other. The transition from real
to complex-conjugate frequency eigenvalues is the hallmark
of spontaneous PT -symmetry breaking. Figure 3(a) shows a
close-up of the region near k�/π = 1 for several values of ni .
The critical point moves to lower k values with increasing ni

consistent with Eq. (13). We note also that k < π/� for any
nonzero ni , which indicates that this PT -symmetry breaking
is thresholdless. Figure 3(b) shows the imaginary part of the
frequency as a function of k. The imaginary part is zero
for k values to the left of the critical point. At the critical
point, the two merged bands have nonzero imaginary parts
that are negatives of each other. The imaginary part increases
monotonically with k from the critical point to the Brillouin
zone boundary.

We also point out that for higher-order bands, the critical
point moves slightly to the left. This can be predicted analyti-
cally by keeping a higher-order term in the approximation for
cosh(2k0niL) in Eq. (11). The trend is depicted by the fine
dashed line in Fig. 2(b).

Close inspection of Fig. 2(b) reveals that photonic band
gaps exist near band crossings at k = 0 similar to those of
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FIG. 3. (a) Zoomed-in version of Fig. 2(b) at the lowest-frequency exceptional point. Included here are curves corresponding to ni = 0.05,
0.10, and 0.15. (b) Imaginary part of the frequencies for the bands shown in (a). The frequencies of the broken-PT -symmetry bands are
complex conjugate to each other. (c) Zoomed-in version of the band behavior at k = 0. Instead of spontaneous PT -symmetry breaking, a
photonic band gap exists whose width grows with increasing ni .

lossless 1D gratings. Performing a similar analysis as above
on the propagation matrix at λ0 = n1L + n2L = 2nrL yields

p11 + p22 = 2
n2

r + n2
i cosh(2πni/nr )

n2
r + n2

i

. (14)

This result shows that p11 + p22 > 2, which results in a real
value on the right-hand side of Eq. (9). However, this real value
is greater than one, so the resulting k is complex and this is
the usual criterion for a photonic band gap [43]. Based on this
analysis, one does not anticipate exceptional point behavior
near k = 0. Figure 3(c) shows the evolution of the bands near
k = 0 for increasing values of ni . The band-gap size increases
with increasing ni .

Figure 4 depicts the spatial field distribution associated with
two k points in the band diagram. Figure 4(a) depicts the field
at points 1 and 2 in Fig. 2(b), which is in the PT -symmetry
region. The magenta dashed line is associated with point 1
and the purple solid line is associated with point 2. In this
case the mode frequencies are real. Inspection of the fields
shows the usual first-order (point 1) and second-order (point
2) band behavior. However, in both cases the fields overlap
the gain (labeled G with refractive index n1) and absorbing

(labeled A with refractive index n2) regions equally, resulting
in a net gain-loss balance and real frequency eigenvalue. In
the broken-PT -symmetry region, the modes hybridize and
overlap the gain and absorption regions differently. Figure 4(b)
shows the mode fields at k�/π = 1, which is in the broken-
PT -symmetry regime. The fields for the two bands exhibit
similar spatial dependence, but one field is localized in the gain
regions and the other is localized in the absorption regions. In
this case the fields for the two modes exhibit the same spatial
behavior aside from a shift of �/2 along the z direction.

We note that the band diagrams shown here for the 1D
PT -symmetric lattices bear some resemblance to those of
1D lattices with layers of alternating positive and negative
real parts of the index [46]. In particular, the 1D periodic
structures with positive and negative real refractive indices
have band diagrams with gaps at k = 0 and dispersion curves
whose real part truncates before the Brillouin zone boundary.
Similar results were found for a nominally lossless 1D periodic
quarter-wave stack that incorporated graphene monolayers at
the interfaces between the low and high index layers [47].
However, in these cases, exceptional point behavior associated
with PT -symmetry breaking does not occur.
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FIG. 4. Depiction of the field in the 1D periodic structure with PT symmetry. G labels the gain layers (n1) and A labels the absorbing
layers (n2). The two curves in (a) correspond to points 1 and 2 in Fig. 2(b) (magenta dashed line, point 1; purple solid line, point 2). These
modes are in the PT -symmetry regime with equal overlap with the gain and absorbing layers. (b) Fields corresponding to point 3 in Fig. 2(b).
These fields are in the broken-PT -symmetry regime with preferential overlap of the gain layers (gain mode, magenta dashed line) or the
absorption layers (loss mode, purple solid line).
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III. TWO-DIMENSIONAL PERIODIC STRUCTURES
WITH PT SYMMETRY

Here we extend the analysis of periodic structures with
PT symmetry to two dimensions. In the previous section
we determined that points of interest on the photonic band
structure fell into two classes: (a) regions near the Brillouin
zone boundary in which thresholdlessPT -symmetry breaking
occurs and (b) regions at k = 0 in which PT -symmetry
breaking does not occur, but rather a photonic band gap exists
instead. In the following we will show that these two types
of points also occur for 2D PT -symmetric photonic crystals.
However, in the 2D case a rich variety of additional behavior
is observed. These behaviors include PT -symmetry breaking
at midzone band crossings, protected PT symmetry at certain
band crossings, andPT -symmetry breaking behavior at points
of degeneracy with order greater than 2.

Figure 1 shows the geometry of the structure. It is a
2D square lattice with a unit cell consisting of two circular
rods. The gain rod has n1 = nr + ini and the loss rod has
n2 = nr − ini . The background refractive index is set to
nr (i.e., the real part of the refractive index is uniform
throughout the structure). The results reported here use
nr = 2.0 and ni = 0.25. The rods have a radius of r = 0.2�,
where � is the spatial period. The dashed lines in Fig. 1
indicate the reflection planes for the parity operation such that
PT n(x,y) = σdT n(x,y) = σdn

∗(x,y) = n∗(y,x) = n(x,y)
and PT n(x,y) = σd ′T n(x,y)=σd ′n∗(x,y) = n∗(−y, − x)=
n(x,y), where it is noted that the T operation is a complex
conjugation in the phasor domain.

Figure 5 shows the band structure of the 2D PT -symmetric
PC shown in Fig. 1 calculated using the plane-wave expansion
method [45]. In the results that follow, the electric field is
polarized in the x-y plane and the only nonzero magnetic
field component is Hz(x,y). We reserve the complementary
polarization (Hx,Hy,Ez) for a future study. Figure 5(a) shows
the photonic band structure for a material of index nr = 2 with
an infinitesimally small square lattice perturbation. Essentially,
it shows the light line in the uniform material folded into
what would be the first Brillouin zone for a 2D square lattice.
This diagram shows the nominal band crossings and band
degeneracies. As the imaginary part of the refractive index
is increased gradually from zero, PT -symmetry-breaking
behavior will be seen most obviously at band crossings and
in degenerate bands. Figure 5(b) shows the photonic band
structure in which n1 = 2.0 + i0.25 and n2 = 2.0 − i0.25.
Figure 5(c) shows the imaginary frequencies for the bands
in Fig. 5(b). As expected, Figs. 5(a) and 5(b) look similar.
However, closer inspection shows that previously degenerate
bands are nondegenerate in the PT -symmetric structure with
ni > 0. In addition, PT -symmetry breaking and protection
occur at band degeneracies. Detailed views and discussion of
these points of interest are provided in the following.

The complex frequency dispersion diagram in Figs. 5(b)
and 5(c) has several interesting features. We begin by making a
few general observations; further details will be given later for
specific points of interest. Along the high-symmetry directions
�-X and �-M , the frequency bands are mostly real. These
regions correspond to the PT -symmetric phase. For some
bands near the X and M points on the � side, thresholdless

spontaneous PT -symmetry breaking can be observed. This
is similar to the 1D periodic case in which band merging
is exhibited at exceptional points near the Brillouin zone
boundary. We note also that as the frequency bands enter the
broken-PT -symmetry region at the X point, they remain in the
broken-symmetry phase as the in-plane wave vector is swept
along the Brillouin zone boundary from the X point to the M

point. It is worth mentioning that this PT -symmetry breaking
is likely not due to propagation along the low-symmetry
directions between the X and M points, but rather results from
the general observation that the broken-PT -symmetry phase
tends to occur at the Brillouin zone boundary. As the in-plane
wave vector is swept along the Brillouin zone boundary from
the X point to the M point, the wave vector evolves as
�k = (x̂ + ξ ŷ) π

�
with 0 � ξ � 1. As long as the x component of

the wave vector is at its maximum value π
�

, the mode remains
in the broken-PT -symmetry phase even as the y component
of the wave vector is increased from zero. Alternatively, for
a point in the interior of the Brillouin zone [for example,
at �k = 1

2 (x̂ + ŷ) π
�

], the eigenfrequencies are mostly real,
indicating that the modes remain in the PT -symmetry phase.
The conclusion is that the universally broken PT symmetry
seen in the direction of X-M results from general spontaneous
PT -symmetry breaking at the Brillouin zone boundary instead
of from propagation along a low-symmetry direction in
the PC.

We also note that while all bands exhibit PT -symmetry
breaking near the X point, some bands do not exhibit symmetry
breaking at the M point [bands 1, 2, and 6 (6 not shown at the
M point)]. In the following we will provide a field symmetry
argument to explain why the PT symmetry is protected for
these modes. Finally, we note that PT -symmetry breaking
can be seen at band crossings that occur at k points away from
the Brillouin zone boundary. Such midzone band crossings
make the 2D band structure distinct from the 1D case. Details
of these midzone crossings will be explored in more detail
below.

A. Thresholdless PT -symmetry breaking similar
to 1D periodic structures (points A and H)

Figure 6 shows a detailed view of the point labeled A in
Fig. 5(b). The PT -symmetry breaking at this point is similar
in nature to the 1D periodic structure. At the exceptional
point the real frequency values merge and the imaginary parts
for the two bands are conjugate to each other. The spatial
field distributions of the modes at the X point are shown. In
particular, the quantity |Hz(x,y)| is displayed. Recalling that
the modes of periodic structures are Bloch modes, we note that
the field of a mode associated with the qth band at wave vector
�k, Hz(x,y) = u

q

�k (x,y) exp(−j �k · �ρ), where �ρ = x̂x + ŷy and

u
q

�k (x,y) has the same periodicity as the lattice. Therefore,

|Hz(x,y)| = |uq

�k (x,y)| is the quantity visualized in Fig. 6 and
in the spatial field distributions that follow in this work.

As was the case in the 1D structure, there is a gain mode in
which the field preferentially overlaps the n1 rods and a loss
mode in which the field preferentially overlaps the n2 rods.
These two modes are shown in Fig. 6. As in the 1D case, the
fields for the two modes exhibit the same spatial behavior aside
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modification. The inset depicts the first Brillouin zone for the square lattice. High-symmetry points are labeled. The red triangle depicts the
region traced by the wave vectors in this work. (b) Photonic band structure for the square lattice shown in Fig. 1 with n1 = 2.0 + i0.25 and
n2 = 2.0 − i0.25. The real part of the eigenfrequencies is shown. The letters label points of interest. (c) Same band structure as (b) but the
imaginary part of the eigenfrequencies is shown. The numbering between X and M shows the correspondence between the real and imaginary
parts of the eigenfrequencies.

from a shift of �/2 along the x direction. We note also that
both modes possess the same symmetry along the y direction.
In this case, both modes have fields that are uniform along y

and therefore have even parity. If σy is the parity operator for
reflection about the x axis, then σyu

1,2
�k (x,y) = u

1,2
�k (x, − y) =

u
1,2
�k (x,y), where the first two bands are labeled q = 1,2 and

�k = x̂ π
�

. We will see that the parity of the mode fields along
the direction orthogonal to the propagation direction plays an

important role in PT -symmetry breaking. We note also that
point H is of the same general class as point A.

B. Degenerate bands and PT -symmetry breaking at points
of fourfold degeneracy (points B and I)

Figure 7 shows a detailed view of the point labeled B in
Fig. 5(b). In constructing the folded band diagram in Fig. 5(a)
we note that the bands crossing at the X point near the

063812-6



PARITY-TIME–SYMMETRY BREAKING IN TWO- . . . PHYSICAL REVIEW A 93, 063812 (2016)

 1.0008  1.0032
 0.21

 0.23

 0.25

 0.27

 0.29

 0.9  0.92  0.94  0.96  0.98  1

gain mode

loss mode

N
or

m
al

iz
ed

 F
re

qu
en

cy
 - 

Λ
/λ

0

Real frequency 
eigenvalues

PT symmetric 
region

X
In-plane Wave Number - k

A

 1

 2

 1.0

 0.5

 0.0

Complex 
conjugate 
frequency 

eigenvalues

Broken PT 
symmetry 

region

FIG. 6. Detailed view of point A in Fig. 5(b). The numbering
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numbering in Fig. 5(b), which applies to the X-M region. The field
profiles for the two modes at the X point are shown. Solid circles
correspond to the gain rods n1 and dashed circles correspond to the
absorbing rods n2.

frequency �/λ0 = 0.56 are each twofold degenerate due to
the presence of two equivalent X(2) points [39]. In the presence
of the periodic perturbation, the degeneracy is lifted and two
distinct but closely spaced bands can be seen. As the bands
approach the X point, PT symmetry is broken and bands
merge pairwise to form gain modes and loss modes. The spatial
field profiles of all modes are shown in Fig. 7. The fields with
preferential overlap of the gain rods (gain modes) and with
preferential overlap of the absorbing rods (loss modes) can be
seen. The gain and loss modes exhibit half a spatial oscillation
per lattice period along the x direction and are distinguished by
a �/2 spatial shift also along the x direction, which is similar
to modes q = 1,2 shown in Fig. 6. However, the field behavior
along the y direction is decidedly higher order in nature.

While four bands approach the frequency �/λ0 = 0.56 at
the X point, the bands merge pairwise when the PT symmetry
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FIG. 7. Detailed view of point B in Fig. 5(b). The numbering
scheme here applies to the �-X region and is separate from the
numbering in Fig. 5(b), which applies to the X-M region. The field
profiles for the four modes at the X point are shown. Solid circles
correspond to the gain rods n1 and dashed circles correspond to the
absorbing rods n2. The color scale is the same as in Fig. 6.

is broken. Apparently, it is the transverse symmetry that
determines which bands merge to form complex-conjugate
frequency pairs. The 2D strongly varying refractive index
of these structures makes employing the full apparatus of
coupled-mode theory beyond the present scope. However,
we note qualitatively that the band merging process can be
interpreted as the formation of two supermodes where the
gain and loss modes are linear superpositions of the nominally
PT -symmetric modes of the system. A key quantity in this
interpretation is the coupling coefficient between modes in
the two bands (here bands 4 and 5). If E4(x,y) and E5(x,y)
represent components (x or y) of the electric field in bands
4 and 5, respectively, of a nominal PT -symmetric structure
with low gain and loss, then the coupling coefficient is of the
form

κ ∝
∫ ∞

−∞

[
ε2(x,y) − ε2

nom(x,y)
]
E4(x,y)E5(x,y)dy, (15)

where ε(x,y) represents the dielectric of the PT -symmetric
structure shown in Fig. 1 and εnom(x,y) is the dielectric
of a PT -symmetric structure with nominally low (even
infinitesimal) gain and loss. Essentially the modes of εnom(x,y)
possess the requisite symmetry of the lattice but with barely
perceptible PT -symmetry breaking (there will be some since
the PT -symmetry breaking is thresholdless).

Because ε2(x,y) − ε2
nom is even in y (using the origin

defined in Fig. 1), E4(x,y) and E5(y) must have the same
parity in the y direction to obtain nonzero coupling. The
slightly-lower-frequency pair shown in Fig. 7 possesses odd
parity along the y direction σyu

4,5
�k (x,y) = u

4,5
�k (x, − y) =

−u
4,5
�k (x,y). The odd parity is not immediately apparent in

a plot of magnitude, but a plot of the real part of Hz(x,y)
(not shown) confirms this conclusion. We point out that the
modes of bands 4 and 5 possess the same odd parity along
the y direction at k values in the PT -symmetric region (to
the left of the exceptional point in Fig. 7), confirming that the
odd-y-parity supermodes in the broken-PT -symmetry region
can be interpreted as superpositions of modes of the nominally
PT -symmetric structure.

The slightly-higher-frequency pair shown in Fig. 7 pos-
sesses even symmetry along the y direction σyu

3,6
�k (x,y) =

u
3,6
�k (x, − y) = u

3,6
�k (x,y). From this discussion we conclude

that it is the parity of the fields in the direction transverse
to the propagation direction that determines whether modes
associated with band crossings merge to form complex-
conjugate pairs. We note also that this same analysis may
be applied to point I in Fig. 5(b).

C. PT -symmetry breaking at band crossings away
from the Brillouin zone boundary (points C, K , and L)

Figure 8 shows a detailed view of the point labeled C in
Fig. 5(b). The presence of an exceptional point away from the
Brillouin zone boundary is a phenomenon that can only be seen
in the band diagrams of structures possessing periodicity in
more than one dimension. Because they have more directional
degrees of freedom, the bands of 2D periodic structures
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cross not only at high-symmetry points at the Brillouin zone
boundaries but also at other arbitrary low-symmetry points.
As in the case of the fourfold degeneracy at point B, only
modes with nonorthogonal transverse spatial symmetry merge
at band crossings. In the band diagram for vanishing square
lattice perturbation in Fig. 5(a), the point corresponding to
the C point in Fig. 5(b) is threefold degenerate. It consists of
a crossing between a nondegenerate band connecting the �

point at a frequency of 0.5 to the X point at a frequency of
0.75 and the doubly degenerate band rising from the B point
labeled in Fig. 5(b).

The detailed view afforded by Fig. 8 shows that the
exceptional point behavior is associated with merging of the
nondegenerate band connecting the � point at a frequency of
0.5 to the X point at a frequency of 0.75 and the higher of the
closely spaced bands emerging from point B. Inspection of
the associated spatial field distributions shows that the fields
associated with the merged bands both possess even symmetry
along the y direction. The shaded region in Fig. 8 indicates the
broken-PT -symmetry region, but it should be noted that it is
only the merged bands that exhibit the broken symmetry. Band
5 as labeled in Fig. 7 passes through the broken-symmetry
region, but its PT symmetry is maintained and its frequency
remains real. That the PT symmetry of band 5 is protected
is consistent with its odd parity along the y direction, which
makes it orthogonal to modes 6 and 7.

Another interesting feature of the spatial field distribution
is the shift in the fields when observed along the lines labeled
(i) and (ii) in the inset of Fig. 8. There is a π/2 shift of
the phase between the fields along (i) and (ii), so field peaks
along (i) are vertically aligned with field nulls along (ii) (and
vice versa). This shift facilitates the different preferential field
overlap with the gain and loss rods for the gain and loss modes,
respectively.
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D. Protected PT symmetry at band crossings away
from the Brillouin zone boundary (points D and N)

Figure 9 shows a detailed view of the point labeled D in
Fig. 5(b). In the band diagram for vanishing square lattice
perturbation in Fig. 5(a), the point corresponding to the point
D in Fig. 5(b) consists of a crossing of a nondegenerate band
(connecting the X point at a frequency of 0.75 to the � point at a
frequency near 1.0) and a doubly degenerate band (connecting
the � point at a frequency of 0.7 to the X point at a frequency
near 0.9). The surprising observation about point D is that
PT symmetry is not broken. At first glance, it contains the
same properties as point C where three bands cross and PT
symmetry is broken as the nondegenerate band merges with
one of the doubly degenerate bands. At the D point, however,
the nondegenerate band (band 8 in Fig. 9) anticrosses one of
the doubly degenerate bands (band 9 in Fig. 9) while band
10 passes through the interaction region unaffected. Looking
at the spatial field distributions for the different bands, one
concludes that band 10 is not expected to mix with these bands
to form broken-PT -symmetry supermodes because of its odd
parity along y.

To understand why bands 8 and 9 are protected from
PT -symmetry breaking at the D point band crossing, we take
a closer look at the spatial field profiles. For PT -symmetric
modes in general, the spatial field distribution overlaps the
gain and absorbing regions equally, so the positive and negative
contributions to the complex frequency are equal in magnitude
and cancel out. When PT symmetry is broken, the field is
preferentially localized in either the gain or absorbing regions.
However, when this occurs, the basic symmetry and spatial
frequency of the field are maintained and the preferential
localization is accomplished by a relative spatial shift between
the gain and absorbing modal field distributions. Looking at
exceptional points A, B, and C, one sees that the gain and loss
modal field distributions differ by a �/2 spatial shift along
the x direction. In these cases, when the field is shifted by
�/2, the preferential overlap with the gain rods is changed
to preferential overlap with the loss rods (and vice versa).
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Looking at the spatial field distributions associated with bands
8 and 9 in Fig. 9, one sees that the basic symmetry and spatial
frequency of the fields are such that the field overlap with the
gain rods and loss rods will always be equal for any spatial
shift along the x direction.

To investigate this behavior a bit further, consider the field
behavior along the dotted lines labeled (i) and (ii) in Fig. 9.
Let a simple approximate representation of the field behavior
along dotted line (i) be |u(x,yi)|2 ∼ cos2( 2π

λx
x), where λx is

the period of the spatial oscillation along x. Counting peaks
and nulls in Fig. 9 shows that λx = 2

3�, which results in
|u(x,yi)|2 ∼ cos2( 3π

�
x). As was the case for point C, the phases

of the fields along (i) and (ii) are shifted by π/2, which results
in a spatial shift of �/6 or |u(x,yii)|2 ≈ |u(x − �

6 ,yi)|2 ∼ cos2

[ 3π
�

(x − �
6 )] = cos2( 3π

�
x − π

2 ). As discussed in the previous
paragraph, in the broken-PT -symmetry region when the field
is shifted by �/2 it should swap the preferential spatial
overlap of the gain and loss rods. However, in the present case
such a shift applied to the field along dotted line (i) results
in |u(x − �

2 ,yi)|2 ∼ cos2[ 3π
�

(x − �
2 )] = cos2( 3π

�
x − 3π

2 ) =
cos2( 3π

�
x − π

2 ). In a broken-PT -symmetry scenario such a
shift would produce the corresponding field distribution along
dotted line (ii) but for the conjugate mode. In the present case
the shift produced the field distribution along dotted line (ii)
for the same mode.

This discussion has not concerned itself with a global phase
reference along the x direction; the reason is that the results
apply regardless of the chosen phase reference. For example,
the fields for bands 8 and 9 in Fig. 9 have a relative phase shift
along x of �/6 but both exhibit the property that the fields
overlap the gain and loss rods equally. Finally, we point out
the special characteristics of point D that facilitate protected
PT symmetry. For spatial fields that possess a π/2 phase
shift between the fields centered on the gain rods [along line
(i)] and loss rods [along line (ii)] (as is the case for the C

and D points), if a spatial shift of �/2 applied to the field
along (i) results in a phase shift of π/2 + mπ , where m is
an integer, then we expect PT symmetry to be protected.
More concisely, PT symmetry is protected for modes whose
wavelength along the x direction obeys �/λx = m + 1/2.
For point D, �/(2/3)� = 3/2 = 1 + 1/2; therefore, PT
symmetry is protected. For point C, λx = � and �/λx = 1;
therefore, PT symmetry is expected to be broken. We note
also that for spatial fields that do not possess a π/2 phase shift
between the fields centered on the gain rods and loss rods (as
in the case for the A and B points), the condition for protected
PT symmetry is �/λx = m. For points A and B, λx = 2�

and �/λx = 1/2; therefore, PT symmetry is expected to be
broken.

E. Behavior at the � point (k = 0): PT symmetry and photonic
band gaps similar to 1D periodic structures

Figure 10 shows detailed views of the points labeled E

and F in Fig. 5(b). In Sec. II it was shown analytically
that PT -symmetry breaking was not expected at k = 0
in 1D periodic PT -symmetric structures. Instead they had
photonic band gaps at this point. For the 2D periodic PT -
symmetric structures, similar behavior is seen. The � point
(which corresponds to k = 0) is a high-symmetry point, so
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FIG. 10. Detailed view of points E and F in Fig. 5(b). As in the
1D periodic PT -symmetric structure, PT symmetry is expected to
remain unbroken at k = 0.

bands either become degenerate there or anticross and form
frequency band gaps.

F. PT -symmetry breaking due to lattice symmetry (point G)

Figure 11 shows detailed views of the point labeled G in
Fig. 5(b). This point exhibits yet another avenue by which
spontaneous PT -symmetry breaking may occur. As the M

point is approached from the � point (from the right in
Fig. 11) PT symmetry is not broken. This is in contrast
to nearly every other band crossing at the M and X points
in Fig. 5(b). However, in this case the M point itself is an
exceptional point as the bands merge pairwise at M and their
frequencies become complex and conjugate to each other as
the X point is approached from M (moving to the left of the
M point in Fig. 11). In this case the PT -symmetry breaking
is not spontaneous; rather, it is due to the changing symmetry
character of the modes at the M point.

To gain further insight into the behavior of point G, we
again examine the spatial field profiles. Here we look at
the fields on either side of the exceptional point. In the
PT -symmetric region (to the right of the M point in Fig. 11),
the frequency bands are all nondegenerate. The M point
represents propagation through the lattice at a 45◦ angle
between the x and y directions. The fields depicted in insets
2.a and 3.a possess zeroth-order (i.e., uniform) variation along
the propagation direction (which is bottom left to top right).
One can see that regardless of any global spatial shift along the
propagation direction, the fields will always overlap the gain
and loss rods equally, which is the condition for maintaining
PT symmetry. Further, the fields 2.a and 3.a are distinguished
by their behavior under the parity operation σd ′ defined in
Fig. 1. The field 2.a is even under σd ′ and the field 3.a is odd.
Because these two modes have opposite parity in the direction
transverse to the propagation direction, they are excluded from
forming broken-PT -symmetry supermodes.
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The fields labeled 1.a and 4.a can be understood as
analogous to the fields at point A (depicted in Fig. 6) but
rotated counterclockwise 45◦ and with a spatial oscillation
period adjusted to

√
2� from 2�. The fields are distinguished

by their behavior under the parity operation σd defined in
Fig. 1. The field in 1.a is even under σd and the field in 4.a
is odd. Because these two modes have opposite parity in the
direction transverse to the propagation direction, they also are
excluded from forming broken-PT -symmetry supermodes.

We have provided reasoning for why modes 1.a and 4.a
do not merge to break PT symmetry, and the same holds for
modes 2.a and 3.a (orthogonality in the traverse direction).
In principle, at point G, modes 1.a and 2.a could also merge
as could modes 3.a and 4.a to form broken-PT -symmetry
states. In previous sections, we relied on the principle of mode
orthogonality in the direction transverse to the propagation
direction to predict which bands would merge in the broken-
PT -symmetry state. In these cases, the order of the spatial
oscillation of the fields was the same along the propagation
direction for the merging modes. In the present cases the
candidate modes in question have different orders along the
propagation direction. Modes 1.a and 4.a are first order along
the propagation direction, whereas modes 2.a and 3.a are zeroth
order along the propagation direction. This precludes them

from mixing to form spontaneously broken PT -symmetry
supermodes. The same principle applies to the mixing of mode
1.a with mode 3.a and mode 2.a with mode 4.a.

At the M point the bottom two and top two bands converge
pairwise to degeneracy. The convergence to degeneracy in
this case is not inherently related to the PT symmetry of the
structure. Instead it is due to the square symmetry of the lattice.
Inspection of fields 1.a and 2.a indicates that field 2.a can be
produced by a ±90◦ rotation of field 1.a. Since the fields are
calculated a small distance away from the M point, this is true
only approximately. At the M point, this statement is precisely
true. The same holds for fields 3.a and 4.a. If the wave vector
points from the origin to the M point in the Brillouin zone
diagram shown to the right in Fig. 11, then a ±90◦ rotation of
the wave vector points to another M point. Because this second
M point may be reached via a reciprocal lattice vector and it
is the same distance from the origin, it is indistinguishable
from the initial M point. Therefore, since fields 1.a and
2.a are ±90◦ rotations of each other and propagation at the
M point shifted ±90◦ is equivalent, the bands must reach
degeneracy at the M point. A similar argument holds for
fields 3.a and 4.a. The interesting observation here is that
when this degeneracy is reached, PT symmetry is broken
simultaneously.
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Once the modes enter the broken-PT -symmetry regime
(to the left of the M point in Fig. 11), the modes that were
nondegenerate to the right of the M point mix to form gain
and loss supermodes. In particular, the gain mode u1.b(x,y)
can be associated with u1.a(x,y) + u2.a(x,y) and the loss
mode u2.b(x,y) can be associated with u1.a(x,y) − u2.a(x,y).
Similarly, the loss mode u3.b(x,y) can be associated with
u3.a(x,y) − u4.a(x,y) and the gain mode u4.b(x,y) can be
associated with u3.a(x,y) + u4.a(x,y).

G. Degeneracy in the broken-PT phase (point J)

In this subsection we describe one final unique feature of the
band structure for 2D periodic structures with PT symmetry.
Figure 12 shows a detailed view of the point labeled J in
Fig. 5(b). In the band diagram for vanishing square lattice
perturbation in Fig. 5(a), the point corresponding to the J

point shows four bands converging to degeneracy. Actually,
each of these four bands is twofold degenerate, so the J point in
the lattice of infinitesimal perturbation is ultimately eightfold
degenerate. The top of Fig. 12 shows a zoomed-in version of
the point J . In this view, one sees that the top four bands merge
pairwise when PT symmetry is broken as do the bottom four
bands. This is similar to what occurs at the B and I points and
is described in Sec. III B above. What makes point J different
from points B and I is shown in the second zoomed-in view

shown in the lower left panel of Fig. 12. At the M point, bands
labeled 9–12 are pairwise degenerate similar to points B and I .
However, the bands labeled 5–8 become fourfold degenerate
at the M point while being in the broken-PT -symmetry state.

As in previous discussion, we look to the symmetry of
the spatial field profiles of the bands to further understand
the behavior at the point J . First we point out that because
each band is in the broken-PT -symmetry phase, each band
converging to point J is twofold degenerate with one mode
having a preferential overlap with the gain rods (gain modes)
and the other having a preferential overlap with the absorbing
rods (loss modes). In Fig. 12 the fields for the gain modes are
on the left (5, 7, 9, and 11) and the fields for the loss modes
are on the right (6, 8, 10, and 12). In each case the fields for
the gain and loss modes have a relative phase shift of

√
2�/2

along the propagation direction.
The symmetry of the modes at point J are classified

using the parity operator σd ′′ shown in panel 11 in Fig. 12.
Modes 11 and 12 are even under σd ′′ , whereas modes 9
and 10 are odd under this operation. For this reason band
(11,12) and band (9,10) are expected to anticross, which is
observed in the calculated band structure. Modes 7 and 8
are even under σd ′′ and modes 5 and 6 are odd. Therefore,
due to transverse orthogonality, band (11,12) and band (5,6)
anticross and band (9,10) and band (7,8) anticross. To explain
the anticrossing of bands (11,12) and (7,8), both of which
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have even parity under σd ′′ , we point out the higher-order field
behavior of mode set (7,8) along the propagation direction.
As mentioned in Sec. III F, modes with different spatial
frequencies along the propagation direction are precluded from
mixing. This argument applies to the anticross of bands (9,10)
and (5,6).

So far the behavior described in this section falls into
categories described already. The unique aspect of the point
J is the degeneracy of modes 5, 6, 7, and 8 at the M point
in the broken-PT -symmetry phase. This is the only fourfold
degeneracy in the band diagram shown in Fig. 5(b). The
distinguishing characteristic of the spatial mode profiles of
modes 5–8 is that they are invariant under 180◦ rotations
centered at a gain or loss rod, but they are not invariant under
90◦ rotations (modes 9–12 are invariant under 90◦ and 180◦
rotations). However, modes 5 and 7 transform into each other
under 90◦ rotations as do modes 6 and 8. At the M point,
rotation of the wave vector by 90◦ takes it to another equivalent
M point. Therefore, bands with these spatial mode profiles
must be degenerate at the M point. A similar argument was
given in Sec. III F to explain degeneracy at point G. The

difference here is that the degeneracy is happening within the
spontaneously broken-PT -symmetry phase.

IV. CONCLUSION

Parity-time symmetry in two or more spatial dimensions
results in rich and varied behavior of the eigenmodes. This
work catalogs some of that behavior as it applies to a 2D
square lattice with PT symmetry. These results focus on the
mechanisms by which PT symmetry is or is not broken at
band crossings. We find that it depends heavily on the spatial
symmetry of the modes. Ultimately, the modes that participate
in the formation of broken-PT -symmetry supermodes must
be degenerate in frequency and spatially nonorthogonal. These
observations will enable understanding of more complicated
lattices. For example, a square lattice with a different relative
orientation of the loss and gain rods or a PT -symmetric tri-
angular lattice would likely result in interesting observations.
Another productive next step for this work is analysis of 2D
periodic PT -symmetric structures with defects with a view
toward photonic crystal waveguides and cavities.
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