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Quantum multimode treatment of light scattering by an atom in a waveguide

William Konyk and Julio Gea-Banacloche
Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA

(Received 4 February 2016; published 8 June 2016)

We present a full multimode treatment of the interaction of the quantized radiation field with a single two-level
atom in a one-dimensional waveguide configuration. Starting with an incident pulse consisting of an arbitrary
(finite) number of photons in a general initial state, we derive the equations of motion and a closed-form expression
for the shape of the pulse after its interaction with the atom. We then specialize our results to the two-photon case
where a number of analytical results can be derived, for both unidirectional and bidirectional systems. We study
the effects of different pulse shapes, the manifestations of the entangled, so-called bound state of the two photons,
single- and two-photon detection probabilities, and provide simple approximate results for the strong-coupling
(or adiabatic, or long-pulse) regime. We also discuss the requirements for a true unidirectional setup, and the
application of such a setup to photon sorting proposed by Witthaut, Lukin, and Sørensen [Europhys. Lett. 97,
50007 (2012)].
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I. INTRODUCTION AND SUMMARY

The development of single-photon sources, particularly for
use in quantum information processing, has led to an interest
in the study of the interaction of Fock-state wave packets
with atoms, often in constrained geometries such as one-
dimensional (1D) waveguides. Several groups have, in recent
years, approached this problem from a variety of perspectives,
such as S-matrix [1], scattering eigenstates [2,3], input-output
methods [4], Green’s functions [5], Langevin equations of
motion [6], or direct integration of the Heisenberg [7,8] or
Schrödinger equations [9–12]. Possible applications have been
discussed, for instance, in Ref. [13].

In this paper we focus on the interaction of a Fock-state
wave packet with a single two-level atom, and show that, in
the absence of losses (that is, provided the evolution is unitary)
the time-dependent Schrödinger equation can in principle be
directly solved to yield analytical expressions for the scattered
photon wave packets in real space, for incident wave packets
of arbitrary shape, correlation or photon number N . Our
formalism is a simple extension of the multimode description
of nonclassical fields introduced in Ref. [14]. It yields
expressions that can be directly used to compute, for traveling
wave fields, the effective N -photon wave functions from which
one can derive the N -photon detection probabilities, and a
number of other quantities of interest (including the pulse
spectrum, if desired). For quantum information applications,
our results could also be used directly to calculate the fidelity
of the final state to a desired reference state.

The outline of this paper is as follows. In Sec. II we show
how the Schrödinger equations of motion for a quantized
pulse interacting with a two-level atom in a one-dimensional
configuration can be formally solved exactly, for a pulse
containing a finite number of photons N . We relate the solution
to the concept of effective N -photon wave functions, and
provide several examples of the general solutions for different
types of initial states, including explicitly up to three photons.

In Sec. III, we show how the results generalize to a
bidirectional waveguide, and we study in depth the N = 2
case. Here, a large number of previous results are available,
and we have noted the correspondence with earlier works in

the references where appropriate. Like most of these works,
we consider explicitly the case of Gaussian pulses, but we also
extend our study to consider initial flat-top pulses, which are a
smooth variant of the square pulses also found in other works
(such as Refs. [8,9]). We cover both the case when the pulses
come from the same direction [2] and the case when they are
incident from opposite ends of the waveguide, where we make
the connection with the corresponding recent results of Roulet
et al. [8]. We look in detail at the shape of the scattered pulses
in all these cases, through an explicit consideration of the
corresponding one- and two-photon detection probabilities,
discuss the entangled component of the state at length, and
obtain simple analytical expressions that explain many of the
features seen in the adiabatic (long-pulse, or large-coupling)
limit.

Additional results are found in the Appendices. In
Appendix A, we provide the results for our two-photon
wave functions in the frequency domain (that is to say, the
pulse spectra), for easier comparison with previous results. In
Appendix B, we discuss briefly the applicability of the uni-
directional waveguide formalism to real-world experimental
setups, in particular in the context of an interesting scheme
proposed by Witthaut et al. [13].

II. TWO-LEVEL ATOM INTERACTING WITH A
QUANTIZED PULSE IN ONE DIMENSION

A. Solving the Schrödinger equations of motion for an
N-photon state

We start by considering the interaction of a single two-level
atom with a single set of modes, described in the interaction
picture and at the location of the atom by the operator

A(t) = 1√
2π

∫ ∞

−∞
dωe−iωtaω, (1)

where the aω are single-mode annihilation operators in the
continuum formalism, satisfying [aω,a

†
ω′ ] = δ(ω − ω′), from

which it follows that [A(t),A†(t ′)] = δ(t − t ′). The atom-field
interaction Hamiltonian can then be written as

H = −i�g[σ+A(t) − σ−A†(t)], (2)
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where we define σ± to be the raising and lowering operators
of the atom and g is a coupling constant that we assume to be
frequency independent over the relatively narrow bandwidth of
the incident field. If the operators aω represent traveling-wave
modes, the Hamiltonian (2) describes the somewhat unintuitive
case of a one-sided waveguide (but see Appendix B below
for possible approximate realizations); however, as we shall
show later, the exact same form can also be used to describe a
two-sided waveguide if the operators aω are taken to represent
standing-wave modes, so at this point there is no loss of
generality.

Note also that we have defined ω as a frequency relative
to the atomic transition, so that when ω = 0 the light is in
resonance with the atom. Then, with a symmetric incident
field spectrum, the Hamiltonian (2) describes an essentially
resonant interaction. To deal with a significantly detuned field
(which will not be considered in this paper), explicit detuning
terms e±i�t could be added to (2).

As the atom is assumed to be a two-level atom, the
total system state, at any given time, can be written as
|ψ〉 = |ψe〉|e〉 + |ψg〉|g〉, where |e〉 and |g〉 are the atomic
excited and ground states, respectively, and |ψe〉 and |ψg〉
are the corresponding field states. Defining a new coupling
constant between the atom and the field as � = g2/2 (with the
dimensions of frequency), the equations of motion for these
field states are

d

dt
|ψe〉 = −

√
2�A(t)|ψg〉 (3)

d

dt
|ψg〉 =

√
2�A†(t)|ψe〉. (4)

In what follows we will assume that the atom is initially in the
ground state. By integrating Eq. (4) and substituting in (3) one

arrives at

d

dt
|ψe〉 = −�|ψe〉 − 2�

∫ t

−∞
dt ′A†(t ′)A(t)|ψe〉

−
√

2�A(t)|ψg(0)〉 (5)

after the commutator [A(t),A†(t ′)] = δ(t − t ′) is used to put
the equation in normal order (note that only half of the δ

function contributes, since the upper limit of integration is the
point t ′ = t itself). Again, Eq. (5) can be formally integrated
(using e�t as an integrating factor) and substituted into itself
to yield

|ψe〉 = −
√

2�

∫ t

−∞
dt ′e−�(t−t ′)A(t ′)|ψg(0)〉 − 2�

∫ t

−∞
dt ′

×
∫ t ′

−∞
dte−�(t−t ′)A†(t)A(t ′)|ψe(t)〉. (6)

This may be regarded as the beginning of a recursive
solution that will eventually truncate if the initial state |ψg(0)〉
has a finite number of photons. The way to ensure this
is, at every step of the iteration, to use the commutator
[A(t),A†(t ′)] = δ(t − t ′) to put the expression in normal order.
An essential point is that the δ functions turn out to be nested
deep enough in the integral to give a vanishing contribution;
that is, they produce terms that are only nonzero at one point,
and thus have an integral of zero. As a result of this, there
is only one new term at each step of the iteration, which, at
the kth step, has k lowering operators acting directly on the
initial state. Once k = N , the total number of excitations in the
system, any successive terms will vanish. The first few terms
of the series are given below.

|ψe〉 = −
√

2�

∫ t

−∞
dt1e

−�(t−t1)A(t1)|ψg(0)〉 + (2�)3/2
∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3e

−�(t−t1)e−�(t2−t3)A†(t2)A(t1)A(t3)|ψg(0)〉

− (2�)5/2
∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3

∫ t3

−∞
dt4

∫ t4

−∞
dt5e

−�(t−t1)e−�(t2−t3)e−�(t4−t5)A†(t2)A†(t4)A(t1)A(t3)A(t5)|ψg(0)〉 + . . . .

(7)

The coefficient on the kth term is given by (2�)k+ 1
2 (−1)k+1. Each successive term will have an integral with an extra

A†(tk)e−�(tk−tk+1)A(tk+1). This can in principle be used to generate terms for any arbitrary |ψg(0)〉.
By substituting Eq. (7) into (4) and integrating one can express the final state of the field after all interaction with the atom

has ceased (and the atom is, therefore, back to the ground state) as

|ψg(∞)〉 = |ψg(0)〉 − 2�

∫ ∞

−∞
dt

∫ t

−∞
dt1e

−�(t−t1)A†(t)A(t1)|ψg(0)〉

+ (2�)2
∫ ∞

−∞
dt

∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3e

−�(t−t1)e−�(t2−t3)A†(t)A†(t2)A(t1)A(t3)|ψg(0)〉

− (2�)3
∫ ∞

−∞
dt

∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3

∫ t3

−∞
dt4

∫ t4

−∞
dt5e

−�(t−t1)e−�(t2−t3)e−�(t4−t5)

× A†(t)A†(t2)A†(t4)A(t1)A(t3)A(t5)|ψg(0)〉 + . . . . (8)

This equation may be used to get, in a very straightforward
way, a full description of the state of the scattered field, as
shown in Sec. II B.

B. Space-time description of a traveling two-photon field

For most of this paper we will restrict ourselves to two-
photon fields, but essentially everything we present here can
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be generalized to pulses with larger photon numbers in a
straightforward way. We also start by considering traveling-
wave fields, but the following section will show how standing
wave fields can be dealt with as well.

For a traveling-wave multimode field in one dimension, the
positive-frequency part of the electric field operator can be
written as

E(+)(τ ) = Ee−iω0τ

∫
e−iωτ aω = Ee−iω0τ

√
2π A(τ ), (9)

where τ = t ± x/c, depending on the wave’s direction of
travel, and E = √

�ω0/2ε0; here ω0 is the field’s central
frequency (we assume the field to be narrow band enough to
ignore the dependence of E on ω), and, as above, ω represents
a deviation from this central frequency. It is well known [15]
that, for such a field, the probability P (τ1,τ2) to detect two
photons at the space-time points τ1 and τ2 is proportional to

P (τ1,τ2) ∝ ‖E(+)(τ1)E(+)(τ2)|ψ〉‖2 ∝ ‖A(τ1)A(τ2)|ψ〉‖2.

(10)
The most general two-photon state is given by

|ψ〉 = 1√
2

∫ ∫
dω1dω2f̃ (ω1,ω2)a†

ω1
a†

ω2
|0〉, (11)

where without loss of generality we can assume the function
f̃ (ω1,ω2) to be symmetric in ω1,ω2. We also assume the
integral of |f̃ |2 is equal to 1. The action of A(τ1)A(τ2) on
this state is easily seen to be

A(τ1)A(τ2)|ψ〉 =
√

2f (τ1,τ2)|0〉, (12)

where

f (t1,t2) = 1

2π

∫ ∫
e−i(ω1t1+ω2t2)f̃ (ω1,ω2) dω1dω2 (13)

is the two-dimensional Fourier transform of f (ω1,ω2) (and
may also be assumed to be symmetric in t1, t2). This makes
the probability P (τa,τb) of Eq. (10) directly proportional to
|f (τa,τb)|2, which means that f (τa,τb) may be taken to be
an effective two-photon wave function. The fact that photons
do not strictly have wave functions in the Schrödinger sense
means, primarily, that Eq. (10) is not an exact, fundamental
result, but rather an approximation valid under certain condi-
tions for certain kinds of photodetectors [16]; nonetheless, it is
clear that the function f (t1,t2) does contain all the information
on the field state, regardless of whether its square can serve as
a probability distribution or not.

In terms of f (t1,t2), the state (11) can be written as

|ψ〉 = 1√
2

∫ ∫
dt1dt2f (t1,t2)A†(t1)A†(t2)|0〉. (14)

For the scattering problem that we introduced in the previous
subsection, where the atom was implicitly assumed to be
located at z = 0, the function f0(t1,t2) may be taken to describe
the incoming field evolution at the atom’s position, as a
function of time. The outgoing field space-time wave function
can then be obtained directly from Eq. (8) as follows. Direct
substitution, and use of [A(t),A†(t ′)] = δ(t − t ′), yields

|ψg(∞)〉 = 1√
2

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2f0(t1,t2)A†(t1)A†(t2)|0〉 − 2

√
2 �

∫ ∞

−∞
dt

∫ ∞

−∞
dt ′

∫ t

−∞
dt1e

−�(t−t1)f0(t1,t
′)A†(t)A†(t ′)|0〉

+ 4
√

2 �2
∫ ∞

−∞
dt

∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3e

−�(t−t1)e−�(t2−t3)f0(t1,t3)A†(t)A†(t2)|0〉. (15)

In this expression, the first two terms already have the desired
form (the integral over t1 in the second term provides the
desired function of t,t ′). The third term can be handled by
introducing the � function �(t1 − t2) to extend the t2 integral
to +∞, as a result of which the lower limit of the t1 integral
becomes equal to t2 [with the understanding that t2 must be less
than t , which can be enforced explicitly by introducing another
� function, �(t − t2)]. With this, and a suitable relabeling of
the integration variables, the final result is seen to be of the
form (14), with

f (t1,t2) = f0(t1,t2) + f1(t1,t2) + f2(t1,t2)

f1(t1,t2) = −4�

∫ t1

−∞
e−�(t1−t ′)f0(t2,t

′) dt ′

f2(t1,t2) = −2��(t1 − t2)
∫ t1

t2

e−�(t1−t ′)f1(t2,t
′) dt ′

= 8�2�(t1 − t2)
∫ t1

t2

dt ′e−�(t1−t ′′)

×
∫ t2

−∞
dt ′′e−�(t2−t ′)f0(t ′′,t ′). (16)

In obtaining this result, use has been made of the symmetry
assumed for f0; although the solutions (16) for f1 and f2 do
not themselves exhibit such a symmetry, one could certainly
replace the expressions given by appropriately symmetrized
ones.

The result (16) for f1 is easy to interpret. It corresponds
to a process in which one of the photons (the one indexed
by the second argument, t2) does not interact with the atom,
whereas the other one, detected at t1, was absorbed by the
atom at an earlier time t ′ (and is reemitted at the time t1
through an exponential decay rate �). The f2 term, on the
other hand, involves two such processes, but its form is a
bit less transparent, so we will look at it in detail only for the
simpler case in which the initial state of the field is unentangled
(i.e., a product state).

Let, then, the initial state of the field be of the form (14) with
f0(t1,t2) = f0(t1)f0(t2) (two uncorrelated but identical initial
wave packets). Defining the function

G(t) = e−�t

∫ t

−∞
e�t ′f0(t ′)dt ′ (17)
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[which is directly proportional to the single-photon excitation
probability amplitude, as given by the first term in (7)], the
result (16) reduces to

f (t1,t2) = f0(t1)f0(t2) − 4�f0(t2)G(t1) + 8�2�(t1 − t2)

× [G(t1)G(t2) − e−�(t1−t2)G2(t2)] (18)

[the last two terms come from splitting the integral from t2
to t1 in (16) into

∫ t1
−∞ − ∫ t2

−∞]; or equivalently, in explicitly
symmetric form,

f (t1,t2) = [f0(t1) − 2�G(t1)][f0(t2) − 2�G(t2)]

− 4�2e−�|t1−t2|G2(t<), (19)

where t< is the smallest of t1,t2.
While the first term in Eq. (19) shows an explicitly factor-

izable state, the second one corresponds to a time-entangled
(or frequency-entangled) state, which has been called a bound
(as opposed to scattering) state by Shen and Fan [1] (it already
appears in the work of Kojima et al. [9], where it is referred to
as a nonlinear term). The idea is that, although the photons in
such a state are (obviously) traveling away from the atom, they
are still bound to each other in some sense. To be precise, the
main characteristic of the bound state, as shown by Eq, (19),
is that the probability to detect the photons separated by a
time τ decreases exponentially with τ . In the one-directional
geometry first considered by Shen and Fan (and which we
are implicitly assuming in this section as well), this would
naturally result in an exponential decrease of the two-photon
wave function with the separation distance, which is what one
expects from a bound state of two material particles.

We note that there has been a fair amount of research on
two-photon bound states in other systems [17–19], and also a
recent experimental demonstration [20]. We do not quite think
the bound state in Eq. (19) belongs in this company; in fact,
as we shall see in the next section, in the bidirectional case the
two photons in this “bound” state could be detected arbitrarily
far apart. In what follows, we shall refer to it as the entangled
component of the scattering state,

fent(t1,t2) ≡ −4�2 e−�|t1−t2|G2(t<). (20)

The strong correlation between the photons in this entangled
component has been explained in Ref. [2] as resulting from the
fact that they arrive at the atom sufficiently close in time for
the first one to be absorbed and the second one to stimulate its

reemission. The explicit form (20) suggests some nuances that
are not perhaps entirely captured by this explanation. Note that
the excitation probability amplitude G(t) is evaluated twice
with the same time argument, which suggests that the two
photons are exciting the atom essentially simultaneously, at the
earlier of the two times t1 and t2 (so one might as well speak of
stimulated absorption as of stimulated emission here), and the
only reason they may be detected at different times appears to
be the finite lifetime, 1/�, of the excited state.

We note also that a two-photon state described by a wave
function of the form (20) can be seen as an instance of the
time-entangled states considered by Franson [21], themselves
very similar to the original Einstein-Podolsky-Rosen
states [22]; the two properties that become simultaneously
well defined in this state, as � → ∞, are the total energy,
proportional to ω1 + ω2 [see the expression (A5) in
Appendix A], and the difference of the emission times t1 − t2.
In the following sections we will show a number of schemes
that may allow one to isolate this particular component of the
state, at least in a conditional sense.

C. Higher photon numbers and extensions

Clearly, our fundamental result (8) can be used, along the
same lines we have just shown, to deal with fields containing
more than two photons, and derive explicit forms for the
corresponding N -photon wave functions after interaction with
the atom. In fact, with some care, one may even derive
expressions for these quantities during the interaction, by
making the upper limit of the outermost integrals in (8) equal
to an arbitrary time rather than +∞ [note, however, that while
the interaction is happening the full state of the field also has a
component associated with the atom being in the excited state,
given by Eq. (7)] [23].

We shall not pursue these extensions in this paper, but we
wish to mention here a possible simplification and an addi-
tional example. For an initial factorizable state that consists of
N photons with identical wave packets, one may define

|N〉 = 1√
N !

(∫
f̃0(ω)a†

ω dω

)N

|0〉, (21)

in which case it is easy to see that A(t)|N〉 =√
N f0(t)|N − 1〉. With this, repeated integration by parts

allows one to cast the result (8) in the more compact form

|ψg(∞)〉 = |N〉 − 2�
√

N

∫ ∞

−∞
dt1 G(t1)A†(t1)|N − 1〉 + (2�)2

√
N (N − 1)

∫ ∞

−∞
dt1

∫ t1

−∞
dt2(G(t1)

− e−�(t1−t2)G(t2))G(t2)A†(t1)A†(t2)|N − 2〉 − (2�)3
√

N (N − 1)(N − 2)
∫ ∞

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3(G(t1)

− e−�(t1−t2)G(t2))
(
G(t2) − e−�(t2−t3)G(t3)

)
G(t3)A†(t1)A†(t2)A†(t3)|N − 3〉 + . . . . (22)

From this, one can read directly the final N -photon wave function for any initial state |N〉, in nonsymmetric form (i.e., involving
� functions). As an explicit example, the (partially symmetrized) result for N = 3 can be written as

f (t1,t2,t3) =
3∏

i=1

[f0(ti) − 2�G(ti)] − (2�)2
3∑

i=1

f (ti)e
−�|tj −tk |G2[min(tj ,tk)]

+ (2�)3
√

6[e−�(t2−t3)G(t1)G2(t3) − e−�(t1−t3)G(t2)G2(t3) + e−�(t1−t2)G2(t2)G(t3)]�(t1 − t2)�(t2 − t3). (23)

063807-4



QUANTUM MULTIMODE TREATMENT OF LIGHT . . . PHYSICAL REVIEW A 93, 063807 (2016)

Here, the first two terms are straightforward generalizations
of the N = 2 case: the first one represents three independent
one-photon processes where each photon has a probability
amplitude of exciting or not exciting the atom (proportional
to G and f0, respectively), whereas the second term gives the
two-photon excitation processes leading to entangled states
like (20), only in the presence of a spectator photon. The last
term, which has not been symmetrized, involves nonseparable
(because of the � functions) three-photon excitations.

III. BIDIRECTIONAL WAVEGUIDE WITH A
TWO-PHOTON INPUT

A. General formalism

In this section, we return to the two-photon case but
consider a bidirectional waveguide, for which we introduce
operators A(t) and B(t) to represent the sets of modes traveling
in opposite directions. We take the underlying aω and bω

operators to correspond to a spatial dependence eiωx/c (modes
traveling to the right), and e−iωx/c (modes traveling to the left),
respectively. At the atom’s location, say x = 0, these modes
overlap with a definite relative phase. The Hamiltonian will be

H = −i�gσ+[A(t) + B(t)] + i�gσ−[A†(t) + B†(t)]. (24)

This can be put in the same form as the unidirectional
case (1) by introducing the standing wave operators cω =
(aω + bω)/

√
2 and dω = (aω − bω)/

√
2, since it is clear

from (24) that the atom will only interact with the c-type
operators. In terms of their multimode counterparts C(t) =

1√
2
[A(t) + B(t)] and D(t) = 1√

2
[A(t) − B(t)], we have

H = −i�g
√

2(σ+C(t) − σ−C†(t)). (25)

This has the same form as (1) except for a
√

2 factor, so if
we just define � = g2 here, the same general solution (8) for
the final field state will apply, only with A replaced by C

throughout.
We will explicitly consider only initial unentangled states

with M right-traveling and N left-traveling photons, in
identically shaped wave packets, as follows:

|ψg(0)〉 = |M,N〉 ≡ 1√
M!N !

(∫
f̃0(ω)a†

ω dω

)M

×
(∫

f̃0(ω)b†ω dω

)N

|0,0〉. (26)

As in Sec. II B above, the function f̃0(ω) gives the pulse’s spec-
trum, and its Fourier transform, f0(t) = 1√

2π

∫
f̃ (ω)e−iωt dω,

the pulse’s shape in the time domain. It is easy to verify that
the action of C(t) on the state (26) is

C(t)|M,N〉 = f0(t)√
2

(√
M|M − 1,N〉 +

√
N |M,N − 1〉).

(27)
This can be used to work with the solution (8), as shown below.

B. Two photons arriving from the same direction
(M = 2,N = 0)

Consider first an initial state of two identical right-traveling
photons, |ψg(0)〉 = |2,0〉. Substituting this into the equivalent

of Eq. (8), with the operators A,A† replaced by C,C†, and
using the result (27), we obtain

|ψg(∞)〉 = |2,0〉 − 2�

∫ ∞

−∞
dtG(t)C†(t)|1,0〉 + 2

√
2�2

×
∫ ∞

−∞
dt

∫ t

−∞
dt ′G(t ′)[G(t)

− e�(t ′−t)G(t ′)]C†(t)C†(t ′)|0,0〉 (28)

in terms of the function G of Eq. (17).
We may now rewrite the C† operators, and also the states

|2,0〉 and |1,0〉, in terms of A† and B†, with the result

|ψg(∞)〉 =
∫

dt1

∫
dt2

(
1√
2

fa2,0 (t1,t2)A†(t1)A†(t2)

+ 1√
2

fb2,0 (t1,t2)B†(t1)B†(t2)

+ fsplit2,0
(t1,t2)A†(t1)B†(t2)

)
|0〉, (29)

which shows a part involving two transmitted (a) photons,
a part involving two reflected (b) photons, and a split part,
containing one of each. The factors of 1/

√
2 arise from the

normalization introduced in Eq. (26) above. The corresponding
amplitudes are

fa2,0 (t1,t2)= [f0(t1)−�G(t1)][f0(t2)−�G(t2)]+ 1

4
fent(t1,t2)

fb2,0 (t1,t2)=�2G(t1)G(t2) + 1

4
fent(t1,t2) (30)

fsplit2,0
(t1,t2)=−

√
2 �[f0(t1)−�G(t1)]G(t2)+

√
2

4
fent(t1,t2).

Here, fa and fb are given in explicitly symmetric form, but
fsplit is asymmetric: the reflected photon (indexed by t2) has a
different pulse profile than the transmitted one.

Recalling that G(t) gives the single-photon probability
amplitude to excite the atom, the results (30) make sense
intuitively. For instance, the only way to get a reflected (b)
photon is to excite the atom (and then have the photon be
emitted into the left-traveling mode), whereas a transmitted
(a) photon may (the G term) or may not (the f0 term)
result from an excitation event. Note that the entangled
component contributes to all the possible outcomes, and
so, in particular, for the split case one may find the two
photons described by this term very far apart, provided only
|τ1 − τ2| = |t1 − t2 − x1 − x2| is sufficiently small.

For an initial Gaussian wave packet defined by

f0(t) = 1√
T

√
2π

e−t2/4T 2
(31)

the function G(t) is given by [24]

G(t) = 4

√
π

2

√
T e�2T 2

e−�t

[
erf

(
t

2T
− �T

)
+ 1

]
. (32)
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FIG. 1. The probabilities to find the two photons in the right-
traveling modes, left-traveling modes, or one left and one right mode,
after interacting with the atom, as a function of �σt for the Gaussian
pulse (solid line) and the flat-top pulse (dashed line).

We have also carried out calculations with a smooth square (or
flat-top) pulse defined by

f0(t) = 1

2
√
N

(erf[a(t − t0)] − erf[a(t − T − t0)]), (33)

where the normalization factor is

N = 1

a

√
2

π

(
e−a2T 2/2 − 1

) + T erf

(
aT√

2

)
. (34)

Here, the parameter a (which we set equal to 1 in what follows)
gives the rate at which the pulse rises, and T gives the pulse’s
approximate width. A more precise definition of the width,
which allows for a fair comparison to the Gaussian pulse, is
provided by the standard deviation σt ≡ [

∫
dtf 2(t)t2]

1/2
. As

will be shown, using this gives comparable results for the two
kinds of pulses as a function of the dimensionless coupling
parameter �σt . For the Gaussian pulse, one just has σt = T ,
whereas for the flat-top pulse we find σt 
 0.283T − 0.098
for T greater than about 5.

For the flat-top pulse the function G(t) can also be
calculated analytically:

G(t) = e−�t

2�
√
N

[
e�(4a(t0+T )+�)/4a2

erfc

(
�

2a
− a(t − t0 − T )

)

− e�(4at0+�)/4a2
erfc

(
�

2a
−a(t−t0)

)]
+ f0(t)

�
. (35)

For any pulse shape, the norm of each of the components in
Eq. (30) (fa2,0 , fb2,0 , or fsplit2,0

) reflects the overall probability of
the corresponding process. Figure 1 shows these probabilities
for both kinds of pulses, plotted against the dimensionless
coupling parameter �σt [25].

As the figure shows, for sufficiently large coupling strength
or pulse duration both photons will be reflected with a
probability that approaches one. On the other hand, for a
small-coupling regime or a medium pulse width we have that
there is a maximum probability of .669 for the photons to be
split equally among both directions of the waveguide. Finally,
for very small coupling or for short pulses we see that the
photons tend to be transmitted through the waveguide with
probability that approaches one.

Besides looking at these overall transmission and reflection
probabilities, we can use the amplitudes of the components in
Eq. (30) to look at the photon detection probabilities at specific
space-time points τ1,τ2, as explained at the beginning of
Sec. II B. The squares of the two-time amplitudes give directly
the two-photon detection probabilities, whereas the single-
photon detection probabilities can be calculated as follows:

Pa(τ ) ∝ ‖E(+)(τ )|ψ〉‖2 ∝ ‖A(τ )|ψ〉‖2

∝
∥∥∥∥
√

2
∫ ∞

−∞
dτ ′ fa(τ,τ ′)A†(τ ′)|0〉

+
∫ ∞

−∞
dτ ′ fsplit(τ,τ

′)B†(τ ′)|0〉
∥∥∥∥

2

∝
∫ ∞

−∞
dτ ′ (2|fa(τ,τ ′)|2 + |fsplit(τ,τ

′)|2) (36)

(and similarly for the reflected modes). The results are shown
in Figs. 2 and 3 below, for a Gaussian pulse.

As expected from the results in Fig. 1, in the weak-coupling
regime the photons are primarily transmitted and in the
strong-coupling regime they are nearly always reflected.

FIG. 2. Contour plot and 3D plot of 〈A†A〉 (in units of 1/T ) for an input Gaussian pulse as a function of � and space-time position along
the pulse, τ . Note the expanded range of � in the plot on the right.
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FIG. 3. Contour plot and 3D plot of 〈B†B〉 (in units of 1/T ) for an input Gaussian pulse as a function of � and space-time position along
the pulse, τ . Note the expanded range of � in the plot on the right.

There is also some amount of pulse distortion, which is most
pronounced for relatively small coupling, of the order of
�T ∼ 0.1–0.4 for the reflected pulse. In this region, the pulse
widens, at some point even displaying a double maximum,
and correspondingly the probability density as a function of
τ goes down.

The results for a flat-top pulse are shown in Figs. 4 and 5
below.

The flat-top pulse behaves in much the same way as the
Gaussian pulse, although the change in shape is perhaps more
pronounced. For large values of �σt , both the reflected and
transmitted pulses become again nearly square, but for smaller
values the square shape is almost completely lost, especially
for the transmitted pulse.

Further insight is obtained from a look at the two-photon
detection probabilities, shown for the Gaussian pulse in Fig. 6.
These are calculated as indicated at the beginning of Sec. II B
[see in particular Eq. (10)], only separately for the three scenar-
ios considered, that is, as proportional to ‖A(τ1)A(τ2)|ψ〉‖2,
‖A(τ1)B(τ2)|ψ〉‖2, and ‖B(τ1)B(τ2)|ψ〉‖2, respectively [26].
Note that the first and third of these are proportional to
2|fa|2 and 2|fb|2, whereas the second one is proportional to
|fsplit|2 only, without the factor of 2. This follows immediately
from Eq. (12) and its equivalent with A(τ1)A(τ2) replaced
by A(τ1)B(τ2). Hence, in order to properly compare the final
probability distributions, we should either multiply |fa|2 and

|fb|2 by 2 or divide |fsplit|2 by 2, and we have adopted the latter
approach for simplicity.

As can be seen, for small �T , when the pulse is primarily
transmitted or split, the two-photon detection probabilities
show a relatively large component that is delayed in time;
for the split case, this is associated primarily with the reflected
photon. The delay becomes less significant as the coupling
increases, or alternatively as the pulse becomes longer (in-
creasing �T ). As this happens, the detection probability for
two reflected (B) photons, consisting of two components
symmetrically delayed relative to the original pulse, increases,
while the other two distributions become narrower. For very
large �T , the split and transmitted modes exhibit very sharply
bunched peaks, whereas the probability of two reflected
photons comes to resemble the original pulse, only with a
thin slice cut out, which is indicative of antibunching, as
fb(τ,τ ) = 0. This is effectively due to destructive interference
between the entangled and unentangled components of fb

[compare Eqs. (30) and (20), with t1 = t2].
The corresponding probabilities for the flat-top pulse are

plotted in Fig. 7.
Although this figure shows a pattern similar to the one ex-

hibited in Fig. 6, the presence of relatively well-defined edges
makes a clear difference. Features such as the ones exhibited
in Fig. 6(d) tend now to spread along or concentrate at the
(trailing) edges [as in Fig. 7(a) or Fig. 7(d)]. Figure 7(g) shows

FIG. 4. Contour plot and 3D plot of 〈A†A〉 (in units of 1/σt ) for an input flat-top pulse as a function of � and space-time position along the
pulse, τ . Note the expanded range of � in the plot on the right.

063807-7



WILLIAM KONYK AND JULIO GEA-BANACLOCHE PHYSICAL REVIEW A 93, 063807 (2016)

FIG. 5. Contour plot and 3D plot of 〈B†B〉 (in units of 1/σt ) for an input flat-top pulse as a function of � and space-time position along the
pulse, τ . Note the expanded range of � in the plot on the right.

a definite tendency for the two reflected photons to be detected
near one or the other edge of the pulse, whereas Figs. 7(h)
and 7(k) show that although there is a large probability to
find the two photons approximately together somewhere inside
the pulse, there is also an appreciable probability to find the
transmitted photon inside and the reflected one near the edge of
the pulse. (Compare these results with the similar edge effects
predicted for sharp square pulses in Ref. [9].)

C. Two photons arriving from opposite directions
(M = 1,N = 1)

Instead of a two-photon pulse traveling from either the right
or left, we may also consider the case in which one photon
comes in from the right and another from the left, a situation
that has recently been described by Roulet et al. as two photons
incident on an atomic beam splitter [8] (see also Ref. [12]).
This initial state can be expressed as

|1,1〉 =
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 f0(t1)f0(t2)A†(t1)B†(t2)|0,0〉

= 1

2

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 f0(t1)f0(t2)(C†(t1)C†(t2)

− D†(t1)D†(t2))|0,0〉. (37)

The lack of cross terms makes this state’s evolution particularly
simple: the final result will be equivalent to a unidirectional
waveguide transformation for the C modes, plus the D

component unchanged. When written back in terms of the
A and B modes, the result is:

fa1,1 (t1,t2) = fb1,1 (t1,t2) = 1√
2

(
−�G(t1)[f0(t2)−�G(t2)]

− [f0(t1) − �G(t1)]�G(t2) + 1

2
fent(t1,t2)

)

fsplit1,1
(t1,t2) = [f0(t1) − �G(t1)][f0(t2) − �G(t2)]

+�2G(t1)G(t2) + 1

2
fent(t1,t2). (38)

The second of these terms,fsplit1,1
, has been studied in consid-

erable detail in Ref. [8].
When the result (38) is compared to the |2,0〉 case

[Eqs. (30)], one can see that the case where the two photons

leave in the same direction in (38) is actually the sum of two
symmetric split processes from (30), which makes sense, since
those represented processes in which one photon was reflected
and the other one transmitted. Similarly, the split case in (38) is
actually the sum of the two reflected and two transmitted cases
in (30), which also makes sense, since these are the processes
that lead to a split scenario for the |1,1〉 state. These results
are perhaps easiest to see from the frequency-domain formulas
shown in Appendix A.

Note, however, that the addition of the various alternatives
happens at the level of the probability amplitudes, and so the
actual total probabilities of the various processes are not, in
general, additive. This can be seen from Fig. 8 below, which
shows the probabilities calculated from (38). The probability
of a split scenario in Fig. 8 is not simply equal to the sum of
the probabilities for two reflections and two transmissions in
Fig. 1, although it is qualitatively similar (and vice versa).

Specifically, we see that for both strong and weak coupling
(or long and short pulses) the most likely outcome is that one
photon leaves the waveguide in each path. The probability for
two photons to leave in the same direction peaks at �T =
.586 (for the Gaussian pulse) with a value of .444 for each
direction, or .888 total; correspondingly, the probability to find
one photon in each arm reaches a minimum of .111 at the same
point. It is somewhat interesting that, while the two-level atom
may act like a perfect mirror for two photons approaching from
the same direction (large-coupling limit in Fig. 1), it comes
close to but never quite acts as a perfect 50-50 beam splitter
when two photons approach from opposite directions, since
such a beam splitter would always send both photons out along
the same direction [27]. (We note, however, that very recently
Roulet et al. have shown that this kind of behavior is, in fact,
exhibited for this system for an appropriate detuning [8].) As
before, the two kinds of pulses considered yield very similar
results when �σt is adopted as a measure of the coupling
strength.

As in Sec. III B, we may expand this picture by looking
at the space-time dependence of the photon detection prob-
abilities. Clearly, for single-photon detection the result (36)
will again apply, only with the appropriate functions fa and
fsplit. In this case, because of the symmetry of the initial state,
there is no difference between the single-photon detection
probabilities in the right-traveling versus the left-traveling
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FIG. 6. Probabilities for detecting two photons in the A modes (both transmitted, leftmost column), B modes (both reflected, rightmost
column), or one in each (middle column, where the index τ1 labels the transmitted, and τ2 the reflected, photon). � is as labeled. Note that the
scale is not the same for each image, but the dotted circle indicates in each case the area of the initial pulse. The density scale is in units of 1/T 2.

modes. These probabilities are plotted for the Gaussian in
Fig. 9 and for the flat-top pulse in Fig. 10. Again there is a dip
and a broadening of the pulse around the same values of �σt

as in the M = 2,N = 0 case.

The two-photon detection probabilities are plotted in Fig. 11
for the Gaussian pulse, and in Fig. 12 for the flat-top pulse.

Looking at the Gaussian case first, we see that the effect on
the pulse for this case is very similar to that of the M = 2,N =
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FIG. 7. The same as for Fig. 6, but for a smooth square pulse. Note that the dotted square corresponds to the area of the initial pulse in all
images. The density scale is in units of 1/σ 2

t .

0 case, with the primary difference being the approximate
switching of probabilities between the split case and the sum
of the other two. For small coupling, the split mode reproduces
the incoming pulse. As � increases, the two-reflected and two-
transmitted probabilities become, for a while, the dominant

processes, while the split mode probability develops a shape
similar to the transmitted pulse in Fig. 6(d). In the large �T

limit, on the other hand, we again find two highly bunched
probability distributions, this time for the two-reflected and
two-transmitted cases, and an antibunched one for the split
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FIG. 8. The probabilities of the various outcomes upon interact-
ing with the atom as a function of �σt for the Gaussian pulse (solid
line) and the flat top pulse (dashed line). Note that the probabilities
for the two photons to end in the left and right modes are equal and
thus on top of one another in this plot.

case, although unlike in the previous subsection the latter does
not go all the way to zero at τ1 = τ2. (See the analytical results
in Sec. III D.)

The flat-top pulse results again show pronounced edge
effects, but now, because of the initial symmetry of the
problem, there is no difference between the transmitted and
the reflected photon.

As before, some of these results may be found in recent
works as well. The reader is invited to compare the rightmost
picture on the top row of Fig. 6 of Ref. [12] to a combination of
our Figs. 11(g)–11(i), whereas the top row of Fig. 7 of Ref. [8]
corresponds essentially to the middle column of our Fig. 12.

D. Adiabatic approximation

In order to better understand many of the results we have
presented above, it is useful to consider the adiabatic limit,
namely, the case of a long pulse. For the Gaussian pulse, the
only timescale that T can be compared to is provided by 1/�,
so to express the requirement that T be large we must require
�T  1; accordingly, for this problem, the adiabatic limit can
also be thought of as the strong-coupling limit.

In general, the function G(t) can be expressed in terms
of the derivatives of f (t) by repeatedly integrating Eq. (17)
by parts, with dv = e�t ′dt ′ and u = f (i)(t). This yields the

FIG. 9. Contour plot and 3D plot of 〈A†A〉 or 〈B†B〉 (in units of 1/T ) for an input Gaussian pulse as a function of � and space-time
position along the pulse, τ . Note the expanded range of � in the plot on the right.

FIG. 10. Contour plot and 3D plot of 〈A†A〉 or 〈B†B〉 (in units of 1/σt ) for an input flat top pulse as a function of � and space-time position
along the pulse, τ . Note the expanded range of � in the plot on the right.
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FIG. 11. Probabilities for detecting two photons in the A modes (both transmitted, leftmost column), B modes (both reflected, rightmost
column), or one in each (middle column). � is as labeled. Note that the scale is not the same for each image, but the dotted circle indicates in
each case the area of the initial pulse. The density scale is in units of 1/T 2.

following series:

G(t) ≈
n∑

i=0

(−1)i

�i+1
f (i)(t). (39)

For a simple pulse like the Gaussian we expect each derivative
with respect to t to bring down a factor of 1/T . Hence, in
the adiabatic, or strong-coupling, regime, we may neglect the
higher-order terms and keep only the first few, say up to n = 1.
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FIG. 12. The same as for Fig. 11, but for a smooth square pulse. Note that the dotted square corresponds to the area of the initial pulse in
all images. The density scale is in units of σ 2

t .

In that case,

G(t) ≈ f (t)

�
− f ′(t)

�2
(40)

and the entangled term of Eq. (20) becomes

fent(t1,t2) ≈ 4f (t<)e−�|t1−t2|
(

2f ′(t<)

�
− f (t<)

)
. (41)

063807-13



WILLIAM KONYK AND JULIO GEA-BANACLOCHE PHYSICAL REVIEW A 93, 063807 (2016)

With this, for the M = 2,N = 0 case we can express
Eqs. (30) as

fa2,0 (t1,t2) ≈ fent(t1,t2)

4
(42)

fb2,0 (t1,t2) ≈ f (t1)f (t2) − f (t1)f ′(t2)

�

− f (t2)f ′(t1)

�
+ fent(t1,t2)

4
(43)

fsplit2,0
(t1,t2) ≈ −

√
2

�
f (t1)f ′(t2) +

√
2

4
fent(t1,t2). (44)

From Eqs. (42) and (44) is clear that as � becomes very large,
the entangled component of the wave function is responsible
for the strong bunching effects in the transmitted and split
modes. In particular, Figs. 6(j), 6(k) and 7(j), 7(k) show,
essentially, the two-photon detection probability associated
with this entangled component. Observation of the entangled
state is therefore possible, in principle, in this system, most
easily by selecting for events where both photons are detected
in the transmitted channel.

On the other hand, Eq. (43) shows how the reflected mode
closely reproduces the initial pulse, as the first term is just the
input spectrum and the derivative terms will be small if � is
large. There is, however, a missing piece to the pulse, as is
apparent from Figs. 6(l) and 7(l), again because of the entan-
gled component (41); in fact, it is clear from these equations
that, no matter how large � becomes, the pulse will always be
maximally antibunched (fb2,0 = 0), when t1 = t2, although the
width of this slice does decrease with increasing �.

The results (42)–(44) also explain, at least mathematically,
the edge effects observed in Fig. 7 for the flat-top pulse. Indeed,
for this kind of pulse, f ′(t) is maximum around the pulse’s
edge [consider Eq. (33) with aT  1], and so a term such
as f (t1)f ′(t2)/� in Eq. (44) yields precisely what Fig. 7(k)
shows: the photon described by the argument t1 (or τ1 in the
figure) is most likely to be located anywhere inside the pulse,
but the one described by t2 (τ2) has a significant probability to
be found at the pulse’s edge.

Similarly, for the M = 1,N = 1 case we have the following
approximations:

fa1,1 (t1,t2) = fb1,1 (t1,t2) ≈ 1√
2

[
− f (t1)f ′(t2)

�

− f (t2)f ′(t1)

�
+ fent(t1,t2)

2

]
(45)

fsplit1,1
(t1,t2) ≈ f (t1)f (t2) − f (t1)f ′(t2)

�

− f (t2)f ′(t1)

�
+ fent(t1,t2)

2
. (46)

Now the entangled component dominates, for large enough
coupling, the reflected and transmitted modes, and it is the
split modes that reproduce the initial spectrum with a dip at
t1 = t2. Note, however, that, since there is a factor of 1

2 rather
than 1

4 on the fent term, the function fsplit1,1
(t1,t2) does not go

all the way to zero at t1 = t2.

By using Eqs. (42)–(46) we can also approximate to order
1/� the single detection probability for |ψ0〉 = |2,0〉 as

〈ψ |A†A|ψ〉 ≈ 2

�
f 4(τ ) (47)

〈ψ |B†B|ψ〉 ≈ f 2(τ ) + f 4(τ )

�
− 2

�
f (τ )f ′(τ ) (48)

and similarly when |ψ0〉 = |1,1〉 the single detection probabil-
ity becomes

〈ψ |B†B|ψ〉=〈ψ |A†A|ψ〉 ≈ f 2(τ )

2
+ 4

�
f 4(τ )− f (τ )f ′(τ )

�
.

(49)

IV. CONCLUSIONS

We have presented a formal solution for the evolution of
a quantized field interacting with a two-level atom in a
one-dimensional setting (waveguide) that is valid for an
arbitrary number of photons and directly yields expressions
for the outgoing N -photon wave functions, given an (also
arbitrary) input pulse. We have illustrated our results for the
case of a two-photon pulse, with examples for bidirectional
and unidirectional waveguides, and calculated the one- and
two-photon detection probabilities in the final state, explicitly,
for two kinds of input pulses, Gaussian and flat-top. We have
also derived simplified analytical results for the large-coupling
limit.

We believe that this method can be used to obtain useful
insights for a number of systems of interest in quantum optics
and quantum information, and intend to apply it to such
systems in the future.

APPENDIX A: FREQUENCY-DOMAIN RESULTS

In this Appendix we show how the basic result (8) can
alternatively be used to relate the output spectrum to the input
spectrum of a two-photon wave packet, which allows for an
easier comparison to some previous works.

Beginning with the unidirectional case, the double Fourier
transform of Eq. (16) (suitably symmetrized) yields the final
spectrum

f̃uni(ω1,ω2)= f̃0(ω1,ω2) − 2�

[
f̃0(ω1,ω2)

� − iω1
+ f̃0(ω1,ω2)

� − iω2

]

+ 4�2f̃0(ω1,ω2)

(� − iω1)(� − iω2)
− 2�2

π

[
1

� − iω1

+ 1

� − iω2

] ∫
dω′f̃0(ω′,ω1 + ω2 − ω′)

(� − iω′)(� − i(ω1 + ω2 − ω′)
(A1)

in terms of the original spectrum f̃0(ω1,ω2). Anticipating
the bidirectional case, we define transmission and reflection
coefficients tω and rω as

tω = iω

� − iω
(A2)

rω = �

� − iω
(A3)
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in terms of which the above result takes the more compact
form

f̃uni(ω1,ω2) = f̃0(ω1,ω2)(rω1 + tω1 )(rω2 + tω2 )

− 2�2

π

[
1

� − iω1
+ 1

� − iω2

]

×
∫

dω′f̃0(ω′,ω1 + ω2 − ω′)
(� − iω′)(� − i(ω1 + ω2 − ω′)

. (A4)

This is a general result, valid for an arbitrary initial state.
For an initially separable state [f̃0(ωa,ωb) = f̃0(ωa)f̃0(ωb)]
where the two photons are identical the last term in (A4) can
be expressed as a convolution:

f̃uni(ω1,ω2) = f̃0(ω1)f̃0(ω2)(rω1 + tω1 )(rω2 + tω2 )

− 2�2

π

[
1

� − iω1
+ 1

� − iω2

]

×
[(

f̃0(ω1 + ω2)

(�−i(ω1+ω2))

)
∗

(
f̃0(ω1 + ω2)

(�−i(ω1+ω2))

)]
,

(A5)

where the * represents the convolution between the functions
within the parentheses. The notation in Eq. (A5) is meant to
suggest that the result of the (one-dimensional) convolution is
a function of ω1 + ω2, as shown in Eq. (A4). This convolution
term is the bound or entangled component of the state,
in the frequency domain.

For the bidirectional case, initial state |2,0〉, the Fourier
transform of Eqs. (30) yields

f̃a2,0 (ω1,ω2) = tω1 tω2 f̃0(ω1)f̃0(ω2) + 1

4
f̃ent(ω1,ω2)

f̃b2,0 (ω1,ω2) = rω1rω2 f̃0(ω1)f̃0(ω2) + 1

4
f̃ent(ω1,ω2)

f̃split2,0
(ω1,ω2) =

√
2 tω1rω2 f̃0(ω1)f̃0(ω2) +

√
2

4
f̃ent(ω1,ω2).

(A6)

Note that they only differ by the factors in front of the first
term and that when � = 0 they reduce to a two-photon pulse
traveling to the right. The transmission and reflection coef-
ficients also correspond to the different processes occurring.
For example, f̃b2,0 represents two photons being transmitted
through the atom while f̃split2,0

represents one photon being
reflected and the other being transmitted. These equations have
exactly the same form as Eq. (22) in Ref. [2].

For the Gaussian wave packet defined by Eq. (31) the
entangled component of the spectrum is given by

f̃ent = −
4�2T

√
2
π

(� − iω1)(� − iω2)
e−((1+i)�+ω1+ω2)((−1+i)�+ω1+ω2)T 2

× erfc

[
T√

2
[2� − i(ω1 + ω2)]

]
. (A7)

For the flat-top pulse the entangled component is much
more complicated than for the Gaussian, but it may still be
computed analytically, with the result

f̃bound(ω1,ω2) = 2�e−(ω1+ω2)(2i�+ω1+ω2−4ia2t0)/4a2

πN (� − iω1)(� − iω2)(� − i(ω1 + ω2))

{
e�2/2a2

[
(1 + eiT (ω1+ω2)) erfc

(
2� − i(ω1 + ω2)

2
√

2a

)

− e�T erfc

(
2a2T + 2� − i(ω1 + ω2)

2
√

2a

)
+ e−�T +iT (ω1+ω2)

(
erfc

(
2a2T − 2� + i(ω1 + ω2)

2
√

2a

)
− 2

)]

− (2i� + ω1 + ω2)ei�(ω1+ω2)/2a2

ω1 + ω2

[
erf

(
2a2T − i(ω1 + ω2)

2
√

2a

)

− eiT (ω1+ω2)erf

(
2a2T + i(ω1 + ω2)

2
√

2a

)
+ i

(
1 + eiT (ω1+ω2)

)
erfi

(
ω1 + ω2

2
√

2a

)]}
. (A8)

For two pulses coming from opposite directions, we find

f̃a1,1 (ω1,ω2)=f̃b1,1 (ω1,ω2)= 1√
2

(
(rω1 tω2 +rω2 tω1)f̃0(ω1)f̃0(ω2)

+ 1

2
f̃ent(ω1,ω2)

)
(A9)

f̃split1,1
(ω1,ω2)= (rω1rω2 +tω2 tω1 )f̃0(ω1)f̃0(ω2)+ 1

2
f̃ent(ω1,ω2).

(A10)

APPENDIX B: SOME OBSERVATIONS ON THE
UNIDIRECTIONAL CASE

As shown in Sec. III, the two-sided waveguide requires
two sets of modes for its description: although things can be

arranged so that the atom only interacts with one of the sets
(standing waves with the appropriate symmetry), the initial
state typically has components on both sets. This is in contrast
to the formally simpler unidirectional formalism in Sec. II,
which involves only one set of modes.

Although the unidirectional case may seem unrealistic,
there are, in fact, schemes that allow one to excite only the
set of modes that the atom interacts with. These may be said to
realize a unidirectional waveguide, by which we mean one that
has effectively only one output port for a given input port. The
simplest such scheme is shown in Fig. 13(a). The optical paths
can be arranged so that an incoming field along port ain of the
beam splitter sets up a standing wave in the guide with the
right symmetry to couple maximally to the atom; for instance,
for a traveling wave entering from the ain direction, one could
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FIG. 13. Two ways to realize the unidirectional waveguide
interaction

get a standing wave of the form, say, cos(kx), whereas for a
wave coming from the bin direction, one would get sin(kx). An
atom placed at x = 0 would interact only with the first field,
and the (bidirectional) field it would emit into such a standing
wave mode would recombine at the beam splitter with the
right phase to leave entirely along the backwards path aout. Of
course, at some point along the a path one would need to place
a nonreciprocal device, such as a Faraday rotator, to separate
the input from the output field. When this is done, however,
one would find the output field would have a (running-wave)
spectrum related to the input one by the simple unidirectional
solutions of Sec. II.

A somewhat less obvious arrangement is provided by the
truncated waveguide (with a reflective end) of Fig. 13(b). Its
natural modes form a single set of standing waves of the form
sin(kx) (if the reflective end is at x = 0). Nonetheless, an
incoming field whose spectrum can be expanded on traveling
waves of the form eikx , with k ∼ k0, would have a very similar
spectrum (except for an overall phase factor) when expanded
on the basis of the functions sin(kx) = (eikx − e−ikx)/2i,
since the e−ikx part would not be expected to make a large
contribution, provided k0 is large enough (the precise condition
is that ω0T  1, where ω0 = ck0, and T is the pulse duration;
this is essentially the rotating-wave approximation).

Next, the atom must be placed at a location x0 such
that |�k x0| � 1, to ensure it couples to all the relevant
standing waves with approximately the same strength. Here
�k = �ω/c is the pulse’s wave-vector spread, of the order
of 1/cT , so the condition is really that |x0| � cT , that is, the
atom should much closer to the end wall than the width of the
pulse.

Finally, after the interaction is over, the field leaving the
waveguide will again have an expansion on traveling waves
essentially identical to the expansion on the standing waves
sin(kx) = (eikx − e−ikx)/2i, where now it is the first (right-
traveling) exponential that does not contribute.

Under these conditions, one can basically take the incoming
traveling-wave spectrum as the input to the unidirectional
formulas of Sec. II, and interpret the output again as a
traveling-wave spectrum in the opposite direction. For an
initial two-photon state, this final result is given by Eq. (A4).

An interesting application of these unidirectional formulas
was recently given by Witthaut, Lukin, and Sørensen in
Ref. [13]. Suppose one has two unidirectional waveguides fed
through a beam splitter as in Fig. 14. The beam splitter relates
the right-traveling modes according to aR = (cR + dR)/

√
2

and bR = (cR − dR)/
√

2; interaction with the atom in the
waveguide ultimately leads to replacing the c and d input

FIG. 14. The scheme to discriminate between one- and two-
photon states of Witthaut et al. [13].

spectra by the corresponding output spectra, and the cR and
dR operators by the left-traveling cL = (aL + bL)/

√
2 and

dL = (aL − bL)/
√

2. Hence, a single-photon pulse entering
from the aR direction is converted according to

∫
dωf̃0(ω)aR

†
ω|0〉 → −

∫
dω (rω + tω)f̃0(ω)aL

†
ω|0〉 (B1)

(in terms of the coefficients rω and tω defined in Appendix A),
whereas a two-photon pulse undergoes the sequence

|ψ〉 = 1

2
√

2

∫
dω1dω2f̃0(ω1,ω2)(c†ω1

c†ω2
+ d†

ω1
d†

ω2
+ c†ω1

d†
ω2

+ c†ω2
d†

ω1
)R|0〉 → 1

2
√

2

∫
dω1dω2

× [f̃uni(ω1,ω2)(c†ω1
c†ω2

+ d†
ω1

d†
ω2

)L

+ (rω1 +tω1 )(rω2 +tω2 )f̃0(ω1,ω2)(c†ω1
d†

ω2
+c†ω2

d†
ω1

)L]|0〉
(B2)

after transforming separately the two terms that represent
two-photon interactions with the atom, and the two terms
that represent the photons going into separate waveguides and
interacting once with each atom. In terms of the final aL and
bL operators, and using Eq. (A4), this becomes

|ψout〉= 1√
2

∫
dω1dω2

[(
f̃0(ω1,ω2)(rω1 + tω1 )(rω2 + tω2 )

+1

2
f̃ent(ω1,ω2)

)
aL

†
ω1

aL
†
ω2

+1

2
f̃ent(ω1,ω2)bL

†
ω1

bL
†
ω2

]
|0〉.

(B3)

As Witthaut et al. point out [13], this is an interesting result, in
that the two-photon state (B3) has a significant probability to
come out through the b port, whereas the one-photon state (B1)
always comes out through the a port. Note that the b port
output consists exclusively of (part of) the entangled state fent,
which also makes it clear that this is a genuine two-photon
effect (in interferometric terms, it may be understood as
resulting from a nonlinear phase shift). Also, as Eq. (A4)
shows, the two terms appearing in the output of the a port have
predominantly opposite signs, so it is possible to arrange their
partial cancellation, which leads Witthaut et al. to suggest that
this could be turned into a near-perfect discriminator between
one- and two-photon states, by taking the output of port a

and feeding it into another, similar arrangement. After a few
iterations, they find a large probability that the two-photon
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state may have exited through one of the b ports, whereas
the single-photon state must still be in the last remaining
a port.

It is clear from the explicit expression (20) (as well as, for
instance, Fig. 6), that the entangled two-photon wave function
can be very different from that of the initial state for large
coupling, when (in the space-time domain) its width along
a τ + τ ′ = const line is determined by 1/�. Hence, for the
partial cancellation in (B3) to work, one would require � to be
of the order of the pulse’s initial spectral width. For a Gaussian
pulse, the optimum condition is about �T = 0.7.

The authors of Ref. [13] did not address explicitly the way
in which the output state would change after each iteration
in their scheme. For the single-photon input, clearly, after n

iterations, the output of the final a port would have a spectrum(
� + iω

� − iω

)n

f̃0(ω). (B4)

For a two-photon input, on the other hand, if we define

�(ω1,ω2) = −2�2

π

( 1

� − iω1
+ 1

� − iω2

)
(B5)

RT (ω1,ω2) = (rω1 + tω1 )(rω2 + tω2 ) (B6)

Int[f̃ (ω1,ω2)] =
∫

dω′f̃ (ω′,ω1 + ω2 − ω′)
(� − iω′)[� − i(ω1 + ω2 − ω′)]

(B7)

so that fent(ω1,ω2) = �(ω1,ω2)Int[f̃ (ω1,ω2)], we find that
after the pulse is fed through n photon sorters, the remaining
component in the last a mode is given by

f̃an
(ω1,ω2) = f̃an−1 (ω1,ω2)RT (ω1,ω2)

+ 1

2
�(ω1,ω2)Int[f̃an−1 (ω1,ω2)]. (B8)

Consider the case in which the initial pulse is in a
separable state of the form f̃0(ω1)f̃0(ω2). After the first pass,
Int[f̃ (ω1)f̃ (ω2)] = G̃(ω1 + ω2) ∗ G̃(ω1 + ω2). One can see
that this term will not be modified by any future integrals,
since, when we apply the Int operator, we let ω1 → ωa

and ω2 → ω1 + ω + 2 − ωa . With this transformation any
function of ω1 + ω2 has no dependence on ωa . This property
also applies to functions containing RT and � as well. Using
this, it becomes possible to evaluate the total expression for
each pass by hand. After a few passes one finds a pattern that
can be expressed as

f̃an
(ω1,ω2)= f̃ (ω1)f̃ (ω2)RT n(ω1,ω2) + 1

2
�(ω1,ω2)

×
n−1∑
i=0

Mn−1−i(ω1,ω2)Int[f̃ (ω1)f̃ (ω2)RT i(ω1,ω2)]

(B9)

FIG. 15. The success probability as a function of �T for up to
seven passes through the photon sorter. Note the 6 and 7 cases are
already virtually indistinguishable.

with each Mn(ω1,ω2) given by

Mn(ω1,ω2) = RT n(ω1,ω2) +
n∑

j=1

Mj−1(ω1,ω2)

× Int

[
�(ω1,ω2)

2
RT n−j (ω1,ω2)

]
. (B10)

Unfortunately, the term Int[f̃ (ω1)f̃ (ω2)RT m(ω1,ω2)] in
Eq. (B9) prevents a completely analytic solution even for a
Gaussian pulse; however, the recursive solution for Mn lends
itself to a computational approach. By calculating each Mn and
Int[f̃ (ω1)f̃ (ω2)RT m(ω1,ω2)] and saving the samples of the
functions as arrays we can efficiently calculate the successful
discrimination probability for a large number of passes. This
is given by

Psuccess = 1 −
∫

dω1dω2|f̃an
(ω1,ω2)|2 (B11)

and is shown in Fig. 15 below.
As can be seen in Fig. 15 the success probability peaks for

relatively low values of �. For one pass the success probability
reaches a maximum of 0.732 when � = 0.704. Continuing
this for multiple passes, one finds that as the number of photon
sorters increases the benefit of adding more sorters decreases
very quickly. For � = 0.704 after 100 passes through the
device the success probability is 0.940, which is merely a
0.34% increase from 10 passes.

We note that this result is in slight disagreement with the
claim in Ref. [13] that the success probability could be as high
as 0.96 with only five sorters. At present we do not know the
reason for this discrepancy.
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