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Noise and dynamics in forward Brillouin interactions
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In this paper, we explore the spatiotemporal dynamics of spontaneous and stimulated forward Brillouin
scattering. This general treatment incorporates the optomechanical coupling produced by boundary-induced
radiation pressures (boundary motion) and material-induced electrostrictive forces (photoelastic effects),
permitting straightforward application to a range of emerging micro- and nanoscale optomechanical systems.
Through a self-consistent fully coupled nonlinear treatment, developed within a general Hamiltonian framework,
we establish the connection between the power spectral density of spontaneously scattered light in forward
Brillouin interactions and the nonlinear coupling strength. We show that, in sharp contrast to backward Brillouin
scattering, noise-initiated stimulated forward Brillouin scattering is forbidden in the majority of experimental
systems. In fact, the single-pass gain, which characterizes the threshold for energy transfer in back-scattering
processes, is negative for a large class of forward Brillouin devices. Beyond this frequent experimental case, we
explore mechanisms for dispersive symmetry breaking that lead to amplification and dynamics reminiscent of
backward Brillouin scattering.
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I. INTRODUCTION

Micro- and nanoscale structural control has been used to
enhance and tailor interactions between photons and phonons
in a range of new systems [1–19], giving rise to a great diversity
of optomechanical interactions [6–14,17,19–25]. These new
optomechanical systems provide a powerful interface between
optical and phononic domains as the basis for both classical
[4,17,26–30] and quantum [12,14,31,32] signal processing
operations. Among these optomechanical systems is a new
class of hybrid photonic-phononic waveguides that permit new
engineerable forms of traveling-wave photon-phonon coupling
[1–3,6,8–10,16–19]. These traveling-wave interactions,
broadly termed Brillouin interactions, are the basis for tai-
lorable forms of signal amplification [3,6,8,9,15,16,18,19,33],
high-performance lasers [26,27,34], and a host of hybrid
photonic-phononic signal processing operations that have no
optical analog [4,17,28]. Such highly engineerable couplings
have given rise to new types and regimes of Brillouin
interactions [6,24,35] and more complex optomechanical
processes that challenge the definition of Brillouin processes
[17,24,36,37]. While Brillouin physics has a rich history
[38–40], with the emergence of these enhanced forms of
photon-phonon coupling, established models of Brillouin
noise and dynamics no longer apply.

These new optomechanical (or Brillouin-active) waveg-
uides achieve radical enhancement of forward Brillouin cou-
pling (scattering) through confinement of guided optical and
acoustic modes within microstructured fibers and nanopho-
tonic waveguides, providing access to rich new regimes
of nonlinear dynamics [1–3,5–9,15–19]. Forward Brillouin
interactions (not to be confused with more widely studied
backward Brillouin processes) are characterized by phonon-
mediated coupling between codirectionally propagating opti-
cal waves [6], whereas backward Brillouin interactions couple

*prashanta.kharel@yale.edu
†peter.rakich@yale.edu

contradirectionally propagating optical waves [38,39]. In con-
trast to backward Brillouin scattering, acoustic wave guidance
is generally required to achieve phase-matched forward Bril-
louin scattering. Moreover, the frequency, strength, and type of
coupling is far more tailorable owing to the inherent geometric
dependence of forward Brillouin interactions [6,15,41]. While
this new device physics holds much technological promise,
little is known about the noise and noise-initiated threshold
conditions for such interactions.

The noise and dynamics of backward Brillouin scattering
have been extensively studied in the context of fiber-optic tech-
nologies [42–45]. However, until recently, forward Brillouin
couplings have been very weak by comparison, making their
technological importance less apparent. The first systematic
studies of forward Brillouin interactions focused on sponta-
neous forward Brillouin scattering [46], not to be confused
with stimulated forward Brillouin scattering [6]. Through these
studies Shelby et al. identified spontaneous forward Brillouin
scattering, also termed guided acoustic-wave Brillouin scatter-
ing (GAWBS), as a key source of noise in fiber-based quantum
optics measurements [47,48]. A theoretical framework was
also developed to describe how the phase and polarization
noise that thermally driven guided acoustic modes impart to
light through photoelastic coupling in optical fibers [47,48].
However, to capture the noise characteristics of a diversity
of new fiber and waveguide geometries [15,18,24,36,41,49],
it is necessary to incorporate both photoelastic response and
boundary motion in a more general formulation of Brillouin
noise. Beyond spontaneous Brillouin noise, little is known
about the noise and threshold properties of these interactions,
which are important to the development of Brillouin-based
signal processing technologies.

To address these challenges, we build on the traveling-wave
treatment of Brillouin coupling [50], and prior quantum
traveling-wave treatments of noise and nonlinearity [51–56].
This approach captures the distributed optomechanical cou-
pling, noise, and spatiotemporal field evolution in Brillouin
interactions within a generalizable Hamiltonian framework.
Moreover, this formulation incorporates the optomechanical
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couplings produced by boundary-induced radiation pres-
sures (boundary motion) and material-induced electrostrictive
forces (photoelastic effects), in a manner consistent with
Refs. [16], [41], [57], and [58]. Hence, this treatment is directly
applicable to a range of emerging micro- and nanoscale
optomechanical systems [6,15,17–19,35,59]. Based on this
self-consistent fully coupled nonlinear treatment, we establish
the connection between the power spectral density of sponta-
neously scattered light in forward Brillouin interactions and
the nonlinear coupling strength, which is expressed in terms
of both an optomechanical coupling strength and the more
conventional Brillouin gain coefficient.

In sharp contrast to backward Brillouin scattering, we show
that noise-initiated stimulated forward Brillouin scattering
is forbidden in the majority of experimental systems since
the anti-Stokes and Stokes waves interact through the same
phonon mode. In fact, our analysis shows that the single-pass
gain, which conventionally characterizes the threshold for
energy transfer in back-scattering processes, is negative for
a large class of forward Brillouin devices. Interestingly, the
spontaneous noise grows linearly, whereas the signal amplifies
quadratically with the device length in the weak-signal limit.
However, in waveguides with high optical dispersion or in
intermodal scattering, distinct phonon modes mediate Stokes
and anti-Stokes scattering. This dispersive symmetry breaking
leads to exponential optical amplification and noise dynamics
that are reminiscent of backward Brillouin scattering.

II. THEORETICAL STUDY

We consider interactions between colinearly propagating
optical and elastic waves within a general class of optome-
chanical waveguides that support guidance of both photons
and phonons; example systems are shown schematically in
Fig. 1(a). Let us assume that a translationally invariant
waveguide in the z direction has a transverse profile specified
by εr (r⊥), ρ(r⊥), and cijkl(r⊥), representing the dielectric
distribution, mass density distribution, and elastic tensor
profile, respectively. We express the guided modes of the
system in terms of electric and acoustic displacement fields
Dγ (r,t) = Dγ (r⊥)ei(kγ z−ωγ t) and um(r,t) = um(r⊥)ei(qmz−�mt),
respectively. Here, γ and m represent the collective mode in-
dex. These modes are obtained by solving Maxwell’s equations
and the elastic-wave equation, ∂j cijkl∂kul,m = −�2

mρui,m [60].
Here, Dγ (r⊥) is the electric displacement profile of an optical
mode with wave vector kγ and frequency ωγ . Similarly,
um(r⊥) is the elastic displacement profile of a phonon
mode with wave vector qm and frequency �m. The modes
are normalized such that �2

m

∫
dr⊥ρ(r⊥)u∗

m(r⊥) · um(r⊥) = 1
and 1

εo

∫
dr⊥[1/εr (r⊥)]D∗

γ (r⊥) · Dγ (r⊥) = 1, where εo is the
vacuum permittivity. Note that the sets of points {ωγ ,kγ } and
{�m,qm} lie on the optical and acoustic dispersion curves,
ω(k) and �(q), as shown in Figs. 1(b) and 1(c), permitting
alternative representations {ω(kγ ),kγ } and {�(qm),qm}.

In what follows, we consider noise-initiated scattering
of energy from an incident monochromatic pump wave
(Dp(r⊥),kp,ωp) by one or more Brillouin active phonon
modes. A characteristic Brillouin-active phonon mode is
denoted (�′,q ′) on the dispersion curve in Fig. 1(b). We begin
by considering intramodal scattering, or coupling between
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FIG. 1. (a) General schematic of a waveguide that supports
both acoustic and optical modes. Different example waveguide
geometries include the single-mode fiber [46], photonic crystal
fiber [6], nanoscale ridge waveguide [19], and silicon nanowire [18].
(b) Dispersion curves for acoustic modes inside a waveguide. The
acoustic modes relevant to forward Brillouin systems are optical-
phonon-like modes with cutoff frequency �0. (c) Phase-matching
requirements allow each phonon mode to interact with a set of higher
order Stokes and anti-Stokes photon modes. (d) Set of Brillouin
interactions that underlie complex dynamics where both photons and
phonons are coherently created and annihilated.

optical waves of distinct frequency that are guided in the
same optical band [Fig. 1(c)]. Pump photons can be red-
shifted to mode (Ds(r⊥),ks,ωs) through a Stokes process or
blue-shifted to mode (Das(r⊥),kas,ωas) through anti-Stokes
processes. Note that phase matching [Fig. 1(a)] and energy
conservation [Fig. 1(d)] yield distinct requirements for Stokes
and anti-Stokes processes:

�(qs) = ω(kp) − ω(ks), qs = kp − ks, (1)

�(qas) = ω(kas) − ω(kp), qas = kas − kp. (2)

In general, �s �= �as and qs �= qas, meaning that the
Stokes phonon (�′,q ′) → (�s,qs) and the anti-Stokes phonon
(�′,q ′) → (�as,qas) are nondegenerate. In the following sec-
tions, we see that this form of “dispersive” symmetry breaking
between Stokes and anti-Stokes processes strongly impacts
the system dynamics. However, in many practical (or finite)
systems, dispersive symmetry breaking becomes a subtle
consideration.

The distinct Stokes and anti-Stokes phonon modes (defined
above) are not resolved through intramodal coupling in
numerous forward Brillouin systems [6,15,17–19,59]; hence,
the Stokes and anti-Stokes scattering processes effectively
couple to the same phonon mode. To understand why, we
begin by Taylor expanding ω(k) in Eqs. (1) and (2) to find
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qs
∼= �s/vg(kp) and qas

∼= �as/vg(kas), where vg(k) ≡
(∂ω/∂k)k is the optical group velocity. These expressions
reveal that qs and qas are very small, pushing �s and �as

very near the phonon cutoff frequency �0, as shown in
Fig. 1(b). With �as

∼= �s
∼= �0, one finds �q = |qas − qs | ∼=

(∂2k/∂ω2)�2
0. Therefore, in the case where the propagation

length is much less than π/�q, wave uncertainty reveals
that the Stokes and anti-Stokes phonons are not resolvable;
to an excellent approximation both optical processes couple to
the phonon state (�0,q0) where q0 ≡ �0/vg(kp). As a result,
we see that the equations of motion that govern Stokes and
anti-Stokes generation are intimately coupled.

By contrast, distinct Stokes (�s,qs) and anti-Stokes
(�as,qas) phonons are well resolved through more widely
studied backward Brillouin coupling [e.g., see (�s,qs) in
Fig. 1(b)]. This is because the scattered Stokes and anti-Stokes
waves propagate contradirectionally to the pump wave in
the backward case. Solving Eqs. (1) and (2) in the case of
contradirectional coupling, one finds, qs = kp − ks ≈ 2|kp|
and qas = kas − kp ≈ −2|kp| [38,39]. Since �q is large
(∼4|kp|), the Stokes and anti-Stokes phonon modes are
very well resolved through backwards Brillouin interactions,
resulting in independent equations of motion for Stokes and
anti-Stokes generation. In this paper, we show that noise
properties and nonlinear dynamics of forward Brillouin pro-
cesses differ sharply from the more widely studied backward
Brillouin processes [42–45]; this distinct behavior hinges on
the absence or presence of dispersive symmetry breaking.

In what follows, we begin by applying the general
Hamiltonian framework in Sec. II A to this frequent case
(i.e., coupling to the same phonon mode) in Secs. II B–II D.
In Sec. II E we return to the cases where the Stokes and
anti-Stokes phonon degeneracies are resolvable through forms
of dispersive symmetry breaking.

A. Hamiltonian of a forward Brillouin system

Building on the quantum traveling-wave treatment of Bril-
louin coupling by Sipe et al. [50] and prior quantum traveling-
wave treatments of noise and nonlinearity [51–56], we present
a Hamiltonian treatment that captures the distributed optome-
chanical coupling, noise, and spatiotemporal-field evolution
in Brillouin interactions. This formulation incorporates the
optomechanical couplings produced by boundary-induced
radiation pressures (boundary motion) and material-induced
electrostrictive forces (photoelastic effects), in a manner
consistent with Refs. [16], [41], [57], and [58]. Hence, this
treatment is directly applicable to a range of emerging micro-
and nanoscale optomechanical systems [6,15,17–19,35,59].

We express the Hamiltonian for forward Brillouin scattering
as

H = H ph + H opt + H int. (3)

Here H ph, H opt, and H int characterize the dynamics of the
acoustic field, the dynamics of the optical fields, and the
acousto-optic interaction, respectively. For a translationally
invariant waveguide in the z direction, H ph can be expressed
as

H ph =
∫

dq ��(q)b†qbq. (4)

Here, bq is the annihilation operator for the qth phonon mode
which captures the time evolution of each mode amplitude,
and Eq. (4) sums over a continuum of phonon modes
[see Appendix A, Eqs. (A1)–(A8)]. While the full acoustic
Hamiltonian includes the sum over all branches of the acoustic
dispersion, we focus on the dynamics of a single acoustic field
with dispersion �(q).

The acoustic field involved in a driven system like
the forward Brillouin system has a well-defined carrier
wave vector q0. Therefore, we introduce the phonon-mode
envelope operator B(z) = 1/

√
2π

∫
dq bqe

i(q−q0)z peaked
around the carrier wave vector q0, allowing the acoustic field to
evolve in space. B†(z)B(z) then represents the phonon number
per unit length. Substituting the inverse Fourier transform,
bq = 1/

√
2π

∫
dz B(z)e−i(q−q0)z, into Eq. (4), the Hamiltonian

becomes

H ph =
∫

dz �B†(z)�̂zB(z), (5)

where the tailored expansion of �(q) about the carrier wave
vector, q0, results in the operator

�̂z =
∞∑

n=0

1

n!

∂n�

∂qn

∣∣∣∣
q0

(
− i

∂

∂z

)n

. (6)

A caveat of this definition is that B(z) must be narrowly peaked
for �zB(z) to be well defined, in the spirit of the slowly varying
envelope approximation [61].

This general acoustic Hamiltonian for a continuous system
captures the spatiotemporal evolution of the acoustic field. For
instance, for the case of free evolution without any interaction,
the Heisenberg equation using the commutator relations [see
Appendix A, Eq. (A11)] gives

∂B(z,t)

∂t
= 1

i�
[B(z,t),H ph] = −i�̂zB(z,t)

= −i

(
�(q0) − i�′(q0)

∂

∂z
− �′′(q0)

∂2

∂z2
+ . . .

)
×B(z,t). (7)

Similarly, the optical Hamiltonian for this system with
multiple spatially varying optical fields is given by

H opt =
∑

γ

∫
dk �ωγ (k)a†

γ kaγ k (8)

=
∑

γ

∫
dz �A†

γ (z)ω̂γ,zAγ (z), (9)

where Aγ (z) = 1/
√

2π
∫

dk aγ ke
i(k−kγ )z is the optical-mode

envelope operator and the corresponding spatial operator

ω̂γ,z =
∞∑

n=0

1

n!

∂nω

∂kn

∣∣∣∣
kγ

(
− i

∂

∂z

)n

(10)

for γ = pump, Stokes optical field, and anti-Stokes optical
field. As for the acoustic field, the case of free evolution of the
optical fields using the Heisenberg equation of motion and the
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commutator relations [see Appendix A, Eq. (A12)] is given by

∂Aγ (z,t)

∂t
= 1

i�
[Aγ (z,t),H opt] = −iω̂γ,zAγ (z,t)

= −i

(
ω(kγ ) − iω′(kγ )

∂

∂z
− ω′′(kγ )

∂2

∂z2
+ . . .

)
×Aγ (z,t). (11)

This captures all orders of dispersive propagation of optical
waves in a lossless optical waveguide.

Finally, the acousto-optic Hamiltonian that captures the
distributed optomechanial coupling in space (or coupling
between continua of modes in k space) is simply written in
terms of the mode envelope operators as (see Appendix A)

H int = �

∫
dz

(
g0A

†
p(z)As(z)B(z)ei(q0−�ks)z

+ g1A
†
as(z)Ap(z)B(z)ei(q0−�kas)z

) + H.c., (12)

where H.c. stands for Hermitian conjugate. In writing this
Hamiltonian, we have taken the rotating-wave approximation,
ignoring the fast-oscillating terms that contribute to higher
order processes. Here, �ks = kp − ks and �kas = kas − kp.
For the forward Brillouin case that we consider here, we
assume that �ks

∼= �kas
∼= q0. In other words, we take both

the Stokes and the anti-Stokes processes to be phase matched.
While this is an excellent approximation for most finite
systems, this becomes an exact equality in the case of a
vanishing group velocity dispersion. The distributed coupling
strengths g0 = gγ,γ ′ , with γ = p and γ ′ = s, and g1 = gγ,γ ′ ,
with γ = as and γ ′ = p, describe two forward Brillouin
processes: the annihilation of a Stokes photon and a phonon
to create a pump photon (i.e., A

†
pAsB) and the annihilation of

a pump photon and a phonon to create an anti-Stokes photon
(i.e., A

†
asApB). The coupling strength is given by [50]

gγ,γ ′ = gpe + grp. (13)

The photoelastic (or electrostrictive) contribution to the
coupling strength is

gpe = ξ

∫
dr⊥

(
Di

γ (r⊥)
)∗

D
j

γ ′(r⊥)pijkl(r⊥)
∂uk

0(r⊥)

∂rl
, (14)

where ξ = 1
εo

√
ωγ

2

√
ωγ ′
2

√
��0

2 . In lieu of the symmetry of the

photoelastic tensor, ∂uk
0(r⊥)
∂rl is equivalent to the strain profile in

Eq. (14).
The radiation-pressure contribution to the coupling, grp,

must be treated with care when dielectric discontinuities are
present [62]. By expressing grp as

grp = ξ

∫
dr⊥

[
ε2

0 (E‖
γ )∗ · (E‖

γ ′ )∇(ε(r⊥))

− (D⊥
γ )∗ · (D⊥

γ ′)∇
(

1

ε(r⊥)

)]
· u0(r⊥), (15)

we capture couplings produced by deformations of both
discontinuous and graded index structures. Note that at a
discontinuous boundary the quantity ∇ε(r⊥) produces a δ

function, collapsing the area integral into a line integral over
the set of points that define the boundary. Over this set of

points, ∇ε(r⊥) has a vector orientation that is parallel to the
surface normal of the interface. For points residing on this
boundary, D⊥

γ is the component of the electric displacement
field Dγ (r⊥) that is perpendicular to the boundary. Similarly,
E‖

γ is the component of the electric field Eγ (r⊥) that is
parallel to the boundary. When the dielectric profile is a
smoothly varying function, the quantity in brackets reduces to
−(Dγ (r⊥))∗ · (Dγ ′(r⊥))∇(1/ε(r⊥)). It is important to note that
the full-vectorial nature of the electric and elastic displacement
fields allows calculation of the coupling strengths for both
intra- and intermodal coupling.

Generalization of the Hamiltonian to account for the
multiwave parametric interaction that leads to novel dynamics,
such as frequency comb generation, is done by including all
higher order Stokes and anti-Stokes fields in H opt. Similarly,
the interaction Hamiltonian, H int, must be expanded to include
all possible interactions that lead to creation or annihilation of
phonons as

H int =
∫

dz

(∑
n

�gnA
†
n(z)An−1(z)B(z)ei(q0−�kn)z + H.c.

)
,

(16)

where the integer n indexes the pump field at frequency
ω0 (n = 0) and all higher order Stokes and anti-Stokes fields
at frequency ωn = ω0 + n �0. For the rest of this paper, we
neglect the effect of higher order side-bands and consider the
interaction Hamiltonian in Eq. (12).

B. Equations of motion

Next we consider the dynamics in the case of forward
intramodal Brillouin scattering when both the Stokes and the
anti-Stokes processes are phase matched (i.e., �ks

∼= �kas
∼=

q0). Using the full Hamiltonian of Eq. (3), which includes the
four-field interaction Hamiltonian of Eq. (12), the Heisenberg
equations of motion along with the commutator relations (see
Appendix A) result in the following spatiotemporal evolution
of the envelope fields:

∂tB(z,t) = −i�̂zB − i(g∗
0A

†
sAp + g∗

1A
†
pAas), (17)

∂tAp(z,t) = −iω̂p,zAp − i(g0AsB + g∗
1B

†Aas), (18)

∂tAs(z,t) = −iω̂s,zAs − ig∗
0B

†Ap, (19)

∂tAas(z,t) = −iω̂as,zAas − ig1ApB. (20)

In order to capture the salient features of forward Brillouin
scattering we truncate the spatial operators to �̂z � �0 −
iv0∂z and ω̂γ,z � ωγ − ivγ ∂z, where v0 = ∂�/∂q|q0 is the
acoustic group velocity and vγ = ∂ω/∂k|kγ

is the optical
group velocity. This is an excellent approximation for forward
Brillouin systems with negligible group velocity dispersion.

After factoring out the fast oscillating component of the
envelope field operators by letting B̄(z,t) = B(z,t)ei�t , where
� = ωp − ωs is the detuning between the pump and the Stokes
light, and Āγ (z,t) = Aγ (z,t)eiωγ t , Eqs. (17)–(20) give the
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following spatiotemporal evolution:

∂B̄

∂t
+ v0

∂B̄

∂z
= i(� − �0)B̄ − i(g∗

0Ā
†
sĀp + g∗

1Ā
†
pĀas),

(21)
∂Āp

∂t
+ vp

∂Āp

∂z
= −i(g0ĀsB̄ + g∗

1 B̄
†Āas), (22)

∂Ās

∂t
+ vs

∂Ās

∂z
= −ig∗

0 B̄
†Āp, (23)

∂Āas

∂t
+ vas

∂Āas

∂z
= −ig1ĀpB̄. (24)

These equations of motion are similar to the ones derived
classically using nonlinear polarization and density variation
induced by electrostrictive forces [6,35]. In addition, the
coupling term here accounts for both electrostrictive and
radiation pressure forces, extending its validity to nanoscale
systems.

To capture the physics of spontaneous scattering of light
due to both thermal and zero-point fluctuations of the phonon
mode, we introduce a dissipation rate, �0/2, for the phonon
and the corresponding Langevin force, η(z,t). For the forward
Brillouin processes of our interest the dissipation rate is high
(i.e., in the MHz range) and the group velocity is vanishingly
low (∼1 m/s) [6]. Therefore, we ignore the ∂B/∂z term
representing the spatial evolution of the envelope field in
Eq. (21). In this case, the phonon-mode amplitude satisfies
the following equation of motion:

∂B̄

∂t
= i(� − �0)B̄ − �0

2
B̄ − i(g∗

0Ā
†
sĀp + g∗

1Ā
†
pĀas) + η.

(25)
For the rest of the paper, we treat the optical fields classically
and ignore the fluctuations in the optical fields. Following a
semiclassical treatment, we show in Sec. II D that fluctuations,
both thermal and zero-point, of the phonon mode lead to
spontaneous scattering of light. However, before exploring
the spontaneous forward Brillouin scattering (forward sponta-
neous noise), we study the stimulated regime.

In the next section we derive the gain coefficient, GB

(W−1 m−1), for stimulated forward Brillouin scattering in
terms of the coupling strength of the Hamiltonian. Eventually,
we relate this Brillouin gain coefficient to the spontaneous
forward scattering efficiency. This permits straightforward
prediction of spontaneous scattering rates based on widely
studied stimulated Brillouin gain coefficients.

C. Stimulated forward Brillouin scattering

In the presence of three driven optical fields, the steady-state
phonon envelope field in Eq. (25) reduces to

B̄(z,t) = (g∗
0Ā

†
sĀp + g∗

1Ā
†
pĀas)(

� − �0 + i �0
2

) , (26)

where we have assumed ωas − ωp = ωp − ωs = � and where
a negligible contribution from the Langevin force has been
dropped. Substituting Eq. (26) into Eq. (23) we get the

following steady-state spatial evolution for the Stokes field:

∂Ās

∂z
= − i

vs

g∗
0 (g0Ā

†
pĀs + g1Ā

†
asĀp)Āp(

� − �0 − i �0
2

) . (27)

This solution takes into account the back-action of the phonon
field. Before solving for the Stokes field amplitude, we
consider the weak-signal limit to define the Brillouin gain
coefficient. In the undepleted pump regime (|Ap| � |As | and
|Ap| � |Aas|) we define the Brillouin gain coefficient as
dPs/dz = GBPpPs , where GB is the Brillouin gain coefficient
and Ps and Pp are the powers in the Stokes and the pump
field, respectively. The acoustic and optical power flow in
the waveguide is related to the mode amplitude operators as
follows [50]:

P ph = ��0v0B
†(z,t)B(z,t), (28)

P opt = �ωγ vγ A†
γ (z,t)Aγ (z,t). (29)

Assuming Aas → 0, the first term on the right-hand side of
Eq. (27), and using the expression for power in the optical
fields given by Eq. (29), GB in terms of the coupling strength
is given by

GB = 4|g0|2
vsvp�0�ωp

(
�0
2

)2

(� − �0)2 + (
�0
2

)2 . (30)

The equations of motion, accounting for the coupled
dynamics of both the Stokes and the anti-Stokes fields in
the undepleted pump regime, give the following steady-state
Stokes amplitude at position z = L:

〈|Ās(L)|2〉 ≈ |Ās(0)|2
(

1 + 2|Āp|2|g0|2L
vs�0

)2

, (31)

where the single-pass gain is assumed small [discussed in
the next section, Eq. (45)]. Above, Ās(0) and Āp are the input
Stokes and pump field, and we have assumed that the input anti-
Stokes field is 0, i.e. Āas(0) = 0. Therefore, for a small single-
pass gain, the Stokes power for stimulated forward Brillouin
scattering grows algebraically with length. In contrast, we
see in the following section that the spontaneously scattered
power as a function of the length is different for the case of
spontaneous forward Brillouin scattering.

D. Spontaneous forward Brillouin scattering

In this section, we derive spontaneous scattering of pump
light into colinearly propagating Stokes and anti-Stokes fields
that result from thermally driven guided acoustic modes.
Before solving the coupled equations, (22)–(25), we explore
the statistical properties of the Langevin force, η(z,t), by
using the distributed, fluctuating source model first presented
by Boyd et al. to describe spontaneous backward Brillouin
scattering [42].

1. Properties of the Langevin force

For conceptual development we divide the waveguide into
small subregions of length �z such that B̄ is effectively
constant in the subregion. Let B̄i and ηi denote the acoustic
envelope field and the Langevin force averaged over the ith
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subregion. Then B̄
†
i B̄i represents the phonon density operator

for the ith subregion. We assume that ηi is a Gaussian random
variable with the following properties:

〈ηi〉 = 0 and 〈η†
i (t)ηj (t ′)〉 = Q̃δij δ(t − t ′). (32)

Here, Q̃ characterizes the strength of the fluctuations in ηi and
〈. . .〉 symbolizes the ensemble average. To find Q̃ we relate
fluctuations in B̄i to the fluctuation of ηi and demand that B̄†

i B̄i

is given by the thermal number density of a phonon mode of
frequency �0 at equilibrium. Without driving due to optical
forces B̄i obeys the following equation:

dB̄i

dt
= −�0

2
B̄i + ηi. (33)

With the solution B̄i(t) = ∫ t

−∞ dt ′e−�0(t−t ′)/2ηi(t ′) we get the
following equal-time correlation:

〈B̄†
i (t)B̄j (t)〉 = δij

Q̃

�0
. (34)

We now find Q̃ by requiring that the average phonon density
for the thermally driven mode is given by

〈B̄†
i (t)B̄i(t)〉 = n̄th

�z
, (35)

where n̄th = 1/(e��0/kBT − 1) is the average number of ther-
mal phonons of angular frequency �0 at temperature T . Using
Eqs. (34) and (35) we have

Q̃ = n̄th�0

�z
. (36)

Finally, taking the continuum limit of Eq. (32) we find

〈η(z,t)〉 = 0, (37)

〈η†(z,t)η(z′,t ′)〉 = Qδ(z − z′)δ(t − t ′), (38)

where the strength of fluctuation, Q, is given by

Q = Q̃�z = n̄th�0. (39)

It is important to mention that because of the commuta-
tion relation for the phonon-mode amplitude operator (i.e.,
[B(z,t),B†(z′,t)] = δ(z − z′)),

〈η(z,t)η†(z′,t ′)〉 = (n̄th + 1)�0δ(z − z′)δ(t − t ′). (40)

This expression is a restatement of the quantum fluctuation-
dissipation relation. In the high-temperature limit (i.e., classi-
cal limit), n̄th � kBT/��0 � 1, meaning 〈ηη†〉 � 〈η†η〉.

2. Spontaneous forward scattering efficiency

To compute spontaneous forward Brillouin scattering, we
assume an undepleted pump and no input Stokes or anti-
Stokes field in the waveguide. We solve the coupled-mode
equations, (23)–(25), assuming that the group velocity for
Stokes and anti-Stokes light are the same. This calculation
gives the following solutions for the Stokes and the anti-Stokes

envelope fields [42,63]:

Ās(z,τ ) = −i
g∗

0

v
|Āp|

∫ τ

0
dτ ′

∫ z

0
dz′ η†(z′,τ ′)e− �0

2 (τ−τ ′)I0

×
([

4

v
(|g0|2 − |g1|2)|Āp|2(τ − τ ′)(z − z′)

]1/2)
,

(41)

Āas(z,τ ) = −i
g1

v
|Āp|

∫ τ

0
dτ ′

∫ z

0
dz′ η(z′,τ ′)e− �0

2 (τ−τ ′)I0

×
([

4

v
(|g0|2 − |g1|2)|Āp|2(τ − τ ′)(z − z′)

]1/2)
.

(42)

Here, In(x) is the modified Bessel of the first kind and we
have switched the coordinate system from (z,t) to the retarded
frame (z,τ = t − z/v). From these expressions and using the
statistical properties of the Langevin force derived in (38)
and (40), we get the following spontaneously scattered Stokes
and anti-Stokes signals in the long-time limit τ → ∞ at
position z = L:

〈|Ās(L)|2〉 = |g0|2
v2

|Āp|2L(n̄th + 1)e
G
2 (I0(G/2) − I1(G/2)),

(43)

〈|Āas(L)|2〉 = |g1|2
v2

|Āp|2Ln̄the
G
2 (I0(G/2) − I1(G/2)), (44)

where

G = 4

v
(|g0|2 − |g1|2)

L|Āp|2
�0

(45)

is the single-pass gain, a dimensionless quantity characterizing
the amplification of Stokes or anti-Stokes light, for forward
Brillouin scattering. Assuming that the mode profiles are the
same for the Stokes and anti-Stokes fields, we can express the
single-pass gain in terms of GB and Pp as

G = −2�0

ωs

GBPpL. (46)

The ratio �0/ωs is typically of the order of 10−5 for a
phonon mode in the gigahertz range and a photon mode in the
200-THz range. In contrast to backward spontaneous Brillouin
scattering [42], where the single-pass gain is just GBPpL, the
single-pass gain for forward Brillouin scattering in Eq. (46)
is negative and close to 0. This result is consistent with the
fact that for most forward Brillouin interactions there is no
symmetry breaking between the Stokes and the anti-Stokes
processes; phonons created in Stokes scattering are annihilated
in anti-Stokes processes. Since G ≈ 0, the forward Brillouin
scattering efficiency, EF , which is defined as the ratio of the
total power generated in the Stokes or anti-Stokes fields at
position L along the waveguide to the input pump light power,
is given by

EF,s = �ωsv〈|Ās(L)|2〉
�ωpv|Āp|2 = |g0|2

v2

ωs

ωp

(n̄th + 1)L, (47)

EF,as = �ωasv〈|Āas(L)|2〉
�ωpv|Āp|2 = |g1|2

v2

ωas

ωp

n̄thL. (48)
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Therefore, unlike backward stimulated Brillouin scatter-
ing [42], noise does not grow exponentially for forward
Brillouin scattering. In particular, when the single-pass gain is
negative, the spatial and temporal correlation of the scattered
Stokes light is limited by the phonon lifetime [see Appendix B,
Eq. (B9)]. This behavior shows that noise-initiated stimulated
emission cannot occur when G < 0; in contrast, when the
single-pass gain is positive, the gain can exceed optical loss,
causing the coherence length of the emitted Stokes light to
become large. In the high-temperature limit, the scattering
efficiency can be written in terms of the peak Brillouin gain
coefficient [GB(�0)] derived in Eq. (30) and is given by

EF,as � EF,s = ωpGBkBT L�0

4�0
. (49)

The expression above relates the Brillouin gain coefficient,
GB, which can be measured from stimulated forward light
scattering measurements, to the spontaneously scattered light
in the forward direction by thermally excited guided acoustic
modes.

3. Power spectrum of scattered Stokes

For spontaneous noise measurements the power spectrum
of the noise at position L along the waveguide is defined as
Ss(ω) = (�ωsv)

∫ ∞
−∞ dt ′e−iωt ′ 〈Ās(L,t + t ′)Ā†

s(L,t)〉, where ω

is measured relative to ωs [63]. For t → ∞, assuming G ≈ 0,
Ss(ω), using Eq. (41), evaluates to

Ss(ω) � 4|g0|2Pp(n̄th + 1)L

v2�0

(�0/2)2

ω2 + (�0/2)2
. (50)

As an example calculation of spontaneous forward Bril-
louin noise we look at a tapered optical fiber that is used in
quantum optics experiments [see Fig. 2(a)] at room tempera-
ture. Calculation of acoustic dispersion curves for this cylindri-
cal geometry with a 1-μm diameter using numerical methods
gives us the range of frequencies for slow-group-velocity
modes in this system (i.e., greater than 2 GHz) [see Fig. 2(b)].
However, only the acoustic modes with large acousto-optical
coupling scatter pump light to forward-propagating Stokes and
anti-Stokes light see Fig. 2(c). For instance, an acoustic mode
with angular frequency �0 = 2π × 2.81 GHz, a Brillouin gain
coefficient of GB = 25.9 W−1 m−1, and a Q factor of 1000,
which interacts with pump light at ωp = 2π × 194 THz, re-
sults in a forward Stokes scattering efficiency per unit length of
EF /L = 3.2 × 10−8 m−1. Therefore, the total spontaneously
scattered Stokes power in a narrow band around ωs [see
Fig. 2(d)] in a meter-long, tapered fiber with 100-mW pump
power is Ps = 1/(2π )

∫
dω Ss(ω) = Pp × EF = 3.2 nW. For

another example, see the discussion of forward spontaneous
noise in hollow-core fibers [64].

E. Symmetry breaking in forward Brillouin scattering

In the previous section, we examined the noise properties
for forward Brillouin scattering and contrasted the dynamics
for the case of backward Brillouin scattering. Disctinct behav-
ior occurs in forward Brillouin scattering because the optical
dispersion is weak and the same phonon mode couples to both
the Stokes and the anti-Stokes fields [see Fig. 3(a)]. However,
there are forward Brillouin systems where this degeneracy
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FIG. 2. Spontaneous forward scattering efficiency calculation for
a tapered fiber geometry. (a) A tapered fiber of diameter 1 μm that is
routinely used in quantum optics measurements. (b) Acoustic disper-
sion curves generated numerically using finite-element simulation to
predict the frequency range of acoustic modes that are responsible
for spontaneous forward Brillouin scattering in this waveguide.
(c) Forward Brillouin gain coefficient, GB , for acoustic modes
calculated numerically using the overlap integrals and assuming a
constant quality factor of 1000 for the acoustic modes. The same plot
shows the total spontaneous forward scattering per unit length for the
Stokes light using Eq. (49). (d) Schematic of the power spectrum of
the noise, which is a Lorentzian with a full width at half-maximum
of �0. The area under the noise spectrum is integrated to get the total
spontaneously scattered light.

is broken. This is possible with a high optical dispersion or
intermodal scattering. In such systems, spontaneous forward
Brillouin is similar to backward Brillouin scattering. We
discuss such scenarios in the next two sections.

1. Intermodal scattering

In contrast to intramodal scattering, intermodal scattering
involves scattering of light between two distinct optical bands
[see Fig. 3(b)]. From the figure it is clear that even for modes
with little optical dispersion, the acoustic wave vector of the
Stokes and the anti-Stokes phonon modes can be different in
intermodal scattering. In fact, the Stokes phonon wave vector
(qs) the anti-Stokes phonon wave vector (qas) often propagate
in opposite directions. Such a difference in acoustic wave
vectors results in symmetry breaking between the Stokes and
the anti-Stokes processes. This can be seen by considering the
general interaction Hamiltonian

H int = �

∫
dz

(
g0A

†
p(z)As(z)Bs(z)ei(qs−�ks )z

+ g1A
†
as(z)Ap(z)Bs(z)ei(qs−�kas)z

) + H.c. (51)

In writing this interaction Hamiltonian we have chosen
the pump and Stokes fields to drive the Stokes phonon mode,
meaning (q0,�0) → (qs,�s) and B(z) → Bs(z). In this
case, �ks = kp − ks = qs and ωp − ωs = �s . However, the
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Low Dispersion limit

P

AS

S

(a)

(b)

(c)

P

AS

S

OPTICAL DISPERSION ACOUSTIC DISPERSION

High dispersion limit

P

AS

S

FIG. 3. Schematic comparing different limits of forward
Brillouin scattering. (a) In the case of low optical dispersion, the
optical group velocity is approximately constant, meaning that both
the Stokes and the anti-Stokes wave vectors are equal (within
wave-vector uncertainty because of the finite length of the waveguide)
(i.e., qa = qas = qo). (b) For intermodal scattering, light is scattered
between modes with different dispersion curves. Therefore, even for
the case where these two curves have a low dispersion, the Stokes
and anti-Stokes phonon wave vectors are not equal (i.e. qs �= qas).
(c) For waveguides with strong optical dispersion, the group velocity
is no longer the same for Stokes and anti-Stokes fields. However, the
phonon frequency for the Stokes and anti-Stokes processes are equal
to �0 to an excellent approximation because the acoustic dispersion
curve is nearly flat. Therefore, the acoustic wave vector for Stokes
scattering is not equal to that for anti-Stokes scattering (i.e. qs �= qas).

phase-mismatched anti-Stokes process in Eq. (51) averages
to 0 because the fields vary slowly in space but ei(qs−�kas)z

oscillate rapidly. This results in the following interaction
Hamiltonian for the case of intermodal Brillouin scattering:

H int ≈ �

∫
dz

(
g0A

†
p(z)As(z)Bs(z) + H.c.

)
(52)

Using this interaction Hamiltonian and following the
procedure outlined in Sec. II B we can derive the following
equations of motion for the pump, Stokes, and phonon fields
that are independent of the anti-Stokes field:

∂B̄s

∂t
+ v0

∂B̄s

∂z
= i(� − �s)B̄s − ig∗

0Ā
†
sĀp, (53)

∂Āp

∂t
+ vp

∂Āp

∂z
= −ig0ĀsB̄s, (54)

∂Ās

∂t
+ vs

∂Ās

∂z
= −ig∗

0 B̄
†
s Āp. (55)

A similar but independent set of equations of motion for the
pumps, anti-Stokes, and phonon field can be derived if we
choose the pump and anti-Stokes field to drive the anti-Stokes
phonon mode.

This set of equations, (53)–(55), where the Stokes process
is uncoupled to the anti-Stokes process, is similar to the case
of backward Brillouin scattering [42]. Following an approach
similar to that outlined in Secs. II B–II D and ignoring the
dynamics of the anti-Stokes field we get the spontaneously
scattered Stokes signal in the long-time limit τ → ∞ at
position z = L

〈|Ās(L)|2〉 = |g0|2|Āp|2L
v2

(n̄th + 1)e
G
2 (I0(G/2) − I1(G/2)),

(56)
where

G = 4|g0|2L|Āp|2
v�0

= GBPpL. (57)

In contrast to the results in Sec. II D, G is positive, indicating
that noise is exponentially amplified in intermodal scattering.
The dynamics and resulting noise properties in this system are
similar to those in backward Brillouin scattering. This is due to
the symmetry breaking between the Stokes and the anti-Stokes
processes and the assumption that the acoustic propagation
effects can be neglected when the acoustic dissipation is large.
Finally, since the single-pass gain G = GBPP L can be large,
we expect the exponential growth of spontaneously scattered
light to initiate stimulated forward Brillouin scattering in this
system.

2. High-optical-dispersion limit

In highly dispersive waveguides, such as slow-light pho-
tonic crystal and Bragg waveguides [33,65–68], enhanced
group velocity dispersion for the optical modes [see Fig. 3(b)]
can produce an appreciable difference in the Stokes and
anti-Stokes acoustic wave vectors. This can be seen from
qs ≈ �0/vg(ωp) and qas ≈ �0/vg(ωas). Such a difference in
wave vectors can only be resolved in waveguides whose
length permits appreciable dispersive walk-off between the
Stokes and the anti-Stokes frequencies. This can be seen by
considering the general interaction Hamiltonian in Eq. (12):

H int = �

∫
dz

(
g0A

†
p(z)As(z)Bs(z)ei(qs−�ks )z

+ g1A
†
as(z)Ap(z)Bs(z)ei(qs−�kas)z

) + H.c. (58)

As before, we have chosen the pump and Stokes fields
to drive the Stokes phonon mode, meaning that (q0,�0) →
(qs,�s) and B(z) → Bs(z). In this case, �ks = kp − ks = qs

and ωp − ωs = �s . For a sufficiently long waveguide such that
|�kas − qs | > π/L, the rapidly oscillating phase-mismatched
term for the anti-Stokes process in Eq. (58) averages to 0
if the fields are slowly varying in space. This results in the
following interaction Hamiltonian for the case of a high optical
dispersion:

H int ≈ �

∫
dz

(
g0A

†
p(z)As(z)Bs(z) + H.c.

)
. (59)

This interaction Hamiltonian produces dynamics similar to
that in the inter-modal case (i.e., Stokes and anti-Stokes
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processes are effectively uncoupled), permitting us to use
Eqs. (53)–(55) to describe the nonlinear dynamics. The
resulting dynamics and noise properties for a highly dispersive
optical waveguide system are, again, similar to those for the
intermodal case discussed above.

III. DISCUSSION AND CONCLUSION

In summary, we have presented a generalizable Hamilto-
nian treatment of forward Brillouin scattering that includes
the spatially distributed nature of coupling for modes involved
in forward Brillouin scattering. The Heisenberg equations of
motion were used to calculate the stimulated amplification of
Stokes light through forward Brillouin scattering. Spontaneous
scattering, resulting from thermal fluctuations of guided
acoustic phonons, was calculated by adding dissipation and
a Langevin driving force to the equation of motion for the
phonon field.

The coupling strength, which takes into account both
electrostriction and radiation pressure, can be calculated for
arbitrary waveguide geometry. This allowed us to derive
analytical expressions for forward scattering efficiency for
any waveguide, which could be useful in predicting and
understanding noise in many quantum optics experiments.
In addition, we showed that spontaneously scattered Stokes
signal can be calculated knowing the Brillouin gain coefficient
obtained from stimulated measurements, unifying the treat-
ment of spontaneous (formerly studied as GAWBS) with that
of stimulated forward Brillouin scattering.

We also showed that for intramodal scattering in the
nondispersive waveguide spontaneously scattered light grows
linearly with device length. This behavior is markedly different
from that for backward Brillouin scattering, where noise grows
exponentially, allowing noise to initiate stimulated Brillouin
scattering. This difference arises from the fact that, in forward
Brillouin scattering, phonons can simultaneously phase match
to both the Stokes and the anti-Stokes fields. However, this
degeneracy is broken for the case of highly dispersive systems
or intermodal scattering, leading to noise properties similar to
those of backward Brillouin scattering.

For intramodal scattering, we demonstrated that in the
undepleted pump regime the stimulated Stokes signal grows
quadratically with both the length and the pump power,
whereas the spontaneously scattered Stokes signal (i.e., spon-
taneous noise) grows linearly with the length and pump
power. These distinct behaviors suggest that forward Brillouin
amplification may have surprising benefits as further signal
processing applications are developed based on such interac-
tions.

Beyond the studies presented here, as different limits
of optical and acoustic dissipation are explored in forward
Brillouin systems, it might be important to consider laser
noise and the fluctuations of optical fields in addition to the
fluctuations of the phonon field.
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APPENDIX A: ACOUSTO-OPTIC HAMILTONIAN

In this Appendix we follow the approach outlined by Sipe
et al. [50] and express the acousto-optic Hamiltonian in terms
of envelope operators. Let us consider a waveguide segment of
length L that is axially invariant in the z direction and supports
both acoustic and optical modes. The complete opto-acoustic
Hamiltonian that takes into account all possible interactions
between light and sound for this system is given by [50]

H =
∫

πi(r)πi(r)

2ρ(r)
dr + 1

2

∫
Sij (r)cijkl(r)Skl(r)dr

+ 1

2μo

∫
Bi(r)Bi(r)dr + 1

2εo

∫
Di(r)βij (r)Di(r)dr.

(A1)

Here, π (r) is the conjugate momentum of the acoustic
displacement field operator u(r), ρ(r) is the density, cijkl(r)
is the elastic constant tensor, Sij (r) = 1/2(∂ui(r)/∂rj +
∂uj (r)/∂ri) is the strain operator, D(r) is the electric displace-
ment field operator, B(r) is the magnetic field operator, and
ε

ij
r (r) = 1/βij (r) is the relative dielectric constant tensor.

For a long-waveguide segment (i.e., L → ∞), the acoustic
displacement operator u(r) and the electric displacement
operator D(r) can be written using the normal mode expansion
as follows:

u(r) =
∑

α

∫
dq√
2π

√
��αq

2
bαquαq(r⊥)eiqz + H.c., (A2)

D(r) =
∑

γ

∫
dk√
2π

√
�ωγk

2
aγkDγ k(r⊥)eikz + H.c. (A3)

Here, bαq and aγk above represent the acoustic-mode ampli-
tude operator and the optical amplitude operator for a mode
with the transverse profile and longitudinal wave number given
by (uαq(r⊥),q) and (Dγ k(r⊥),k), respectively. �αq and ωγk

are the acoustic and optical frequencies, respectively. The
transverse modes are normalized such that

�2
αq

∫
dr⊥ρ(r⊥)u∗

αq(r⊥) · uαq(r⊥) = 1, (A4)

1

εo

∫
dr⊥β(r⊥)D∗

γ k(r⊥) · Dγ k(r⊥) = 1, (A5)

and the mode operators satisfy the following commutation
relations:

[bαq,bα′q ′ ] = 0, [bαq,b
†
α′q ′ ] = δαα′δ(q − q ′), (A6)

[aγk,aγ ′k′] = 0, [aγk,a
†
γ ′k′] = δγ γ ′δ(k − k′). (A7)

The quantized version of this Hamiltonian in terms of the mode
amplitude operators, neglecting the vacuum fluctuations and
writing the dominant interaction terms between the photons
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and the phonons, is

H = HA + H EM + V. (A8)

H =∑
α

∫
dq ��αqb

†
αqbαq +∑

γ

∫
dk �ωγka

†
γ kaγ k + ∑

α,γ,γ ′∫ dkdk′dq

(2π)
3
2

(a†
γ kaγ ′k′bαq

∫
dz g(γ k; γ ′k′; αq)ei(k′−k+q)z + H.c.).

The coupling term, g(γ k; γ ′k′; αq), for the process involving
annihilation of a photon to give a photon and a phonon is
given by

g(γ k; γ ′k′; αq) = 1

εo

√
�ωγk

2

√
�ωγ ′k′

2

√
��αq

2

×
∫

dr⊥(Di
γk(r⊥))∗Dj

γ ′k′(r⊥)

(
pijlm(r⊥)

× ∂ul
αq(r⊥)

∂rm
− δij

(
∂β(r⊥)

∂rl

)
ul

αq(r⊥)

)
.

Here, g(γ k; γ ′k′; αq) represents the distributed optomechan-
ical coupling between any set of optical or acoustic modes
supported by the system. The transverse optical- and acoustic-
mode profiles are Dγ k(r⊥), Dγ ′k′(r⊥) and uαq(r⊥), respec-
tively; here, γ , γ ′, and α are the optical- and phonon-mode
indices with wave vectors k, k′, and q, respectively. Note
that through our coupled-wave formlation in Sec. II, the
optomechanical coupling [Eqs. (13)–(15)] is approximated
by a single value of g(γ k; γ ′k′; αq), where k, k′, and q

are taken to be carrier wave vectors of the participating
wave packets. By comparison, the above expressions give the
exact coupling between all optical and acoustic modes of the
system. The first term on the right-hand side of this expression
for g(γ k; γ ′k′; αq) represents the coupling strength of the
photo-elastic interaction [i.e., generalization of Eq. (14)]. The
second term represents the displacement-induced change in
the relative dielectric profile, which represents the coupling
strength due to radiation pressure [i.e., generalization of
Eq. (15)]. Note that when the dielectric distribution is dis-
continuous, this second term must be expressed in the form of
Eq. (15).

At this point we introduce the envelope field operators to
represent acoustic (optical) excitation with a given transverse
mode α(γ ) that is centered around some wave number
qj (kj ):

Bαj (z,t) =
∫

dq√
2π

bαq(t)ei(q−qj )z, (A9)

Aγj (z,t) =
∫

dk√
2π

aγk(t)ei(k−kj )z. (A10)

The equal-time commutation relations for envelope field
operators can be derived from the commutation relations for
the mode operators and are given as follows:

[Bαj (z,t),B†
α′j ′(z′,t)] = δαα′δjj ′δ(z − z′), (A11)

[Aγj (z,t),A†
γ ′j ′ (z′,t)] = δγ γ ′δjj ′δ(z − z′). (A12)

Assuming that the optical or acoustic excitations are narrow-
band so that the excitation frequencies and the transverse-mode
profiles remain constant around the carrier wave numbers,

the elastic displacement and the electric displacement can be
expressed in terms of the envelope operators as

u(r,t) �
∑
αj

(√
��αj

2
uαqj

(r⊥)Bαj (z,t)eiqj z + H.c.

)
,

(A13)

D(r,t) �
∑
γj

(√
�ωγj

2
Dγ kj

(r⊥)Aγj (z,t)eikj z + H.c.

)
.

(A14)

Here, the sum over j represents the sum over all the acoustic
and optical excitation in the waveguide segment.

To write the Hamiltonian in terms of envelope field
operators we first Taylor expand the phonon frequency �αq

and the photon frequency ωγk around the carrier j ,

�αq = �αj + (q − qj )
∂�αq

∂q

∣∣∣∣
q=qj

+ . . . , (A15)

ωγk = ωγj + (k − kj )
∂ωγk

∂k

∣∣∣∣
k=kj

+ . . . , (A16)

where vαj = ∂�αq/∂q|q=qj
is the acoustic group velocity and

vγj = ∂ωγk/∂k|k=kj
is the optical group velocity.

Substituting (A15) and (A16) into the expression for H

in (A8) and using the relations (A9) and (A10) we can write
the Hamiltonian in terms of the envelope field operators,

HA =
∑
αj

(
��αj

∫
dz B

†
αj (z,t)Bαj (z,t)

− i�vαj

∫
dz B

†
αj (z,t)

∂Bαj

∂z
(z,t) + . . .

)
,

H EM =
∑
γj

(
�ωγj

∫
dz A

†
γj (z,t)Bγj (z,t)

− i�vγj

∫
dz A

†
γj (z,t)

∂Aγj

∂z
(z,t) + . . .

)
,

V =
∑

α,γ,γ ′

∑
j,j ′,l

(g(γ kj ; γ ′kj ′ ; αql)δ(kj ′ − kj + ql)

×
∫

dz A
†
γj (z,t)Aγ ′j ′ (z,t)Bαl(z,t) + H.c.).

In deriving the interaction term in the Hamiltonian, V , we have
taken the coupling strength g(γ kj ; γ ′kj ′ ; αql) out of the spatial
integral assuming that the coupling strength is constant over
narrow bands around carrier wave numbers.

Finally, the time evolutions of the envelope fields are then
given by Heisenberg equations of motion:

∂Bαj (z,t)

∂t
= 1

i�
[Bαj (z,t),H ], (A17)

∂Aγj (z,t)

∂t
= 1

i�
[Aγj (z,t),H ]. (A18)

The equal-time commutator relations in (A11) and (A12)
can then be used to find the coupled-mode equations for the
envelope fields. If we ignore the terms corresponding to the
higher order dispersion in the Hamiltonian, then it amounts
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to making a slowly varying envelope approximation for the
envelope fields.

APPENDIX B: STOKES-FIELD CORRELATION

In this Appendix, we derive the Stokes-field correlation. In
the limit of large acoustic damping a simple form for the
temporal- and spatial-dependent correlations of the Stokes
field can be derived. In this limit the phonon envelope is
determined by its instantaneous steady-state value, given by

B̄(z,t) ≈ B̄th(z,t) − i(g∗
0Ā

†
sĀp + g∗

1Ā
†
pĀas)

i� + �0
2

, (B1)

where � = �0 − � and

B̄th(z,t) =
∫ t

−∞
dτ e−(i�+ �0

2 )(t−τ )η(z,τ ). (B2)

This solution for B̄(z,t) can now be directly substituted into the
equations of motion for the Stokes and anti-Stokes envelopes
to give [

L̂s −χg∗
0g1Ā

2
p

χg0g
∗
1Ā

†
p

2
L̂as

][
Ās(z,t)

Ā
†
as(z,t)

]

= −i

[
g∗

0Āp

−g∗
1Ā

†
p

]
B̄

†
th(z,t),

where

χ = [−i� + �0/2]−1, (B3)

L̂s = ∂t + vs∂z − χ |g0|2|Āp|2, (B4)

L̂as = ∂t + vas∂z + χ |g1|2|Āp|2. (B5)

We assumed an undepleted pump and vs ≈ vas = v. These
coupled equations can be manipulated to give the equation of
motion for the Stokes field, including the back reaction from
anti-Stokes processes:[

∂t + vs∂z − χ�0vs

4L
G

]
Ās(z,t) = −ig∗

0ĀpB̄
†
th(z,t). (B6)

The solution for the Stokes field is given by

Ās(z,t) = −ig∗
0

∫ t

0
dτe

χ�0vs
4L

G(t−τ )ĀpB̄
†
th(z − vs(t − τ ),τ )

× θ (z − vs(t − τ )), (B7)

where Ās(0,t) = 0. By using the correlation properties of the
thermal phonon envelope,

〈B̄th(z,t)B̄†
th(z′,t ′)〉 = (n̄th + 1)e−i�(t−t ′)− �0

2 |t−t ′|δ(z − z′),
(B8)

the simplified form of the correlation function below can be
obtained:

〈Ā†
s(z + z′,t + t ′)Ās(z

′,t ′)〉

= −2|g0|2|Āp|2L
�0v2

s Re(χ )G
(n̄th + 1), ei�(t− z

vs
)− �0

2 |t− z
vs

|,

× e
−iIm(χ)�0G

4L
z[e

Re(χ)�0G

4L
|z| − e

Re(χ)�0G

4L
(z+2z′)]. (B9)

This expression describes the temporal and spatial correlations
in spontaneously scattered Stokes light. This expression can
be used to compute the power spectrum in a variety of
experimental scenarios. This equation shows that the spatial
and temporal correlation of the scattered Stokes light is limited
by the phonon lifetime �0.
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