
PHYSICAL REVIEW A 93, 063802 (2016)

Theory of TE-polarized waves in a lossless cubic-quintic nonlinear planar waveguide
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TE-polarized electromagnetic waves, guided by a three-layer slab structure consisting of a central film with
quartic permittivity placed between two half spaces with Kerr permittivity, are studied. Traveling-wave solutions
of Maxwell’s equations are expressed in terms of Weierstrass’s elliptic function ℘. A general dispersion relation
is derived and evaluated by using a phase diagram analysis. Emphasis is placed on the conditions of existence
and solvability of the dispersion relation. Numerical results are presented.
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I. INTRODUCTION

Several articles [1–9] have been published on the prop-
agation of monochromatic TE waves in a slab waveguide
structure consisting of a central film f placed between two
half spaces (substrate s and cladding c) as shown in Fig. 1.
Corresponding review articles [10–12] of this field summarize
the results and present specific references. A major part of
the papers is devoted to layers with nonlinear permittivities
of quadratic (Kerr-like) order. Furthermore, only few [6,13–
15] consider structures with all layers exhibiting nonlinear
permittivities leading to solutions in terms of elliptic functions
(instead of hyperbolic functions if, e.g., the film permittivity is
linear).

Within the theory of spatial solutions higher-order nonlin-
earities have been investigated [16–18], leading (in particular)
to a nonlinear Schrödinger equation with a cubic-quintic
nonlinearity [19]. Recently [20], analytical solutions of the
cubic-quintic-septimal Schrödinger equation together with
conditions for stable propagation of one-dimensional bright
spatial solitons were reported.

In the following, we consider a slab structure with a
quartic nonlinear permittivity of the film and a Kerr-nonlinear
permittivity of substrate and cladding. The analysis used is
different from the analysis in the aforementioned literature.
It is based on a combination of two approaches: Weier-
strass’s famous general solution of the ordinary differential
equation ( dJ

dx
)2 = R4(J ),R4(J ) being a fourth-degree poly-

nomial and the use of phase diagrams R(J ) to represent
solutions of certain nonlinear partial differential equations
(see [21,22]).

The paper is organized as follows. Section II states the
problem. The solution is presented in Sec. III. In Sec. IV
the solution is specified by physical (real, non-negative, and
bounded field intensities) conditions using a phase diagram
analysis. Evaluation of the dispersion relation is presented
in Sec. V. Results are elucidated by numerical examples in
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Sec. VI. A summary with comments concludes the paper in
Sec. VII.

II. STATEMENT OF THE PROBLEM

A planar waveguide structure, shown in Fig. 1, with lossless,
isotropic, homogeneous, and nonmagnetic material and a
(local) permittivity according to

ε =

⎧⎪⎨
⎪⎩

ε̄s = εs + as |Ey |2, x < 0

ε̄f = εf + af |Ey |2 + bf |Ey |4, 0 � x � h

ε̄c = εc + ac|Ey |2, x > h

(1)

is considered. A stationary tentative solution for TE-polarized
waves Ey(x,z,t),

Ey(x,z,t) = Ey(x,γ 2)ei(γ z−ωt), (2)

must satisfy Maxwell’s equations. The amplitude Ey(x,γ 2)
and the propagation constant γ are assumed to be real. Here ω

denotes the circular frequency of the wave [for a discussion of
modeling the problem by (1) and (2) see [23], Sec. 1]. Inserting
(2) into Maxwell’s equations, one obtains

E′′
y =

⎧⎪⎨
⎪⎩

(γ 2 − ω2μ0ε̄s)Ey, x < 0

(γ 2 − ω2μ0ε̄f )Ey, 0 � x � h

(γ 2 − ω2μ0ε̄c)Ey, x > h.

(3)

Defining k2
0 = ω2μ0ε0, rescaling x and γ by k0 and ε by ε0,

and replacing x and γ in Ey(x,γ 2) by rescaled arguments,
Helmholtz equations (3) can be written as

E′′ =

⎧⎪⎨
⎪⎩

(γ 2 − ε̄s)E, x < 0

(γ 2 − ε̄f )E, 0 � x � h

(γ 2 − ε̄c)E, x > h,

(4)

where E denotes Ey (with rescaled arguments) and the
ε̄ν (ν = s,f,c) are dimensionless.
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Using (1), multiplying (4) by E′, and integrating (with respect to E), one obtains

[J ′(x)]2 =

⎧⎪⎪⎨
⎪⎪⎩

−2asJ
3(x) + 4(γ 2 − εs)J 2(x) + 4CsJ (x) := Rs(J ), x < 0

−4bf

3
J 4(x) − 2af J 3(x) + 4(γ 2 − εf )J 2(x) + 4Cf J (x) := Rf (J ), 0 � x � h

−2acJ
3(x) + 4(γ 2 − εc)J 2(x) + 4CcJ (x) := Rc(J ), x > h,

(5)

where the intensity J (x) = E2(x) was introduced. Here the
Cν (ν = s,f,c) denote constants of integration, to be deter-
mined below.

The problem is to find physical (real, non-negative, and
bounded) solutions J (x) to Eqs. (5) that satisfy the boundary
conditions at the interfaces x = 0 and x = h together with the
conditions at infinity

J (x) → 0,
dJ (x)

dx
→ 0, |x| → ∞.

Obviously these conditions imply that Cs = Cc = 0 in
Eqs. (5).

III. SOLUTION

Disregarding the solution J (x) = const [24] in Eqs. (5),
the general solution for the substrate, film, and cladding can
be presented by using a formula due to Weierstrass [21]:

Jν±(x) = J0,ν +
1
2R′

ν(J0,ν)[℘(x; g2,ν ,g3,ν) − 1
24R′′

ν (J0,ν)] ± ℘ ′(x; g2,ν ,g3,ν)
√

Rν(J0,ν) + 1
24Rν(J0,ν)R′′′

ν (J0,ν)

2[℘(x; g2,ν ,g3,ν) − 1
24R′′

ν (J0,ν)]2 − 1
48Rν(J0,ν)R′′′′

ν (J0,ν)
, (6)

where ν = s,f,c and

g2,ν = 4
3 (γ 2 − εν)2, ν = s,c

g3,ν = − 8
27 (γ 2 − εν)3, ν = s,c

g2,f = 2af Cf + 4
3 (γ 2 − εf )2,

g3,f = 2
3af Cf (εf − γ 2) + 4

3bf C2
f − 8

27 (γ 2 − εf )3

(7)

are the invariants of Weierstrass’s function ℘(x; g2,ν ,g3,ν).
The prime denotes differentiation with respect to x for
℘(x; g2,ν ,g3,ν) and differentiations with respect to J for Rν(J ).
The J0,ν are real constants to be chosen appropriately so that
physical solutions are possible (see below).

Evaluating Eq. (6) for ν = s,c and taking the limit x →
±∞, one obtains

Js,c± → 0, J ′
s,c± → 0,

x

z

−y

h

claddingfilmsubstrate
c̄f̄s̄

FIG. 1. Geometry of the problem.

so the conditions at infinity are satisfied. If x = 0, Eq. (6)
yields

Js±(0) = Jf ±(0) = J0,s = J0,f := J0. (8)

If x = h, Eq. (6) implies

Jc±(h) = Jf ±(h) = J0,c := J (h). (9)

As is well known from the cubic case (bf = 0) [8], the solution
of the problem requires investigation of the dispersion relation
(DR) that relates the parameters of the problem (material
parameters εν,aν,bf and free parameters γ 2,J0,h). As in the
cubic case, the boundary conditions must be evaluated to
obtain the DR.

The electric field Ey according to Eq. (2) and its derivative
with respect to x and z must be continuous at the interfaces
x = 0 and x = h. Continuity with respect to z is obvious.
Continuity of E(x,γ 2) and E′(x,γ 2) implies continuity of
J (x,γ 2) and J ′(x,γ 2), respectively. Hence, in Eqs. (5),

Rs(J0) = Rf (J0), Rf (J (h)) = Rc(J (h)) (10)

lead to

Cf = J 3
0

3
bf + J 2

0

2
(af − as) + J0(εf − εs) (11)

and to

(J (h))3

3
bf + (J (h))2

2
(af − ac) + J (h)(εf − εc) = Cf , (12)

respectively. Equation (11) determines the integration constant
Cf (if J0,bf ,εf ,af ,εs,as are prescribed) and Eq. (12) is a
relation between the constants J (h) and J0. According to (6),
J0, J (h), and Jν±(x) must be physical (real, non-negative, and
bounded). This condition conveniently can be represented
by the graphs of Rν(J ), usually referred to as phase
diagrams (PDs).
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FIG. 2. Phase diagrams for physical Jf (x).

IV. PHASE DIAGRAM CONDITIONS FOR PHYSICAL
SOLUTIONS

As is well known, a phase diagram analysis is useful
for investigation of solutions of the nonlinear Schrödinger
equation [22,25]. Since Rν(J ) � 0 must hold, with J varying
monotonically until J ′ = 0, it is obvious that the roots of
Rν(J ) = 0 are essential for the behavior of J (x). A little
thought shows that the roots of Rν(J ) = 0 must fall into one
of the 19 categories of phase diagrams for Rf (J ) depicted in
Fig. 2. The PDs for Rs(J ) and Rc(J ) are shown in Fig. 3.

Physical solutions occur only if Jν±(x) lies in the intervals
[J1,J2] hatched in Figs. 2 and 3. This condition is referred to
as the phase diagram condition (PDC); J1,J2 are referred to as
PDC roots in the following: Eqs. (5) must be solved subject to
the PDC.

Weierstrass’s elliptic function ℘(x; g2,g3) and its derivative
℘ ′(x; g2,g3) are holomorphic with respect to x �= 0 (mod
2ω,2ω being the real period of ℘) and with respect to g2 and g3

(see [26], p. 635, formulas 18.5.1–18.5.4). The dependence of
g2 and g3 with respect to the parameters γ 2,εν,aν,bf ,J0,ν =
s,f,c [according to (7) and (11)] is also holomorphic. Since
only physical solutions of (5) are considered, then Jν± from

Rs(J), Rc(J)

J

FIG. 3. Phase diagram for physical Js(x),Jc(x).
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Eq. (6) is a continuous function with respect to x [including 0
(mod 2ω)] and with respect to all parameters γ 2,εν,aν,bf ,J0

(ν = s,f,c) as a superposition of the continuous functions [see
Eqs. (5), (7), and (11)].

V. SOLUTIONS OF THE DISPERSION RELATION

As is well known from the cubic case (see [7–11]) the DR
is a relation between all parameters of the problem. Neither γ

nor h is contained in Eq. (12), but if J (h) is replaced by Jf ±
according to Eq. (6),

J (h)(J0,bf ,εν,aν) = Jf ±(γ 2,J0,bf ,εν,aν,h), ν = s,f,c

(13)

then one obtains the equation

[Jf ±(γ 2,J0,bf ,εν,aν,h)]3

3
bf

+ [Jf ±(γ 2,J0,bf ,εν,aν,h)]2

2
(af − ac)

+ Jf ±(γ 2,J0,bf ,εν,aν,h)(εf − εc) = Cf (14)

that satisfies the requirements for a dispersion relation if (13)
can be fulfilled subject to the PDC. The first condition for
Eq. (13) to hold is the existence of a positive root J (h) of
Eq. (12). Assuming lossless media, the material parameters
in Eq. (12) are real, so Eq. (12) has at least one real root
J (h); if there is at least one change of sign in the sequence of
coefficients, at least one positive root J (h) exists. The second
condition for the validity of Eq. (13) is that both J (h) [as a
root of Eq. (12)] and Jf ± [given by Eq. (6)] satisfy the PDC.
Due to the continuity of Jf ±(γ 2,J0,bf ,εν,aν,h), Eq. (14) is
continuous with respect to all parameters of the problem.

We now examine (13) (omitting ± for simplicity) for the
PDs in Figs. 2 and 3. There are three categories of PDs. First
we assume that the discriminant � of Rf (J ) [� = 256(g3

2,f −
27g2

3,f )] does not vanish [Figs. 2(a), 2(b), 2(d), and 2(e)], so
there are at least two simple PDC roots J1,J2 of Rf = 0 [see,
for example, Fig. 2(d)]. Near J1 we have(

dJf

dx

)2

= [Jf (x) − J1]R′
f (J1) + O([Jf (x) − J1]2) (15)

as Jf (x) → J1. Hence

Jf (x) = J1 +
(

x − x1

2

)2

R′
f (J1) + O((x − x1)3) (16)

as x → x1, with Jf (x1) = J1. The same equation holds near
x2: Jf (x2) = J2. Since R′

f (J1) > 0 and R′
f (J2) < 0, Jf (x) has

a (local) minimum at x1 and a (local) maximum at x2, so
dJf

dx
changes the sign at x1 and x2. Hence Jf (x) ∈ [J1,J2]

for all x. If at any point x0 (without loss of generality we
may assume that x0 = 0) Jf (0) = J0 ∈ [J1,J2] and the sign of
dJf

dx
is prescribed, the solution Jf (x) is uniquely determined.

Returning to (13), since Jf is continuous, it takes all values in
[J1,J2]. If (due to PDs in Fig. 3)

as,ac > 0, γ 2 > max{εs,εc}, J0 ∈
(

0,
2(γ 2 − εs)

as

]

(17)

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

J0

J (h)

3

1.12

12.48

FIG. 4. Relation of J (h) on J0 (the parameters are given in
the text).

and if

J (h) ∈ [J1,J2] ∩
[

0,
2(γ 2 − εc)

ac

]
�= ∅ (18)

holds for any of the PDs of Fig. 2, then (13) can be satisfied
and thus a solution of the DR exists.

Summing up, first, for the case � �= 0, sufficient conditions
for the existence and solvability (ESC) of solution tuples of
the DR (14) are the existence of at least one positive root of
Eq. (12), J (h) ∈ [J1,J2] ∩ [0,

2(γ 2−εc)
ac

] �= ∅, and the conditions
(17).

The DR can be evaluated with Jf + or Jf − leading to
different solutions of the DR. According to the foregoing
analysis, both Jf +(x) and Jf −(x) oscillate between J1 and
J2 with the same period

ωf = 2
∫ J2

J1

dJ√
Rf (J )

,

having the same shape and different only by the sign of dJf

dx
|x=0.

If, second, � = 0, g2,f > 0, and g3,f < 0, at least one
double PDC root of Rf (J ) = 0 exists. Considering, e.g.,
Fig. 2(j) (which describes a kink solitary wave in bulk media
[25]) the behavior of Jf (x) near any double root J̃ is given by

(
dJf

dx

)2

= [Jf (x) − J̃ ]2R′′
f (0) + O([Jf (x) − J̃ ]3). (19)

Hence R′′
f (0) > 0 is necessary. For bounded Jf (x) one obtains

from (19)

Jf (x) ≈ J̃ + conste±√
R′′

f (0)x

as x → ∓∞. Thus, Jf (x) asymptotically reaches a minimum
J1 = 0 [Fig. 2(j)] for x → −∞ and a maximum J2 for
x → +∞.

If, third, � = 0, g2,f = 0, and g3,f = 0, the polynomial
Rf (J ) has a triple root J1 [see Figs. 2(k) and 2(l)]. In this case
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0 1 2 3 4 5 6

2

3

4

5

6

7

h

γ2

1.28

4.81

7.364

FIG. 5. Branches of the DR (14) and solutions h = 3 and γ 2
1 =

1.289, γ 2
2 = 4.817, and γ 2

3 = 7.364 for the same parameters as
in Fig. 4.

one obtains(
dJf

dx

)2

= (Jf (x) − J1)3R′′′
f (J1) + O((Jf (x) − J1)4). (20)

Due to the PD [Figs. 2(k) and 2(l)] bf > 0 holds; due to the
PDC af < 0 must hold. Since R′′′

f (J1) = −4(8bf J1 + 3af ),
Eq. (19) implies Jf (x) > 0 if J1 = 0 and Jf (x) < J1 (J1 =
− 3af

2bf
). Thus Jf (x) takes values according to the PDC from

(0,J1] in Fig. 2(k) and from (0,J2] in Fig. 2(l).
Summing up, in all cases of PDs according to Fig. 2

the continuous function Jf (x) takes values between two
successive PDC roots J1,J2 of Rf (J ) = 0, so the ESCs are
valid for each of the three categories. Thus, if the ESCs are
satisfied Eq. (13) holds, so tuples {γ 2,h,J0,bf ,εν,aν} exist that
are consistent with the DR (14).

3.0 3.5 4.0 4.5 5.0 5.5

2

4

6

8

10

12

14

J0

γ2

FIG. 6. Branches of the DR (14) with h = 3 for the same
parameters as in Fig. 4.

0 1 2 3 4 5 6

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

h

γ2

1.63

FIG. 7. Branches of the DR 14 with J (0) = 3 (for the same
parameters as in Fig. 5), evaluated with Jf −(h) according to Eq. (6)
(for the same parameters as in Fig. 4).

It should be emphasized that, with the ansatz (2), the
solution (6) and the DR (14) are valid in general for a
permittivity according to (1). Clearly, if, e.g., bf = 0 and
af �= 0, the set of all allowed PDs (there are five) is different
from those in Fig. 2 and thus are the PDC roots J1,J2.
Nevertheless, the PDs can be classified by the discriminant �

as before (the case � = 0, g2 = 0, and g3 = 0 is impossible)
and the proof of the ESC is the same with the same result. If,
e.g., bf �= 0 and af = 0, the same conclusion holds.

The particular case bf = 0, εs = 1, εf = 9, εc = 4, as =
ac = 0, and J0 = 1 and the relation of the subcases af �= 0
and af = 0 was considered in [9]. A result was the claim of a
new propagating regime (af �= 0) with no connections to the
linear case (af = 0). Due to the continuity of (14) with respect
to af , without going into details, we note that the linear DR
is the limit of the nonlinear DR as af → 0, so the claim is
unfounded.

3.0 3.5 4.0 4.5 5.0 5.5 6.0

2

4

6

8

10

12

14

J0

γ2

FIG. 8. Branches of the DR (14), evaluated with Jf −(h), h = 3,
for the same parameters as in Fig. 4.
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x
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x
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FIG. 9. Intensity patterns Jν±(x,γ 2). Inside the film Jf +(x,γ 2
1 ) (black curve), Jf +(x,γ 2

2 ) (red curve), and Jf −(x,γ 2
3 ) (green curve). Values

for γ 2
1 ,γ 2

2 ,γ 2
3 are in the text.

A final remark seems appropriate with respect to the
choice of the sought parameters of (14). Usually, the material
parameters εν , aν , and bf and J0 or h are prescribed and the
relation γ 2(h) or γ 2(J0) is sought. Subject to the ESCs, Eq. (14)
relates all quantities or parameters. Even if, e.g., only εf and
εc are chosen, free solutions of (14) exist. The same holds if,
e.g., J0 and h or if J0 and εf are free, with other conditions
remaining the same. Numerical examples for these cases are
presented in the following section.

VI. NUMERICAL EVALUATIONS

The results of Sec. V can be elucidated numerically. Let
[see (16)] bf = 0.04, af = −0.2, εf = 1.3, as = 0.1, εs = 1,

0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

1

2

3

4

5

6

J0

h

FIG. 10. Branches of the DR (14), evaluated with Jf −(h), for the
parameters γ = 2.7, bf = 10−2, af = 10−2, εf = 9, ac = as = 0,
εs = 1, and εc = 6.

ac = 0.15, and εc = 1.2. The intensities (scaled in units of
the intensity J (0) = J0 at the boundary x = 0) J0 and J (h) in
(17) and (18) are related (see Fig. 4) by Eq. (12). The PDC
roots J1,J2 of Rf (J ) = 0 depend on γ 2,J0,εν,aν (ν = s,f ).
Let the ESC be satisfied according to one of the PDs in Figs. 2
and 3. To find a solution triple {γ 2,J0,h} consistent with the
parameters above, there are two possibilities. If J0 is fixed
(e.g., J0 = 3), two J (h) are possible (see Fig. 4). Disregarding
intersections with higher branches, the DR (γ 2,h) yields three
values γ 2

1 ,γ 2
2 ,γ 2

3 (= 7.364) at h = 3 (see Fig. 5). For γ 2 =
γ 2

1 , (17) is satisfied only if J (h) = 1.125. For γ 2 = γ 2
2 , (17)

and (18) are satisfied for J (h) = 1.127 and for J (h) = 12.480).
Consistent with this result, Eq. (6) yields Jf +(3) = 1.125 for
γ 2

1 and γ 2
2 and Jf +(3) = 12.480 for γ 2

3 .

0.6 0.8 1.0 1.2 1.4

2

4

6

8

10

J0

f

FIG. 11. Branches of the DR (14), evaluated with Jf −(h), for the
same parameters as in Fig. 10, but h = 4 and εf free.
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2 4 6 8 10

2

4

6

8

10

c

f

FIG. 12. Branches of the DR (14), evaluated with Jf −(h), for the
same parameters as in Fig. 10, but γ = 3.1 and εc,εf free.

If instead of J0, h is fixed (e.g., h = 3), the graph of the
DR (γ 2,J0) is shown in Fig. 6. Choosing J0 = 3, one obtains
γ 2

1 ,γ 2
2 ,γ 2

3 as before (as expected). So there is no essential
difference by using the DR (γ 2,h) or the DR (γ 2,J0).

The foregoing results were obtained by using Jf + in the
DR (14). If Jf − is used, evaluation of the corresponding DR
(γ 2,h) leads to a graph shown in Fig. 7. Following the lines
as before (for Jf +) and assuming the same parameters as
before, one obtains the DR (γ 2,J0) graphically presented in
Fig. 8 and, remarkably, Jf −(h) = Jf +(h) = 1.125 for h =
3 and γ 2

4 = 1.63 (see the intensity patterns in Fig. 9). The
present example corresponds to the phase diagram in Fig. 2(d).
Figures 10–12 refer to the final remark in Sec. V, illustrating
the large scope of the DR (14).

VII. SUMMARY

The basis of the foregoing analysis is Weierstrass’s seminal
treatment [21] of the elliptic differential dx√

R4(x)
(with R4 as a

fourth-degree polynomial) and a series of articles by Gagnon
et al. [22] on exact solutions of the nonlinear Schrödinger
equation, where phase diagram considerations were used. To
be more specific, the combination of Weierstrass’s formula
(6) with a phase diagram analysis of Rν(J ) yields an exact
solution of the problem addressed in this paper.

The following are the main results:
(i) The PDC represents all physical solutions Jν(x), corre-

sponding to PDs in Figs. 2 and 3. If, finally, a solution has been
found, the corresponding PDs in Figs. 2 and 3 must occur.

(ii) The Jν±(x) are given in general by Eq. (6).
(iii) The dispersion relation (14) is valid in general

(including af = 0 and bf = 0), subject to the PDC.
(iv) A (sufficient) existence and solvability condition for

the dispersion relation (14) is presented using the PDC.
(v) Due to the compact representation of Jν±(x) and of

the dispersion relation according to (6) and (14), numerical
evaluation is straightforward and simple.

Additionally, it should be emphasized that, in contrast to
[7–11], where fields and DRs (for the Kerr nonlinearity) are
presented in terms of Jacobi elliptic functions, the foregoing
results are given [according to Eq. (6)] in terms of Jν± and
thus by Weierstrass’s elliptic function ℘(x; g2,g3). Despite the
equivalence of the Jacobi and Weierstrass elliptic functions,
this is not a matter of preference. In [7], for instance, a case
distinction is necessary (with respect to λ and K) to describe
field amplitudes and DRs, because varying λ and K in the
modulus m(λ,K) leads to different Jacobi functions. The use of
Eq. (6) avoids these complications, thus simplifying evaluation
considerably. The fields Jν±(x) (ν = s,f,c) are represented
by Eq. (6) in general, so no case distinction is necessary for
the DR. Equation (14) is valid in general for a fourth-degree
nonlinearity; it comprises the Kerr and constant permittivity
due to the continuity of (14) with respect to af [27] and bf (see
remarks at the end of Sec. V). Without presenting numerical
examples, we note that the material parameters can be chosen
so that waveguides with metamaterial can be modeled by the
present method.

In conclusion, two points should be mentioned. The present
method does not work if the media are lossy (see [8], p. 1047,
and [7], p. 537). For this case, an integral equation procedure
has been proposed [23]. Definitely, it is not necessary to explain
the occurrence of singular field intensities [7] by the absence of
loss. The PDC exclude singular intensities from the beginning.

The occurrence of different solutions of the DR (see
Fig. 9) leads to the question of stability. It may be that only
certain branches of the DR in Figs. 5–8 correspond to stable
modes. Thus, a stability analysis would be worthwhile for
applications [20].
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