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Second-order virial expansion for an atomic gas in a harmonic waveguide
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The virial expansion for cold two-component Fermi and Bose atomic gases is considered in the presence of
a waveguide and in the vicinity of a Feshbach resonance. The interaction between atoms and the coupling with
the Feshbach molecules is modeled using a quantitative separable two-channel model. The scattering phase shift
in an atomic waveguide is defined. This permits us to extend the Beth-Uhlenbeck formula for the second-order
virial coefficient to this inhomogeneous case.
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I. INTRODUCTION

The use of magnetic Feshbach resonances permits one to
achieve the unitary regime in atomic gases where universal
thermodynamic properties such as the equation of state (EOS)
are expected [1,2]. Dramatic progress in cold-atom experi-
ments makes it possible to achieve precise measurement of the
EOS for two-component fermions in the BEC-BCS crossover
[3–7]. More recently the EOS for a strongly interacting Bose
gas has also been the subject of intensive studies [8–10].
However, even in the nondegenerate regime, large three-body
atomic losses prevent the achievement of global thermal
equilibrium in a Bose gas [8]. In the resonant scattering regime,
due to the large separation of scale between the short range
of the interatomic forces and the scattering length, few-body
systems also have universal properties exemplified by the
Efimov effect [11]. In this context, the virial expansion, where
the nth-order term is known from the solution of the n-body
problem, achieves a remarkable bridge between the few- and
the many-body problems [12]. For nondegenerate gases and for
sufficiently low densities and high temperatures, the fugacity
is a small parameter and the virial expansion is thus a way
to derive an accurate EOS. Consequently, virial expansion is
a subject of current interest in studies of the two-component
Fermi gas [13–24] and also of the Bose gas, where the Efimov
effect plays an important role [25,26]. Concerning Bose gases,
the momentum distribution has been measured recently [10]
and a law at second order of the fugacity including both
elastic and inelastic processes has been derived [9]. Based on
single-channel models, there are now very accurate evaluations
of the third and even of the fourth virial coefficients [27] in
homogeneous strongly interacting gases. Currently there are
three methods to derive the virial coefficients from a given
model: the harmonic oscillator method [15–17,19–23,25],
the diagrammatic method [18], and the T -matrix method
[20,28]. At second order of the expansion, Beth and Uhlenbeck
showed that the contribution of the interaction to the virial
coefficient can be expressed in terms of the scattering phase
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shifts for all partial waves [29]. In the context of cold atoms,
collisions are dominated by two-body s-wave scattering and
the second virial coefficient can thus be expressed as a function
of the s-wave scattering phase shift. In current experiments
it is also possible to trap cold atoms in highly anisotropic
external harmonic potentials. This permits one to achieve
one-dimensional (1D) or two-dimensional (2D) systems in
the limit where all the characteristic energies, including the
temperature, are lower than the atomic zero-point energy of
the tight direction(s) of the trap [30]. In this way the 2D EOS
for a two-component resonant Fermi gas has been measured
[31,32]. On the theoretical side, highly anisotropic traps can be
modeled by considering harmonic atomic waveguides, where
interatomic collisions are well known in the low-energy limit
[33–35]. The first terms of the virial expansions for strictly 1D
or 2D gases using the single-channel approach have also been
studied and the Beth-Uhlenbeck formula for pure 2D or 1D
systems is well established [36,37].

In this paper, we aim at answering two issues: first, how
the molecular state contributes to the Beth-Uhlenbeck formula
near a Feshbach resonance and, second, how this formula can
be generalized when one considers atomic waveguides where
several transverse modes are populated and, thus, when the
dimensionality of the system is between the strict 1D or 2D and
the three-dimensional (3D) limit. The latter issue is especially
relevant for atomic waveguides, where few transversal modes
are populated. One can wonder how the low-dimensional limit
is reached in a regime where the local density approximation
(LDA) does not apply.

In this paper, we extend the Beth-Uhlenbeck relation for
the second-order virial term to the case of atoms coherently
coupled with diatomic molecules in a 2D or a 1D harmonic
waveguide. To this end, we use a two-channel modeling of
the Feshbach resonance. Our main results are as follows: first,
we define the notion of scattering phase shift in an atomic
waveguide in Eq. (66); second, we calculate the second-order
virial coefficient in Eq. (83) by using the T -matrix and the
diagrammatic approaches.

The structure of the paper is as follows. In Sec. II A and
Sec. II B we introduce the notations for atoms and molecules
in atomic waveguides and consider the thermodynamic
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equilibrium. This permits us to define the cumulant, cluster,
and virial expansions in Sec. II C, Sec. II D, and Sec. II E.
The link between the two expansions is done with the cluster
expansion in Sec. II D. By the way, in Appendix we consider
the noninteracting gas, which makes it possible to define the
domain of validity of the LDA in the thermodynamic limit. In
Sec. III A we introduce a separable two-channel model already
used for bosons or fermions in the vicinity of a magnetic
Feshbach resonance [38–43]. We then obtain the full T matrix
of the model in Sec. III B and define the notion of scattering
phase shift in a waveguide in Sec. III C. In Sec. III D we use the
T -matrix formalism to deduce the Beth-Uhlenbeck relation.
Eventually in Sec. IV, we adapt the method of Ref. [18] to the
two-channel model and deduce the Beth-Uhlenbeck formula
from modified Feynman diagrams.

II. VIRIAL AND CUMULANT EXPANSIONS
IN ATOMIC WAVEGUIDES

A. Harmonic waveguides

In this paper we consider structureless particles (atoms or
molecules) in one-dimensional (D = 1) or two-dimensional
(D = 2) waveguides. Our formalism includes also the case
where there is no external potential (D = 3). For D = 2, the
waveguide is a harmonic oscillator in the z direction, and for
D = 1, it is an isotropic harmonic oscillator in the x-y plane.
The molecules are created from pairs of atoms by means of
the Feshbach mechanism. We denote the trap frequency of the
harmonic waveguides ω and we assume that it is the same
for atoms and molecules considered in this paper (see the dis-
cussion in Appendix B of Ref. [38]). The threshold of the
energy continuum in the open channel is denoted E0:

E0 = (3 − D)�ω

2
. (1)

The internal quantum numbers of the species are labeled by
η: η = b for atomic bosons in the open channel, η = ↑,↓ for
two-component fermions in the open channel, and η = m for
diatomic molecules in the closed channel. The mass of species
η is then denoted mη. For convenience, we denote also the
mass of the bosonic and ↑ fermionic species m = mb = m↑.
The quantum numbers for single particles are denoted α and
the one-body energy for the species η = b,↑,↓ is denoted εα

η .
For example, in 2D waveguides α = (kx,ky,nz), where (kx,ky)
are the wavenumbers for the free directions (x,y) and nz is the
quantum number of the harmonic oscillator associated with
the trap along z and

εα
η = �

2

2mη

(
k2
x + k2

y

) + �ω

(
nz + 1

2

)
. (2)

We also introduce, for convenience, the index η = r to
denote the relative particle associated with two bosons in a
Bose gas (or of a pair ↑↓ in the Fermi gas) with relative mass
mr = m/2 (or mr = m↓

1+m↓/m
). The center of mass of this pair

is denoted by the index η = c, with the mass mc = 2m for
bosons and mc = m + m↓ for fermions. The molecular state
has an internal energy with respect to the 3D open-channel
continuum denoted Em. The one-body energy of the molecular

state is thus

εα
m = εα

c + Em. (3)

B. Thermodynamics at equilibrium

We adopt a grand canonical description of the system
at equilibrium at temperature T , with the grand potentials
denoted �B (�F ) for a Bose gas (a Fermi gas). The chemical
potential for each species η is denoted μη and the fugacity
is denoted zη = eβμη , where β = 1/(kBT ). To perform the
thermodynamic limit, we assume periodic boundary con-
ditions in the free direction(s) of the atomic waveguides
by introducing a D-dimensional box of length L. We then
consider arbitrarily large values of L for a fixed temperature
and chemical potentials. Next we assume that the summation
over a wavenumber, say, along direction z, is continuous:∑

kz
≡ L

∫
dkz

(2π) . The thermodynamic equilibrium between
molecules and atoms implies, in a Bose gas,

μm = 2μb, zm = (zb)2 (4)

and, in a Fermi gas,

μm = μ↑ + μ↓, zm = z↑z↓. (5)

Consequently, the mean conserved numbers of particles are
obtained from the grand potentials by

〈N̂b〉 + 2〈N̂m〉 = −∂�B

∂μb
, 〈N̂↑/↓〉 + 〈N̂m〉 = − ∂�F

∂μ↑/↓
. (6)

Another important thermodynamic quantity is the D-
dimensional spatial density of species η, defined by

ρ
η

D = 〈N̂η〉
LD

. (7)

For a 2D (1D) atomic waveguide ρ
η

D is the areal (the linear)
density of species η. In what follows, we use the one-body
canonical partition function in the atomic D-dimensional
waveguide for the species η = b and ↑,

Q = (L/λ)D

[2 sinh(β�ω/2)]3−D
, (8)

where λ is the de Broglie wavelength,

λ =
√

2πβ�2

m
. (9)

C. Cumulant expansion

Instead of considering directly the expansion of the grand
potential in terms of the densities, it is easier to deal with
the expansion in terms of the fugacities. Both expansions are
sometimes called the virial expansion, however, we make a
distinction between the two by denoting the second one the
cumulant expansion [25]. Following Ref. [19], we define the
cumulants bn (bn,p) for a Bose gas (a Fermi gas) with

�B = −Q

β

∑
n�1

bn(zb)n, �F = −Q

β

∑
n,p � 0

n + p �= 0

bn,p(z↑)n(z↓)p.

(10)
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The cumulants can thus be deduced from the mean conserved
numbers of particles by using Eq. (6). For a Bose gas one
obtains

〈N̂b〉 + 2〈N̂m〉 = Q
∑
n�1

n bn(zb)n, (11)

and for a Fermi gas

〈N̂↑〉 + 〈N̂m〉 = Q
∑

n,p�0

n bn,p(z↑)n(z↓)p, (12)

〈N̂↓〉 + 〈N̂m〉 = Q
∑

n,p�0

p bn,p(z↑)n(z↓)p. (13)

D. Cluster expansion

In a Bose gas we define a cluster of order n as the set
of eigenstates of the many-body Hamiltonian composed of
Nb bosons and Nm molecules such that Nb + 2Nm = n. The
canonical partition function for this cluster is denoted Qn. In
a Fermi gas, a cluster of order (n,p) is the set of eigenstates of
the many-body Hamiltonian composed of N↑ fermions ↑,N↓
fermions ↓, and Nm molecules such that N↑ + Nm = n and
N↓ + Nm = p. The canonical partition function for this cluster
is denoted Qn,p. Using Eqs. (4) and (5), the cluster expansions
for the grand potentials are

�B = −1

β
ln

⎛
⎝1 +

∑
n�1

Qn(zb)n

⎞
⎠, (14)

�F = −1

β
ln

⎛
⎜⎜⎜⎝1 +

∑
n,p � 0

n + p �= 0

Qn,p(z↑)n(z↓)p

⎞
⎟⎟⎟⎠ (15)

for small fugacities:

�B = −1

β

{
Q1zb +

[
Q2 − (Q1)2

2

]
(zb)2 + · · ·

}
, (16)

�F = −1

β

{
Q1,0z↑ + Q0,1z↓ + (Q1,1 − Q1,0Q0,1)z↑z↓

+
[
Q2,0 − (Q1,0)2

2

]
z2
↑ +

[
Q0,2 − (Q0,1)2

2

]
z2
↓+ · · ·

}
.

(17)

We have Q1,0 = Q1 = Q. The cumulants of Eq. (10) can thus
be expressed in terms of the canonical partition function for a
Bose gas,

b1 = 1, b2 = Q2

Q
− Q

2
, (18)

and for a Fermi gas,

b1,0 = 1, b0,1 = Q0,1

Q
, b2,0 = Q2,0

Q
− Q

2
; (19)

b0,2 = Q0,2 − (Q0,1)2/2

Q
, b1,1 = Q1,1

Q
− Q0,1. (20)

The expressions of the cumulants for a Bose (Fermi) gas
without interaction, denoted b(0)

n (b(0)
n,p), are given in the

Appendix.

E. Virial expansion

As a consequence of the interchannel coupling, the numbers
of atoms or molecules are not conserved quantities. Thus, as the
virial expansion is a polynomial in terms of densities, we define
it in this context by taking into account the conservation laws
for N̂b + 2N̂m and N̂↑/↓ + N̂m. Moreover, due to the presence
of a D-dimensional atomic waveguide we perform the virial
expansion in terms of the densities ρ

η

D in Eq. (7):

�B = −Q

β

∑
n�1

(λ)nDan

(
ρb

D + 2ρm
D

)n
, (21)

�F = −Q

β

∑
n,p � 0

n + p �= 0

(λ)(n+p)Dan,p

(
ρ

↑
D + ρm

D

)n(
ρ

↓
D + ρm

D

)p
.

(22)

In Eq. (21) [Eq. (22)], an (an,p) are the virial coefficients for a
Bose gas (a Fermi gas). In this expression the ratio ρm

D/ρ
η

D for
η ∈ {b,↑,↓} is an important quantity which does not appear
in the usual one-channel models. It can be evaluated for a
two-channel model by using the Hellman-Feynmann theorem
[38]. The general relation of the molecular density in terms of
the contact permits one to conclude that for a broad resonance
ρm

D is also negliglible with respect to the particle density(ies)
in the open channel [44]. In the latter regime, one thus recovers
the usual virial expansion.

Combining virial and cumulant expansion of the grand
potential together with the relation between the D-dimensional
density and the cumulants from Eqs. (7), (11), (12), and (13),
one finds the relation between the virial coefficients and the
cumulants:

a1 = LD

λDQ
, a2 = − L2Db2

λ2DQ2
; (23)

a1,0 = a0,1 = LD

λDQ
, a1,1 = −L2Db1,1

λ2DQ2b0,1
; (24)

a2,0 = −L2Db2,0

λ2DQ2
, a0,2 = − L2Db0,2

λ2DQ2(b0,1)2
. (25)

III. BETH-UHLENBECK FORMULA IN ATOMIC
WAVEGUIDES

A. Separable two-channel model

The atom-atom interaction and atom-molecule coupling
are described by using the separable two-channel model
introduced for a two-component Fermi gas in Ref. [38] and for
identical bosons in Refs. [39–43]. Atoms evolve in the open
channel and molecules in the closed channel. In this simplified
model, atoms and molecules are structureless particles and we
consider only a single diatomic molecular state. The Feshbach
mechanism corresponds to the coherent coupling between the
molecular state and a pair of atoms of reduced mass mr and
total mass mc. We denote the free Hamiltonian for a pair of
atoms Ĥ a

0 and the free Hamiltonian for a single molecule Ĥ m
0 .
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The Hamiltonians Ĥ a
0 and Ĥ m

0 include the external potential if
it exists. For convenience, we adopt a matrix formalism. The
free Hamiltonian for the two-body problem is

[Ĥ0] =
[
Ĥ a

0 0

0 Ĥ m
0

]
. (26)

In this paper, we assume separability between the relative and
the center-of-mass motions. This is the case for the harmonic
waveguides considered in this paper. The quantum numbers of
the eigenstates of Ĥ a

0 are denoted (αc) for the center of mass
and (αr) for the relative particle. They are denoted (αm) for the
eigenstates of Ĥ m

0 :

[Ĥ0]

[|αr,αc〉
|αm〉

]
=

[(
εαc

c + εαr
r

)|αr,αc〉
εαm

m |αm〉

]
. (27)

To model the direct interaction and the Feshbach coupling, we
introduce the operator

Âε = 1̂Com ⊗ 〈δε |, (28)

where 1̂Com is the identity operator in the Hilbert space
associated with the center of mass of a pair of atoms or of
a molecule and the bra 〈δε | acts on the states associated with
the relative particle of a pair. In Eq. (28) the state |δε〉 belongs
to the Hilbert space of the relative motion for two particles in
the open channel and permits one to introduce a cutoff in the
model. For convenience we choose a Gaussian shape, and in
configuration space and the momentum representation one has

〈r|δε〉 = exp(−r2/ε2)

ε3π3/2
, 〈k|δε〉 = exp(−k2ε2/4). (29)

In Eq. (29), ε is the short-range parameter of the model. It is
of the order of the characteristic radius of the actual potential
experienced by atoms or of the size of the actual molecular
states (i.e., of the order of a few nanometers). Using these
notations, the direct interaction between two atoms is given by
a separable pairwise potential characterized by the strength g:

V̂ a = gÂ†
εÂε. (30)

The coherent coupling between a pair of atoms in the open
channel and a molecule is

V̂ ma = Âε, (31)

where  is a real parameter. Previous studies showed that
using the same state |δε〉 in the direct interaction and in the
interchannel coupling is sufficient to obtain a quantitative
description of two-body scattering and shallow bound states
[39]. The Hamiltonian of the two-body problem is denoted

[Ĥ ] = [Ĥ0] + [V̂ ], (32)

where we have used a matrix notation for the potential of the
two-channel model,

[V̂ ] =
[

V̂ a V̂ am

V̂ ma 0

]
, (33)

and V̂ am = (V̂ ma)†.

B. Transition operator for the two-channel model

In what follows, we obtain the transition operator of the
model by using the resolvent method. For this purpose we
introduce the resolvent for a noninteracting pair of atoms
(denoted Ĝa

0) and the resolvent for a molecule (denoted Ĝm
0 ):

Ĝa
0(s) = 1

s − Ĥ a
0

, Ĝm
0 (s) = 1

s − Ĥ m
0

. (34)

The resolvent of the free two-body Hamiltonian is

[Ĝ0(s)] =
[
Ĝa

0(s) 0

0 Ĝm
0 (s)

]
. (35)

The transition operator has a matrix form,

[T̂ (s)] =
[

T̂ a(s) (T̂ ma(s))†

T̂ ma(s) T̂ m(s)

]
, (36)

and verifies the Lippmann-Schwinger equation,

[T̂ (s)] = [V̂ ] + [V̂ ][Ĝ0(s)][T̂ (s)]. (37)

One finds the following matrix elements for the transition
operator:

T̂ a(s) = V̂ a + V̂ amĜm
0 (s)V̂ ma + V̂ aĜa

0(s)T̂ a(s)

+ V̂ amĜm
0 (s)V̂ maĜa

0(s)T̂ a(s), (38)

T̂ ma(s) = V̂ ma + V̂ maĜa
0(s)T̂ a(s), (39)

T̂ m(s) = V̂ ma
[
Ĝa

0(s) + Ĝa
0(s)T̂ a(s)Ĝa

0(s)
]
V̂ am. (40)

Using the separable form of the potentials in Eqs. (30) and
(31) one finds

T̂ a(s) = Â†
εÂε

1

ĝeff(s)
− ÂεĜ

a
0(s)Â†

ε

, (41)

T̂ ma(s) = V̂ ma

1 − ĝeff(s)ÂεĜ
a
0(s)Â†

ε

, (42)

T̂ m(s) = ||2ÂεĜ
a
0(s)Â†

ε

1 − ĝeff(s)ÂεĜ
a
0(s)Â†

ε

, (43)

where we have introduced the operator

ĝeff(s) = g + ||2Ĝm
0 (s). (44)

The eigenvalues of the operator ĝeff(s) in Eq. (44) are given by

ĝeff(s)|αc〉 = geff
(
srel
αc

)|αc〉, (45)

srel
αc

= s − εαc
c , (46)

geff
(
srel
αc

) = g + ||2
srel
αc

− Em
. (47)

Due to the separability, one can define the T matrix of the
relative degree of freedom:

〈α′
r,α

′
c|T̂ a(s)|αr,αc〉 = 〈α′

r|T̂ rel
(
srel
αc

)|αr〉〈α′
c|αc〉. (48)
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One then recovers the expression of the T matrix used in
Ref. [43]:

〈α′
r|T̂ rel

(
srel
αc

)|αr〉 = 〈α′
r|δε〉〈δε |αr〉

1

geff
(
srel
αc

) − 〈δε |Ĝrel
0

(
srel
αc

)|δε〉
, (49)

where we have introduced the resolvent Ĝrel
0 for the noninter-

acting relative motion:

H rel
0 |αr〉 = εαr

r |αr〉, (50)

Ĝrel
0 (s) = 1

s − Ĥ rel
0

. (51)

Using these notations, the diagonal part of the T matrix for the
molecule can be written as

〈α′
c|T̂ m(s)|αc〉 = ||2〈δε |Ĝrel

0

(
srel
αc

)|δε〉〈α′
c|αc〉

1 − geff
(
srel
αc

)〈δε |Ĝrel
0

(
srel
αc

)|δε〉
. (52)

The expression of the T matrix in Eq. (49) can be expressed in
terms of the scattering parameters such as the scattering length
in the presence of a 2D or 1D atomic waveguide [43].

C. Scattering in atomic waveguides

1. Multimode scattering regime

We consider the scattering problem for the relative particle
of a pair of bosons or of a pair of ↑ and ↓ fermions in a
D-dimensional atomic waveguide characterized by the length

lho =
√

�

mrω
. (53)

For 2D waveguides, the eigenfunctions of the harmonic trap
are denoted φn(z):

φn(z) ≡ 〈z|n〉 = e
− z2

2l2ho

π1/4
√

2nn!lho
Hn(z/lho). (54)

For the 1D waveguides we use in this section, the cylindrical
quantum numbers are αr ≡ (k,n,m), where n is the radial
wavenumber of the transverse harmonic oscillator and m� is
the angular momentum along the axis z. The single-particle
energy of the relative particle is thus

ε(k,n,m)
r = �

2k2

2mr
+ �ω(2n + |m| + 1) (55)

and the eigenfunctions of the transverse harmonic oscillator
are given by

〈ρ|n,m〉 = 1

lho

[
π (n + |m|)!

n!

]−1/2(
ρ

lho

)|m|
eimθ

× e− 1
2 (ρ/lho)2

L(|m|)
n

(
ρ2/l2

ho

)
, (56)

where L(α)
n is the generalized Laguerre polynomial and

ρ = (ρ,θ ) are the polar coordinates in the x-y plane.
As a consequence of the separable form of the atomic

T matrix, where |δε〉 is a s-wave state, scattering occurs
only for s waves in free space, for even transverse states in
2D waveguides, and for transverse states with zero angular

momentum (m = 0) in 1D waveguides. Thus for a given
collisional energy E, the number of transverse states that can
be populated is given by

ND(E) =
⌊

E

2�ω
− 1

2D

⌋
, (57)

where �· gives the integer part. For E > �ω(2 + 1/D), there
are thus several accessible transverse modes for the incoming
and outgoing waves in a scattering process.

a. Two-dimensional scattering from a single-mode incom-
ing state. For a given collisional energy, we define the ND(E)
positive wavenumbers kp of the asymptotic scattering states
from the energy conservation:

E = �
2k2

p

2mr
+ �ω

(
2p + 1

2

)
. (58)

We consider the scattering state |�2D
p 〉, where the incoming

wave occupies only one transverse mode: it is characterized
by the quantum numbers αr = (kp êx,2p), with p � N2(E).
In the limit of large interparticle distances (ρ � lho) one
has [43]

〈
ρ,z

∣∣�2D
p

〉 = 〈z|2p〉eikp êx ·ρ − mr

�2

N2(E)∑
p′=0

φ2p′ (z)

× ei(kp′ρ+ π
4 )√

2πkp′ρ
〈kp′ êρ,2p′|T̂ rel(E + i0+)|kp êx,2p〉,

(59)

where êρ is the unitary vector ρ/ρ.
b. One-dimensional scattering from a single-mode incom-

ing state. For a transverse mode (n,m = 0), analogously to
the 2D case, we define the wavenumber kn from the energy
conservation,

E = �
2k2

n

2mr
+ �ω(2n + 1), (60)

and consider the scattering state |�1D
n 〉, where the in-

coming wave is characterized by the quantum numbers
αr = (knêz,n,0), with n � N1(E). In the limit of large interpar-
ticle distances (z � lho), the scattering wave function verifies
that

〈
ρ,z

∣∣�1D
n

〉 = 〈ρ|n,0〉eiknz − imr

�2

N1(E)∑
n′=0

eikn′ |z|

kn′

×〈ρ|n′,0〉〈kn′ ,n′,0|T̂ rel(E + i0+)|kn,n,0〉. (61)

2. Scattering phase shift

For a given value of the dimension D of the waveguide
and ND(E) > 1, the outgoing state in Eq. (59) or in Eq. (61)
occupies several transverse modes, whereas the incoming state
occupies only one transverse mode. This prevents defining
the notion of scattering phase shift by using this type of
scattering state. To circumvent this problem, we now consider
the incoming state |�E

D〉 of relative energy E, such that the
probability of occupation in each transverse mode is conserved
in the scattering process. Moreover, as the interaction acts
only in the s-wave sector, we consider only states which are
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rotationally invariant with respect to 0z in two dimensional
waveguides and are even functions of z in one dimensional
waveguides. We expand |�E

D〉 over the basis |�2D
p 〉 or |�1D

p 〉.
In the limit of large interparticle distances one has, for the 2D
waveguide,

〈
ρ,z

∣∣�E
2

〉 = ∫
dθ

2π

N2(E)∑
p=0

αp

〈
ρ,z

∣∣�2D
p

〉
(62)

and, for the 1D waveguide,

〈
ρ,z

∣∣�E
1

〉 = N1(E)∑
p=0

βp

2

(〈
ρ,z

∣∣�1D
p

〉 + 〈
ρ, − z

∣∣�1D
p

〉)
. (63)

We first consider the scattering phase shift in the 2D
waveguide. After projection over 〈z|2p〉, one obtains, in the
limit for large values of ρ,∫

dz〈2p|z〉〈ρ,z
∣∣�E

2

〉 = √
2αp

sin
(
kpρ + π

4

)
√

πkpρ
− mr

�2

× ei(kpρ+ π
4 )√

2πkpρ

N2(E)∑
p′=0

αp′ 〈kp êρ,2p|T̂ rel(E + i0+)|kp′ êx,2p′〉.

(64)

It is now possible to introduce the notion of scattering phase
shift, denoted δ(E), by identifying Eq. (64) with the asymptotic
form expected in 2D scattering:∫

dzφ2p(z)
〈
ρ,z

∣∣�E
2

〉

= αp

√
2eiδ(E)√

πkpρ
sin

[
kpρ + δ(E) + π

4

]
. (65)

Remarkably, one finds formally the same expression as in the
free space,

δ(E) = arg

[
1

geff(E)
− 〈δε |Ĝrel

0 (E + i0+)|δε〉
]

(66)

and

αp = K

(
1 − η

1 + η

)p

φ2p(0) exp
(−k2

pε2/4
)
, (67)

where η = ε2/(2l2
ho) and K is an arbitrary multiplicative

constant. It is important to note that the trapping frequency
of the atomic waveguide enters implicitly in Eq. (66) via the
Green’s function of the relative motion defined by Eq. (51).

The scattering phase shift in a 1D waveguide is obtained
along the same lines as above. One searches for the coefficients
βn in Eq. (63) such that at large interparticle distances∫

d2ρ〈n,m = 0|ρ〉〈ρ,z
∣∣�E

1

〉
= βne

iδ(E) sin

[
kn|z| + δ(E) + π

2

]
. (68)

One finds the same expression for the phase shift as in Eq. (66)
(but with a different resolvent Ĝrel

0 ) and

βn = K

(
1 − η

1 + η

)n exp
(−k2

nε
2
/

4
)

kn

. (69)

FIG. 1. Example of the contour of integration in Eq. (71), where
E1 and E2 are the energies of two-bound states.

D. Second-order virial coefficient

The second-order virial coefficient is related to the resolvent
of the two-channel model,

[Ĝ(s)] = 1

s − [Ĥ ]
, (70)

through the identity

Tr{eβ[Ĥ ]} =
∫
C+

ds e−βs

2iπ
Tr{[Ĝ(s)]}, (71)

where C+ is a counterclockwise contour from ∞ + i0+ to
∞ − i0+ in a loop which encompasses all the poles of the
integrand and the branch cut associated with the energy
continuum on the real axis. An example of such a contour
is plotted in Fig. 1. Using the relation between the transition
operator and the resolvent of the Hamiltonian

[Ĝ(s)] − [Ĝ0(s)] = [Ĝ0(s)][T̂ (s)][Ĝ0(s)], (72)

one can find the contribution of the interaction �b1,1 and
�b2 for the second-order virial coefficient. In the case of a
two-component Fermi gas, the noninteracting contributions
b

(0)
1,1, b

(0)
2,0, and b

(0)
0,2 are given in Eqs. (A7) and (A9). The

contribution of the interaction is then �b1,1 = b1,1 − b
(0)
1,1

[24,28,45] with

�b1,1 = 1

Q

∫
C+

ds e−βs

2iπ
Tr{[Ĝ0(s)][T̂ (s)][Ĝ0(s)]}. (73)

The trace in Eq. (73) can be decomposed in the atomic and
molecular sectors:

�b1,1 = 1

Q

∫
C+

ds e−βs

2iπ
Tr
{
Ĝa

0(s)T̂ a(s)Ĝa
0(s)

+ Ĝm
0 (s)T̂ m(s)Ĝm

0 (s)
}
. (74)

The correction to the second virial coefficient is then

�b1,1 = 1

Q

∫
C+

ds e−βs

2iπ

{∑
αr,αc

〈αr|T̂ rel
(
srel
αc

)|αr〉[
srel
αc

− Er(αr)
]2

+
∑
αc

〈αc|T̂ m(s)|αc〉(
srel
αc

− Em
)2

}
. (75)

It is then fruitful to use the identity

∑
αr

|〈αr|δε〉|2[
srel
αc

− Er(αr)
]2 = − d

dsrel
αc

〈δε |Ĝrel
0

(
srel
αc

)|δε〉, (76)
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which permits one to obtain

〈αc|T̂ m(s)|αc〉(
srel
αc

− Em
)2 +

∑
αr

〈αr|T̂ rel
(
srel
αc

)|αr〉[
srel
αc

− Er(αr)
]2

= d

dsrel
αc

ln
[
1 − geff

(
srel
αc

)〈δε |Ĝrel
0

(
srel
αc

)|δε〉
]
. (77)

By making the change of variable s = srel
αc

+ εαc
c in the integral

in Eq. (75), one can then perform the summation over αc with

∑
αc

e−βεαc
c =

(
mc

m↑

)D
2

Q, (78)

which gives the contribution of the center-of-mass degree of
freedom. Equation (75) can then be expressed as

�b1,1 =
(

mc

m↑

) D
2
∫
C+

ds e−βs

2iπ

{
d

ds
ln[geff(s)]

+ d

ds
ln

[
1

geff(s)
− 〈δε |Ĝrel

0 (s)|δε〉
]}

. (79)

One recognizes in the second term of the integral in Eq. (79)
the denominator of the relative T matrix of Eq. (49). As
shown in Ref. [43], for the separable two-channel model
used in this paper there are at most two dimers in atomic
waveguides. Their energies, denoted E1 and E2, are thus
simple poles of this second term. The latter term also has a
pole at s = Em − ||2

g
. The first term in the integral in Eq. (79)

has a pole at s = Em and a pole at s = Em − ||2
g

. The two

residues at s = Em − ||2
g

cancel each other and one finds

�b1,1 =
(

mc

m↑

)D
2

{
−e−βEm +

∑
i

e−βEi −
∫ ∞

E0

ds

2iπ

× e−βs d

ds
ln

[ 1
geff (s) − 〈δε |Ĝrel

0 (s + i0+)|δε〉
1

geff (s) − 〈δε |Ĝrel
0 (s − i0+)|δε〉

]}
,

(80)

where E0 is the threshold for the continuum of the energy
spectrum given in Eq. (1). From Eq. (51), the resolvent verifies

〈δε |Ĝrel
0 (s − i0+)|δε〉 = 〈δε |Ĝrel

0 (s + i0+)|δε〉∗ (81)

and one thus obtains, from the expression of the scattering
phase shift in Eq. (66),

1
geff (s) − 〈δε |Ĝrel

0 (s + i0+)|δε〉
1

geff (s) − 〈δε |Ĝrel
0 (s − i0+)|δε〉

= e−2iδ(s). (82)

This permits one to extend the Beth-Uhlenbeck formula to the
case of harmonic atomic waveguides:

�b1,1 =
(

1 + m↓
m↑

)D
2

×
{
−e−βEm +

∑
i

e−βEi +
∫ ∞

E0

ds

π
e−βs dδ(s)

ds

}
.

(83)

Remarkably, the explicit molecular contribution in Eq. (83)
exactly cancels the one in the noninteracting virial coefficient
in Eq. (A9). For the Bose gas, the correction �b2 = b2 − b

(0)
2

is derived along the same lines as above. The corresponding
Beth-Uhlenbeck formula is obtained from Eq. (83) by making
the substitution m↑ → m and �b1,1 → �b2.

IV. DIAGRAMMATIC METHOD IN ATOMIC
WAVEGUIDES

A. Green’s functions

An alternative way of obtaining the virial coefficients is
to deduce them from the population of the different atomic
and molecular species by using Eqs. (11), (12), and (13). The
diagrammatic method introduced in Ref. [18] permits one to
obtain the populations and thus the virial coefficients from a
systematic expansion of the Green’s function in powers of the
fugacities. Here, the diagrammatic method is adapted for the
two-channel model in the presence of an atomic waveguide.

We introduce the creation operator â†
η,α for a particle of

the species η ∈ {↑,↓,b,m} with the external quantum number
denoted α. Depending on the statistics of the particles, âη,α

and â†
η,α verify the standard commutation or anticommutation

relations. For convenience, we introduce the variable χη = ±1,
depending on the statistics of species η:

χb = χm = 1, χ↑ = χ↓ = −1. (84)

The populations of the different species are re-
lated to the Green’s functions at finite temperature
Gη(α,τ ) = −〈Tτ âη,α(τ )â†

η,α(0)〉 via the well-known formula

〈N̂η〉 = −χη

∑
α Gη(α,τ = 0−). As in standard diagrammatic

methods, we then introduce the free Green’s function,

G0
η(α,τ ) = −e−(εα

η −μη)τ/�
[
θ (τ ) + χηnη

(
εα
η − μη

)]
, (85)

where θ (τ ) is the Heaviside function. In the diagrammatic
expansions we introduce a solid line for the atomic Green’s
functions and a double solid line for the molecular Green’s
function. The bare vertices for the direct interaction in
Eq. (30) and for the interchannel coupling in Eq. (31) are
depicted in Fig. 2. Following Ref. [18], we perform the
expansion of the Green’s function in Eq. (85) in terms of the

FIG. 2. (a) Vertex associated with the direct interaction in the
finite-temperature formalism: g〈α1α2|Â†

εÂε |α3α4〉δ(τ ). (b) Idem for
the interchannel coupling: 〈αm|Âε |α1α2〉δ(τ ).
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FIG. 3. Diagrammatic form of the Bethe-Salpeter equation for the atom-atom vertex �̂a.

fugacity,

G0
η(α,τ ) = eμητ/�

[
G(0,0)

η (α,τ ) + G(0,1)
η (α,τ )zη

+G(0,2)
η (α,τ )z2

η + · · · ]. (86)

In Eq. (86), G(0,0)
η (α,τ ) corresponds to the high-temperature

limit of the Green’s function in vacuum where the fugacity is
0. An important fact for the diagrammatic approach is that it
is a purely retarded function:

G(0,0)
η (α,τ ) = −θ (τ )e−εα

η τ/�. (87)

The other orders in Eq. (86) are given by

G(0,n)
η (α,τ ) = −(χη)ne−εα

η (nβ+τ/�). (88)

We then introduce the modified Feynman diagrams from
Ref. [18] for the diagrammatic expansions in terms of the

fugacities: an n-slashed line (or double line) is associated with
the functions G(0,n)

η (α,τ ), and by definition a solid nonslashed
line corresponds to the function G(0,0)

η (α,τ ).

B. Two-particle vertex in the high-temperature limit

In what follows, we show how the two-particle vertex in
the high-temperature limit is simply related to the two-body T

matrix. We consider the fermionic case. The high-temperature
limit corresponds to a low-density limit, where two particle
collisions are obtained in the ladder approximation. For the
two-particle vertex function, we thus consider the diagram-
matic expansion in Fig. 3.

The vertex for the atom-atom interaction is then given by
the Bethe-Salpeter equation:

〈α1,α2|�̂a(τ2 − τ1)|α3,α4〉 = 〈α1,α2|V̂ a|α3,α4〉δ(τ2 − τ1) − 1

�

∑
αm

〈α1,α2|V̂ am|αm〉G0
m(αm,τ2 − τ1)〈αm|V̂ ma|α3,α4〉

− 1

�

∫ β�

0
dτ3

∑
α′

1,α
′
2

〈α1,α2|�̂a(τ3 − τ1)|α′
1,α

′
2〉G0

↑(α′
1,τ2 − τ3)G0

↓(α′
2,τ2 − τ3)〈α′

1,α
′
2|V̂ a|α3,α4〉

+ 1

�2

∫ β�

0
dτ3

∫ β�

0
dτ4

∑
α′

1,α
′
2,αm

〈α1,α2|�̂a(τ3 − τ1)|α′
1,α

′
2〉G0

↑(α′
1,τ4 − τ3)G0

↓(α′
2,τ4 − τ3)

×〈α′
1,α

′
2|V̂ am|αm〉G0

m(αm,τ2 − τ4)〈αm|V̂ ma|α3,α4〉. (89)

In the high-temperature limit, the free particle Green’s func-
tions are given by the first term in the expansion of Eq. (86).
Consequently, in this limit there are only retarded functions
and there is no β dependence in Eq. (89). We can thus replace
the upper limit of the integration interval for the intermediate
times with +∞. We also factorize the global time imaginary
dependence to extract the vacuum contribution:

lim
{zη}→0

�̂a(τ2 − τ1) = e(μ↑+μ↓)(τ2−τ1) �̂a
vac. (90)

We then use the separability of the two-channel model, which
permits one to decouple the center of mass from the relative
degree of freedom with identity

∑
α′

1,α
′
2

|α′
1,α

′
2〉G(0,0)

↓ (α′
1,τ )G(0,0)

↑ (α′
2,τ )〈α′

1,α
′
2|

=
∑
αr,αc

|αr,αc〉〈αr,αc|e−Ĥ a
0 τ θ (τ ). (91)

The atomic part of the T matrix is the Laplace transform of
the vacuum vertex function:

T̂ a(s) =
∫ ∞

0
dτesτ/��̂a

vac(τ ), (92)

�̂a
vac(τ ) =

∫
Cγ

ds

2iπ�
e−sτ/�T̂ a(s). (93)

The contour Cγ in the inverse Laplace transform of Eq. (93) is
the vertical line in the complex plane Re(s) = γ ∈ R, oriented
from γ − i∞ to γ + i∞ and such that the integrand is an
analytical function on the left-hand side of the contour. In the
high-temperature limit of Eq. (89), the functions in the inte-
grands are retarded and the intermediate imaginary times are
thus ordered. This permits one to simplify the calculation of the
Laplace transform in Eq. (92). For example, the contribution
of the third term on the right-hand side of Eq. (89), where we

063636-8



SECOND-ORDER VIRIAL EXPANSION FOR AN ATOMIC . . . PHYSICAL REVIEW A 93, 063636 (2016)

FIG. 4. Diagrammatic form of Eq. (95).

set τ1 = 0, can be evaluated by using the following change of
variable:

∫ ∞

0
dτ2e

sτ2/�

∫ ∞

0
dτ3�̂

a
vac(τ3)e−Ĥ a

0 (τ2−τ3)/�θ (τ2 − τ3)

=
∫ ∞

0
dτe(s−Ĥ a

0 )τ/�

∫ ∞

0
dτ3e

sτ3/��̂a
vac(τ3). (94)

We use the same type of change of variable in the fourth term
on the right-hand side of Eq. (89), and eventually we obtain
the Lippmann-Schwinger equation (38). The expression of the
atomic part of the transition matrix in Eq. (41) follows directly
from the latter equation. Note that this result could also have
been obtained in the zero-temperature formalism in vacuum.

Concerning the molecular part, we introduce the operator
�̂m analogous to �̂a with the diagrammatic expansion given
in Fig. 4.

We thus obtain the Bethe-Salpeter-like equation

〈αm|�̂m(τ2 − τ1)|α′
m〉 =

∑
α1,α2

〈αm|V̂ ma|α1,α2〉G0
↑(α1,τ2 − τ1)G0

↓(α2,τ2 − τ1)〈α1,α2|V̂ am|α′
m〉

− 1

�2

∫ β�

0
dτ3

∫ β�

0
dτ4

∑
α1,α2,α3,α4

〈αm|V̂ ma|α1,α2〉G0
↑(α1,τ3 − τ1)G0

↓(α2,τ3 − τ1)

×〈α1,α2|�̂a(τ4 − τ3)|α3,α4〉G0
↑(α3,τ2 − τ4)G0

↓(α4,τ2 − τ4)〈α3,α4|V̂ am|α′
m〉. (95)

In the high-temperature limit, we introduce the vacuum
contribution �̂m

vac along the same lines as was done for the
atomic part and we recover the molecular part of the T matrix
in Eq. (52) with

T̂ m(s) =−
∫ ∞

0
dτesτ/��̂m

vac(τ ). (96)

Equation (95) can then be transformed into Eq. (40), and
eventually one recovers Eq. (43).

C. The Beth-Uhlenbeck formula from the
diagrammatic method

Here, we evaluate the second-order virial coefficient for
the two-spin component Fermi gas by using the diagrammatic
method. We denote the second-order term in the expansion
of Eq. (12) δ(2)〈N̂↑〉 + δ(2)〈N̂m〉. The second-order virial
coefficient is then obtained from the identity

�b1,1 = 1

z↑z↓Q
(δ(2)〈N̂↑〉 + δ(2)〈N̂m〉). (97)

In Fig. 5, we express Eq. (97) in terms of the Feynman and
blocks diagrams introduced in Sec. IV A and Sec. IV B.

The corresponding equation is

�b1,1 = 1

�Q

∫ β�

0
dτ1

∫ β�

0
dτ2

[ ∑
α1,α2

G
(0,0)
↑ (α1,τ1)

×G
(0,1)
↓ (α2,τ1 − τ2)G(0,1)

↑ (α1,0
− − τ2)

×〈α1,α2|�̂a
vac(τ2 − τ1)|α1,α2〉−

∑
αm

G(0,0)
m (αm,τ1)

×G(0,1)
m (αm,0− − τ2)〈αm|�̂m

vac(τ2 − τ1)|αm〉
]
. (98)

By using the same type of simplification as in Eq. (91) and
performing the change of variable τ2 = τ + τ1 one finds

�b1,1 = −1

�Q

∫ ∞

0
dτ1

∫ ∞

0
dτθ (β� − τ1 − τ )

× Tr
[
e−Ĥ a

0 (β−τ/�)�̂a
vac(τ ) + e−Ĥ m

0 (β−τ/�)�̂m
vac(τ )

]
,

(99)

and the integration over τ1 yields

�b1,1 = −1

�Q

∫ ∞

0
dτ (β� − τ )θ (β� − τ ) × Tr

[
e−Ĥ a

0 (β−τ/�)

× �̂a
vac(τ ) + e−Ĥ m

0 (β−τ/�)�̂m
vac(τ )

]
. (100)

FIG. 5. The two diagrams contributing to �b1,1; see Eqs. (97)
and (98).
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Equation (100) is a product of the convolution of retarded
functions evaluated at the imaginary time β�. It can thus be
expressed as the inverse Laplace transform of a product of two
Laplace transforms:

�b1,1 = −
∫
Cγ

ds

2iπ

e−βs

Q
Tr

[
T̂ a(s)(

s − Ĥ a
0

)2 + T̂ m(s)(
s − Ĥ m

0

)2

]
.

(101)

Using the analyticity of the integrand, the Bromwich contour
Cγ can be deformed into the contour C+ with the opposite
direction, and one finds Eq. (74).

V. CONCLUSIONS

The main results of this paper are the expression of the
scattering phase shift in Eq. (66) as a function of the waveguide
frequency (contained implicitly in Grel

0 ), the expression of the
cumulant in Eq. (79), and the derivation of the Beth-Uhlenbeck
formula in Eq. (83). The discussion of the existence of
bound states and the values of the binding energies in atomic
waveguides needed to compute Eq. (83) are rather technical
and are given in Ref. [43]. Hopefully, the simplest way to
compute the culmulant b1,1 (or b2 for bosons) is to use directly
the expression in Eq. (79) by modifying the contour C+ in
the complex plane with incoming and outgoing directions
different from the horizontal axis. In this way, one can avoid
the computation of the binding energies.

We have used two methods to derive an explicit formula for
the second-order virial coefficient for Bose and Fermi atomic
gases in atomic waveguides in the vicinity of a Feshbach reso-
nance. We use a quantitative two-channel model which permits
us to explicitly take into account the Feshbach mechanism. Our
analysis reveals deep correspondences between two methods
which can be extended to the evaluation of higher orders in
the virial expansion.

As a consequence of the separability of the model, there
is formally no change to the expression of the phase shift
or to the usual Beth-Uhlenbeck formula with respect to the
homogeneous case and in the absence of Feshbach coupling.
However, as shown in Ref. [43], the presence of an atomic
waveguide and of interchannel coupling greatly changes the
low-energy properties with respect to the 3D and single-
channel results. In this way, without using the LDA, our
formalism permits us also to obtain quantitative results in
regimes where the systems cannot be considered purely 1D
or 2D. The existence of a phase shift in an atomic waveguide
is not a general fact. Indeed, in the case where the center of
mass and the relative particle motions are not separable (in the
presence of anharmonicities, for example) the present analysis
does not hold.

Previous studies have focused on the universal character of
the virial expansion near resonance. Our results permit us to
take into account quantitatively nonresonant contributions in
two-body scattering. This thus provides a quantitative basis
for analysis of experiments where one expects deviations from
universal laws due to the presence of an atomic waveguide
and/or a finite detuning from resonance.

One can note that the present formalism can be adapted to
evaluate the spectral densities of atomic gases in waveguides

including the closed channel by expanding the self-energy in
terms of the fugacity [37,46,47].

APPENDIX: GAS WITHOUT INTERACTION

1. Cumulants

We consider the limit of a large box in the free direction(s)
(L → ∞). The mean total number of species (η ∈ {b,↑,↓,m})
is given at equilibrium by

〈N̂η〉(μη,T ) =
∑

α

nη

(
εα
η − μη

)
. (A1)

In Eq. (A1), depending on the statistics considered, nη is the
Bose-Einstein or the Fermi-Dirac distribution (the molecules
considered here are bosons). In this section, we formally
assume the thermodynamic equilibrium between atoms and
molecules without any interaction by imposing the relations
in Eq. (4) or in Eq. (5). For convenience, in what follows we
use the variable χη = 1 (χη = −1) for the bosonic (fermionic)
species η [see Eq. (84)]. We can thus write the occupation
number in the following form:

nη(E − μη) = zηe
−βE

1 − χηzηe−βE
. (A2)

To achieve the virial expansion for the noninteracting gas we
expand Eq. (A2) in the power of the fugacity:

nη(E − μη) =
∑
n�1

(χη)n+1(zηe
−βE)n. (A3)

Using Eq. (A3) in Eqs. (A1) and (11), one obtains the
cumulants of the noninteracting Bose gas, denoted b(0)

n ,

b
(0)
2p+1 = f b

D(2p + 1)

Q
, b

(0)
2p = f b

D(2p) + f m
D (p)e−pβEm

Q
,

(A4)

where the function f
η

D is given by

f
η

D(n) = LD

λD
η [2 sinh(nβ�ω/2)]3−D

× 1

n1+D/2
. (A5)

In Eq. (A5), λη is the de Broglie wavelength of particle η:

λη =
√

2πβ�2

mη

. (A6)

Similarly, the expressions of the cumulants for a noninteracting
Fermi gas denoted b(0)

n,p are deduced from Eqs. (A3), (12),
and (13):

b
(0)
n,0 = (−1)n+1 f

↑
D(n)

Q
, b

(0)
0,n = (−1)n+1 f

↓
D(n)

Q
, (A7)

b(0)
n,n = f m

D (n)

Q
e−nβEm , b(0)

n,p = 0 otherwise. (A8)

In the particular case where n = p = 1, one finds a result
independent of the trap frequency:

b
(0)
1,1 =

(
1 + m↓

m↑

)D
2

e−βEm . (A9)
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2. Three-dimensional-dominated regime

In the limit where β�ω � 1, the particles occupy high-
energy transverse modes of the waveguide and the system thus
has a 3D character. In this 3D-dominated regime, the function
in Eq. (A5) can be approximated by

f
η

D(n) � LD

λD
η (β�ω)3−Dn4−D/2

. (A10)

The mean number of particles for each species is then

〈N̂η〉 =
χηL

Dg3− D
2

(χηzη)

λD
η (β�ω)3−D

, (A11)

where gα(t) = ∑
n�1 tn/nα . One can verify that, as expected,

it is possible to derive Eq. (A11) after spatial integration of the
3D density approximated in the LDA by using

〈N̂η〉 =
∫

d3r

∫
d3k

(2π )3
nη

(
�

2k2

2mη

− μη − Vtrap(r)

)
,

(A12)

where Vtrap is the transverse harmonic potential of frequ-
ency ω.

In the 3D-dominated regime f
η

D(n)
Q

∼ λD

λD
η n4−D/2 and the

second-order cumulant for the Bose gas is

b
(0)
2 � 1

24−D/2
+ 2

D
2 e−βEm , (A13)

and for the Fermi gas, the second-order cumulants are

b
(0)
2,0 ∼ − 1

24−D/2
, b

(0)
0,2 ∼ − 1

24−D/2

(
m↓
m↑

)D
2

. (A14)

These can be compared with the virial coefficients of
the homogeneous 3D problem without molecules: for a
Bose gas b

(hom)
2 = 1/(4

√
2) and for a two-component Fermi

gas b
(hom)
2,0 = b

(hom)
0,2 = −1/(4

√
2). These results coincide with

the analysis in Ref. [14] adapted for a D-dimensional

waveguide, which gives b2 = 2(D−3)/2b
(hom)
2 , and for

m↑ = m↓, b2,0 = b0,2 = 2(D−3)/2b
(hom)
2,0 .

We introduce the total number of atoms, including the
bounded atoms in the molecular state: N = 〈N̂b〉 + 2〈N̂m〉
for bosons and N = 〈N̂↑〉 + 〈N̂↓〉 + 2〈N̂m〉 for fermions. In
the 3D-dominated regime, we see from Eq. (A11) that the
dimensionless quantity

N

(
λ

L

)D

× (β�ω)3−D (A15)

has a finite limit when N → ∞, L → ∞, and ω → 0. This
defines the thermodynamic limit of the problem where the
LDA can be applied.

3. Low-dimensional regime

In the low-dimensional regime the temperature is suf-
ficiently small that the particles populate only the lowest
transverse state of the harmonic waveguide. This regime
is achieved in the limit β�ω � 1, and one can use the
approximation from (A5),

f
η

D(n) ∼ LD

λD
η

× exp(−nβE0)

n1+D/2
. (A16)

In this regime the mean number of particles for each species
is given by

〈N̂η〉(μ,T ) = χη

LD

λD
η

gD
2

(
χηe

βμ′
η

)
, (A17)

where for η = b,↑,↓ we have introduced the
shifted chemical potential μ′

η = μη − E0 and for
η = m, μ′

m = μm − E0 − Em. We thus recover the same
result as for a strictly D-dimensional homogeneous system
with a chemical potential shifted by the zero point motion
of the transverse potential. The cumulant b(0)

n for the Bose
gas [b(0)

n,p for the Fermi gas] differs from those of the strictly
homogeneous D-dimensional system by a factor exp(−nβE0)
[exp(−(n + p)βE0)]. The thermodynamic limit in the
low-dimensional regime 〈N̂η〉 → +∞, L → +∞ is obtained
as expected for fixed values of β and μ′

η.
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