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We investigate how confining a transverse spatial dimension influences the few- and many-body properties of
nonrelativistic bosons with pointlike interactions. Our main focus is on the dimensional crossover from three to
two dimensions, which is of relevance for ultracold-atom experiments. Using functional-renormalization-group
equations and T -matrix calculations we study how the phase transition temperature changes as a function of the
spatial extent of the transverse dimension and relate the three- and two-dimensional s-wave scattering lengths. The
analysis reveals how the properties of the lower-dimensional system are inherited from the higher-dimensional
one during renormalization-group evolution. We limit the discussion to confinements in a potential well with
periodic boundary conditions and argue why this qualitatively captures the physics of other compactifications
such as transverse harmonic confinement as in cold-atom experiments.
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I. INTRODUCTION

Lower-dimensional systems play a prominent role in
statistical and condensed matter physics, as they exhibit
several unusual features due to the pronounced influence of
fluctuations. At the same time, many technologically interest-
ing materials such as high-temperature superconductors and
graphene are based on layered or striped crystalline structures
and thus inherit some of their properties from the reduced
dimensionality. To disentangle the influence of dimensionality
effects from other aspects of the many-body system constitutes
a key challenge in advancing our understanding of condensed
matter and in devising new promising materials.

With the recent progress in trapping ultracold quantum
gases it has become feasible to simulate lower-dimensional
Hamiltonians by means of atoms in strongly anisotropic
external potentials [1,2]. For instance, in two dimensions,
the algebraically correlated superfluid and the corresponding
Berezinskii-Kosterlitz-Thouless phase transition have been
observed for both bosons [3–8] and fermion pairs [9,10]. A
characteristic of these types of experiments is that the final
setup might, due to an insufficient degree of anisotropy of the
trap in comparison to the density of the system, still feature
aspects of the three-dimensional (3D) system. This anisotropy
may be quantified by the relative spacing of energy levels
for excitations related to different spatial directions or by the
aspect ratios of trapping frequencies in different directions.
For a finite anisotropy ratio, the system is, in general, in a
dimensional crossover without a well-defined dimensionality.
Whereas this is typically an unwanted effect in the quantum
simulation of two-dimensional (2D) and one-dimensional (1D)
Hamiltonians, it can also be seen as a possibility to implement
new types of quantum matter with interesting properties. The
aim of this paper is to investigate the few- and many-body
properties of a particularly simple system, the Bose gas with
pointlike interactions, in the dimensional crossover.

Consider for simplicity the crossover from three to two
dimensions by means of compactifying the “transverse” z

*iboettch@sfu.ca

direction. However, the following argumentation is not limited
to this particular case. As a particularly instructive transverse
confinement, we delimit the z direction by a potential well of
length L. The boundary conditions at the end points may be
chosen periodic, in which case we also say that the system is
confined to a torus in the z direction. We may also restrict the
system to a box potential with infinitely high walls given by

Vbox(z) =
{

0, 0 � z � L;
∞ otherwise. (1)

In both cases, the trapping potential inside the well vanishes,
and thus the confinement reduces to the boundary conditions
on the bosonic field φ(τ,�x) or, equivalently, the coordinates of
the many-body wave function in a first-quantized formulation.
These boundary conditions read

φ(τ,x,y,z = 0) = φ(τ,x,y,z = L) (2)

for periodic boundary conditions (pbc) and

φ(τ,x,y,z = 0) = φ(τ,x,y,z = L) = 0 (3)

for the box. The boundary conditions lead to a quantization
of energies and thus a discrete excitation spectrum in the z

direction.
In a functional integral formulation of the many-body quan-

tum system, the boundary conditions appear as restrictions on
the appropriate function space. This can be related to energy
levels of noninteracting excitations, and eigenstates of the
interacting system are not needed for this purpose. In our
setting the eigenfunctions in the z direction are superpositions
of plane waves with momentum component qz, and the
boundary conditions (2) and (3) lead to a quantization of
energies Ez = �

2q2
z /2M . For the torus we have qz → kn with

kn = 2πn

L
, n ∈ Z, (4)

whereas in a box we have Ez → �
2κ2

n/(2M) with κn =
πn
L

, n = 1,2, . . . . Importantly, the box features a nonvanishing
zero-point energy, E0, whereas a trap with pbc does not.
Since realistic confinements such as they appear in cold-atom
experiments are implemented by means of smoothly varying
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FIG. 1. Schematics of the energy spectrum in the dimensional
crossover from three to two dimensions. (a, b) Discrete eigenenergies
for a noninteracting system in a 3D box potential which confines the
system to the cuboid (x,y,z) ∈ [0,Lx]2 × [0,L]. In (a) we have set
Lx/L = 2, whereas (b) displays the case of Lx/L = 3. As we increase
the ratio Lx/L, an effective 2D continuum of states (thin gray lines)
fills the region between the discrete spectrum of excitations in the
transverse z direction (thick red lines). The lowest excitations appear
above the zero-point energy, which is generally not 0. (c) Sketch
of the more realistic scenario of a system which is interacting and
confined by a smooth trapping potential. Although the concrete mode
spectrum and level spacing in (c) differ from those in (a) and (b), we
find the same qualitative behavior.

trapping potentials and not potential wells, our analysis can
only reveal qualitative statements. For example, in the case of a
harmonic trap the function space consists of Hermite functions,
again with a discrete energy spectrum. For an increasing
anisotropy the level spacing in the x and y directions goes
to 0 compared to the one in the z direction. We illustrate these
statements in Fig. 1.

In our setting we need to compare L with the length
scales associated with many-body physics such as the density
and temperature. The regime where L is much smaller than
all these length scales is called the 2D limit, because the
system will be in its ground state in the z direction and the
low-energy excitations are limited to the 2D continuum (qx,qy)
in momentum space just above the zero-point energy E0.
The 3D system then macroscopically looks like a 2D system.
In our analysis below we also address the question how the
parameters of the effective 2D system are inherited from the
3D system.

Our formulation bears a great resemblance to other systems
where “dimensional reduction” occurs. This concerns, for
example, the transition from effective quantum statistics to
classical statistics as the temperature T drops below the
relevant energy scales of the system. In the Matsubara
formalism, 1/T plays the same role as L in our case. Another
example is the dimensional reduction of higher-dimensional
Kaluza-Klein theories compactified on a torus. The main
difference from systems in relativistic quantum field theory is
the different nonrelativistic dispersion relation in our setting.

This paper is organized as follows. In Sec. II we introduce
the Bose gas in the dimensional crossover. In Sec. III we study
the superfluid phase transition in the crossover from three to
two dimensions by means of the functional renormalization
group (FRG). The scattering properties in the 2D limit are
studied with the FRG and T-matrix calculations in Sec. IV. In
Sec. V we discuss the relevance of our calculations for more
realistic confinements and give an outlook on extensions of our
approach. In Appendix A1 and A2, we study the behavior of
the critical temperature in the 2D limit, and in Appendixes B
and C we derive the FRG flow equation in the dimensional
crossover in detail and relate the T matrix, scattering vertex,
and dimer propagator within the FRG framework.

II. MODEL

We study nonrelativistic bosons with repulsive pointlike
interactions. This provides an excellent description of ultracold
quantum gases of alkali-metal atoms, where the precise form of
interatomic interactions is irrelevant for macroscopic physics
and can thus be replaced by a pointlike s-wave coupling
constant, λ�, which eventually relates to an experimentally
measurable scattering length, a. The model may, however, also
be used as an effective description of nonrelativistic bosonic
degrees of freedom in other condensed matter setups.

We employ a functional integral formulation with the
Euclidean microscopic action of the system given by

S[ϕ] =
∫

X

[
ϕ∗

(
∂τ − ∇2

2M
− μ

)
ϕ + λ�

2
|ϕ|4

]
. (5)

Herein, the bosonic degrees of freedom are described by
the complex scalar field ϕ = ϕ(τ,�x). We abbreviate

∫
X

=∫ β

0 dτ
∫

dDx, the number of spatial dimensions is D, and
τ denotes imaginary time. The latter is compactified to a
torus of circumference β = (kBT )−1 with temperature T .
The chemical potential and atomic mass are denoted μ and
M , respectively. The action is defined with respect to an
ultraviolet cutoff �, which is of the order of the inverse van
der Waals length for ultracold atoms. We use units such that
� = kB = 2M = 1.

The few- and many-body properties of the system described
by the action, (5), are captured by the partition function of
the system. Equivalently, this information is encoded in the
effective action or free energy �[φ; μ,T ,λ,�], which is a
functional of the mean field φ(x) = 〈ϕ(x)〉 in the presence
of general inhomogeneous sources J (x). In the following
we employ the FRG to deduce properties of � within
approximations. The approach is based on the exact evolution
equation for the effective average action �k [11,12] given by

∂k�k = 1
2 Tr

[(
�

(2)
k + Rk

)−1
∂kRk

]
, (6)

where k is a momentum scale such that �k=� = S for
some ultraviolet scale � and �k=0 = � [13–21]. The second
functional derivative of � is denoted �(2), and Rk is a
regulator function, which can be chosen freely within some
limitations [22].
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In order to approximate the right-hand side of the flow
equation, (6), we apply the ansatz

�k[φ] =
∫

X

[φ∗(Zk∂τ − ∇2)φ + Uk(|φ|2)] (7)

in the implementation of Refs. [23–25]. Our main interest
is in the effective potential Uk , which we evaluate here
for a homogeneous field φ. This is well suited for pbc,
while for the box the field φ(z) ∼ sin(πz/L) should improve
the approximation. (In principle, one could include different
potentials for several of the low-lying modes in the z direction.)
For the present analysis it is sufficient to employ a φ4 expansion
for the effective average potential Uk(ρ) according to

Uk(ρ) = m2
kρ + λk

2
ρ2, (8)

with U(1)-invariant ρ = φ∗φ. In Eq. (7) we use a renormalized
field φ chosen such that the prefactor of φ∗∇2φ is unity. This
explains why the expectation value of φ can be nonzero even
in the 2D limit, where the Mermin-Wagner theorem [26,27]
forbids long-range order.

We denote the k-dependent minimum of Uk(ρ) by ρ0,k . The
normal and superfluid phases of the system are distinguished
by means of ρ0,k→0 being 0 and nonzero, respectively.
The ansatz in Eq. (8) has been successfully applied to
describe universal and nonuniversal features of the non-
relativistic Bose gas in both three and two dimensions.
In particular, the thermodynamic equation of state [28,29],
critical exponents [13,30], and critical temperature Tc [25,29]
have been obtained in good quantitative agreement with other
theoretical approaches [31–34] and with experiment [35–37].
Extension of the ansatz, (8), for �k of the 2D Bose gas
have been devised in Refs. [38–40] to capture, for instance,
the emergence of Popov’s hydrodynamic description at low
energies and the essential scaling at the BKT transition.

Given the success of ansatz (8) in providing a qualitatively
and mostly quantitatively correct description of the 3D and 2D
nonrelativistic Bose gas, it is natural to apply it to the question
of the dimensional crossover from three to two dimensions. For
spatial dimensions 2 < D � 3, the system features long-range
order below the critical temperature Tc. For D = 2, a superfluid
phase with power-law decay of correlations and nonzero
superfluid density ρ0,k→0 exists below a critical temperature
Tc [41–44]. Investigating the location of the minimum ρ0,k of
the effective average potential in the limit k → 0 thus allows
for a unified description of the superfluid transition for all
2 � D � 3.

The derivative expansion employed in Eq. (7) is spatially
isotropic in the sense that excitations in the planar and
transverse directions are treated equally. More generally, the
kinetic energy of excitations may be approximated as

Ekin(�q,qz) = �q2 + ξq2
z , (9)

where �q is the momentum vector in the plane, and qz is the
component in the transverse (confined) direction. We call this
more general ansatz the anisotropic derivative expansion. In
Appendix B we show that it reproduces the same results as
the ansatz in Eq. (7) with ξ = 1, because ξ remains of order
unity and is not exceptionally small. Accordingly, excitations
in the transverse direction with momentum qz ∼ L−1 are still

energetically costly for L → 0 and thus decouple from the
low-energy physics. As soon as they are decoupled, however,
the precise value of the prefactor ξ is unimportant. A detailed
discussion is presented in Appendix B.

It is instructive to study the role of ρ0 in the dimensional
crossover in terms of the effective action. For this consider the
3D effective action ansatz

�[φ] =
∫

X

∫ L

0
dz

(
φ∗(Zk∂τ − ∇ − ∂2

z + m2
)
φ

+ λ3D

2
|φ|4

)
, (10)

where we denote X = (τ,�x), with �x = (x,y). The field ρ =
|φ|2 has the physical dimension of a 3D number density. The
ground state φ0(τ,�x,z) of the 3D system with L = ∞ is given
by a constant value φ0 with arbitrary complex phase. The same
holds for pbc, where we can write

φ
(pbc)
0 (τ,�x,z) = χ0

1√
L

, (11)

with |χ0|2 having the dimension of a 2D number density. The
effective action evaluated for this configuration reads

�
[
φ

(qbc)
0

] =
∫

X

(
m2|χ0|2 + (λ3D/L)

2
|χ0|4

)
. (12)

It resembles the one of a 2D Bose gas with coupling constant
λ2D = λ3D/L. (Since λ3D has the dimension of a length, λ2D

is dimensionless.) For a confinement in a box we have an
inhomogeneous ground state given by

φ
(box)
0 (τ,z,�x) = χ0

√
2

L
sin

(
πz

L

)
. (13)

For this configuration we have

�
[
φ

(box)
0

] =
∫

X

[(
m2 + π2

L2

)
|χ0|2 + λ2D

2
|χ0|4

]
, (14)

with λ2D = I2
λ3D
L

, I2 = 4
L

∫ L

0 dz sin4(πz
L

) = 3
2 . Hence, for con-

finement with sharp boundary conditions we find a nontrivial
prefactor in the translation between the coupling constants on
the mean-field level, namely, λ2D = 3λ3D/(2L). The coher-
ence properties of ultracold Bose gases in the dimensional
crossover with confining box potentials have been discussed
in Ref. [45].

The FRG approach has been applied to study the effect
of compactified dimensions on many-body systems both in
several relativistic and in nonrelativistic setups. Finite-volume
effects, i.e., when all spatial directions are confined to a
cube of size [0,L]d , have been studied for quark-meson
models [46–49] and the 3D BCS-BEC crossover [50]. In
particular, Ref. [49] highlights the difference between periodic
and antiperiodic boundary conditions. The latter result in a
nonvanishing zero-point energy similar to the confinement in
a box potential discussed above. In Sec. V we discuss the role
the zero-point energy plays in the FRG setup on the basis of
our findings for the dimensional crossover.
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III. SUPERFLUID TRANSITION

The flow of the effective average action �k is initialized at
some ultraviolet momentum scale k = �, where �� coincides
with the microscopic action, (5), of a 3D Bose gas. The
compactification in the z direction introduces a new scale to
the 3D system, which is defined by the size L of the potential
well. In particular, note that if L−1 is much larger than the
many-body scales, the system is effectively two-dimensional.
We examine this scenario in Sec. IV. However, the UV scale
� is always chosen in a way so that � � (L−1, μ1/2, T 1/2),
i.e., we start with a 3D system with 3D coupling constants.
The initial value for the effective potential is given by

U�(ρ) = λ�

2
(ρ − ρ0,�)2, (15)

with ρ0,� = μ/λ�. In practice, we initialize the flow at the UV
scale, �/

√
μ = 103, and stop at the final scale, kf = �e−10,

which is much smaller than the many-body scales.
The flow equation of the effective average potential Uk

factorizes into a universal L-independent part G1(T ) and a
crossover function F (L̃) according to

k
∂

∂k
Uk(ρ) = k5

4πZk

G1(T )F (L̃) + ηρU ′
k(ρ). (16)

The universal part reads

G1(T ) =
(√

1 + w1

1 + w2
+

√
1 + w2

1 + w1

)

×
[

1

2
+ NB

(
k2√(1 + w1)(1 + w2)

Zk

)]
, (17)

with w1 = U ′/k2, w2 = (U ′ + 2ρU ′′)/k2, and the Bose func-
tion NB(x) = (ex/T − 1)−1. Here a prime denotes a derivative
with respect to ρ. Further, η constitutes the k-dependent
anomalous dimension associated with field rescaling. For a
detailed derivation of Eq. (16) see Appendix B.

The influence of the trap is encoded in the crossover
function F (L̃), which for pbc is given by

Fpbc(L̃) = 2N + 1

L̃

[
1 − η

4
− 1

L̃2

(
1 − η

2

)
4π2

3
N (N + 1)

− η

L̃4

4π4

15
N (N + 1)(−1 + 3N + 3N2)

]
, (18)

with L̃ = Lk, N = � L̃
2π

�, and �x� being the largest integer
< x. The function F interpolates between the 3D and the 2D
flow equations via the two limiting cases

F (L̃) =
{

2
3π

(
1 − η

5

)
(L̃ � 1),

L̃−1
(
1 − η

4

)
(L̃ � 1).

(19)

We plot the crossover function for pbc in Fig. 2. One observes
a rather sharp transition from 3D behavior for k > 2π

L
to

2D behavior for k < 2π
L

. The oscillatory behavior in the
transition region is rapidly damped. The flow equation for the
dashed lines corresponds precisely to the flow in three or two
dimensions with the same truncation. Dimensional reduction
is very effectively realized by the flow with a reasonable
approximation simply switching from three to two dimensions

FIG. 2. The crossover function F (L̃) modifies the flow equations
of the 3D system. For small L̃ = Lk it diverges like L̃−1 and the 2D
flow equations are recovered. For large L̃ it approaches a constant
and the system behaves three-dimensionally. In the FRG approach
we start at an ultraviolet scale k� = � with L� � 1, so that the
description of the microscopic theory is three-dimensional.

as k decreases below 2π/L. A similar sharp transition has been
observed in the τ direction for the transition between quantum
and classical statistics [51,52].

From Eq. (16), the flow equations of U ′
k(ρ0) and λk =

U ′′
k (ρ0) follow by simple differentiation with respect to ρ.

The flow of the location of the minimum ρ0,k is obtained by

∂

∂k
ρ0,k = −λ−1

k

∂

∂k
U ′

k

∣∣∣∣
ρ0

. (20)

By following the flow of ρ0,k for k → 0 we deduce whether
ρ0,0 > 0 (superfluid phase) or ρ0,0 = 0 (disordered phase).
This allows us to extract the superfluid transition temperature
Tc for all trap sizes L. We determine the density by a suitable
flow equation (see Ref. [24]).

We plot the superfluid fraction ρ0/n for different values of
L in Fig. 3. Note that even for a 2D system the ratio ρ0/n of
the 3D quantities ρ0 and n gives the superfluid fraction, since

FIG. 3. Superfluid fraction ρ0/n at k → 0 for different values
of L. Larger values of L correspond to the curves farther to the
right. We directly see that the critical temperature, here in units of
the chemical potential μ, is higher in more 3D-like systems. For all
compactification lengths L we recover the correct limit ρ0/n|T →0 =
1, where the whole gas is superfluid due to Galilean invariance. Curves
correspond to a coupling strength g3D

√
μ = 0.025.
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FIG. 4. Dimensional crossover of the superfluid critical temper-
ature Tc from two to three dimensions. For large L the superfluid
transition goes along with Bose-Einstein condensation. The transition
temperature is substantially lower in a smaller system, i.e., when L

is smaller. For the crossover we fix the 3D coupling constant to the
same value as in Fig. 3. In experiments with ultracold atoms, g3D is
usually controlled by a magnetic Feshbach resonance.

ρ2D
0 = Lρ3D

0 |L→0 and n2D = Ln3D|L→0, so that L drops out.
For vanishing temperature the whole gas becomes superfluid
irrespective of L and develops a small condensate depletion
due to interactions [24].

In Fig. 4 we show the superfluid transition temperature
Tc for the whole 2D-3D dimensional crossover. For large
L, Tc approaches the Bose-Einstein condensation (BEC)
temperature TBEC of the interacting gas, given by

TBEC = Tc,id + �Tc,

Tc,id = 2π�
2

MkB

(
n

ζ (3/2)

)2/3

= 6.625n2/3. (21)

The interaction-induced shift of the critical temperature
[53,54] for a sufficiently small gas parameter a3Dn1/3 reads

�Tc

Tc,id
= κ a3Dn1/3. (22)

Within our calculation we have κ = 2.1 [24], which compares
well with the Monte Carlo result [55–57]. In our setup we
define g3D by

g3D = 8πa3D = λ3D,k→0. (23)

In terms of the chemical potential we find Tc/μ = 51 for
g3D

√
μ = 0.025, which corresponds to μc = 1.9g3Dn at the

transition. Note that Hartree-Fock theory predicts μ = 2g3Dn

above the transition temperature.
As L is lowered towards the 2D case, the critical temper-

ature decreases and is reduced by a substantial factor as one
goes through the crossover. Here we perform the dimensional
crossover for a fixed value of a3D = g3D/(8π ), since this
quantity is typically fixed by the magnetic field in cold-atom
experiments. This, in turn, fixes the initial 3D coupling λ3D

�

through Eq. (36) and leads to a characteristic behavior of Tc

in the 2D limit of small L. For this note that for L � �−1 the
flow in Eq. (16) is solely determined by F (L̃) � L̃−1(1 − η

4 )
and, thus, resembles a truly 2D renormalization group flow.
In particular, this applies to the initial value of the coupling,

which for L → 0 is given by

λ2D,�

∣∣∣∣
L��1

= 1

L
λ3D,� ≈ 8π

a3D

L
(24)

[see Eq. (43)]. Hence, as we decrease L in this regime, we
simulate a whole class of strongly interacting 2D Bose gases,
each corresponding to a certain coupling λ2D(L) and critical
temperature Tc(L). Consequently, Tc does not fully saturate
for small L, as can be seen in Fig. 4, although the dependence
becomes weak.

In cold-atom experiments, the 2D coupling strength is com-
monly expressed by the coupling constant g̃ = (M/�

2)g2D =
g2D/2. Due to the logarithmic energy dependence of the
T matrix in two dimensions, the coupling g2D needs to be
defined with respect to a fixed energy or momentum scale (in
contrast to a2D). On the other hand, as this scale dependence
is only logarithmic, g̃ appears to be effectively constant in
experiments. One convenient choice consists in defining the
coupling at the momentum scale kn = √

n2D related to the 2D
density n2D = Ln3D. For studying the phase transition, T > μ

sets the appropriate scale and thus for a true 2D system we
define

g2D = 2g̃ = λ2D,k=√
T (25)

in the FRG approach. Another convenient choice consists in
identifying the expression in Eq. (24) with g2D.

For a true 2D system with small g̃, the critical phase-space
density for the BKT transition is nλ2

T = ln(ξ/g̃), where λ2
T =

2π�
2

MkBT
= 4π

T
. Monte Carlo calculations yield ξ = 380 [31,32].

Hence the 2D critical temperature reads

TBKT = 4πn2D

ln(ξ/g̃)
. (26)

By employing μc/T = (g̃/π ) ln(ξμ/g̃) for the critical chemi-
cal potential, we may also express the critical temperature for
small g̃ as

TBKT

μ
= π

g̃

A

ln(ξμ/g̃)
. (27)

Here A = 1 and ξμ = 13.2 from Monte Carlo computations
[31]. In our setup, the values of A and ξμ mildly depend on the
value of kf introduced at the beginning of this section (see the
discussion in Ref. [25] and Appendix A1. For the choice of kf

applied here we find A � 1 and ξμ � 6. The parametric form
in Eq. (27) has also been obtained with the FRG in Ref. [29],
where TBKT was determined in a manner different from that
employed here, yielding A = 0.982 and ξμ = 9.48.

For experiments with ultracold 2D gases it might be relevant
that a finite extension in the z direction leads to an enhanced
superfluid transition temperature. Depending on the system
this influence can be quite substantial. For a related study in
the context of BCS superfluidity of two-component fermions,
see Ref. [58], where an enhancement of the critical temperature
in a quasi-2D geometry has been found. Furthermore, since in
three dimensions we also have a macroscopic occupation of
the lowest-energy state, which is a condensate, there might
still be some residual condensate for small yet finite L and
nonvanishing temperatures.
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To investigate the question whether the partial influence
of the third dimension influences the critical temperature of
a (supposed to be) 2D system, we perform the dimensional
crossover for a fixed value of a2D. Note that this is in contrast
to the data shown in Figs. 3 and 4, where a3D is kept fixed.
In Appendix A1, we provide a discussion of the dimensional
crossover of Tc/μ for small L and fixed a2D. We find that
for sufficiently small L/a2D, the critical temperature coincides
with that of the true 2D system and is then enhanced for larger
values of L.

IV. TWO-DIMENSIONAL LIMIT

A. Effective 2D coupling constant

We have seen that the flow of couplings can be described
by a 2D flow whenever the scale k is below an effective cutoff
�eff � L−1. In particular, if L−1 is much larger than the
many-body scales

√
μ and

√
T , the many-body system can

be described by an effective 2D model with UV cutoff �eff .
We call this scenario the 2D limit. The aim of this section is to
relate the λ2D(�eff) value of the effective 2D action to the 3D
scattering length. By integrating the flow equations between
� and �eff in vacuum, we obtain the relation between a2D

and a3D, which depends on the particular compactification
or trap potential. Once the renormalized coupling λ2D(�eff)
is specified, it allows us to universally determine the many-
body properties of the effective 2D system, and no further
knowledge of the 3D system is required.

In terms of the flow equation, (16), the 2D limit manifests
itself in the fact that the prefactor F (L̃) approaches the regime
L̃ = Lk � 1 much earlier than any of the many-body scales
is resolved. We introduce the momentum scale �eff via

� � L−1 � �eff � √
μ,

√
T . (28)

The scale �eff is arbitrary within these constraints and serves
as a UV cutoff of the effective 2D theory.

In the following we consider the regime k ∈ [�eff,�] of the
RG flow. It is characterized by Zk = 1, η = ρ0,k = NB = 0,
leading to a simple form of Eq. (16), which reads

U̇ (ρ) = k5

8π
F0(L̃)

(√
1 + w1

1 + w2
+

√
1 + w2

1 + w1

)
, (29)

where the over dot denotes a derivative with respect to t =
ln(k/�). The crossover function F |η=0 = F0 is evaluated for
η = 0 [see Eq. (B34) for pbc]. In particular, for L̃ � 1 we are
left with

U̇ (ρ) = 1

L

k4

8π

(√
1 + w1

1 + w2
+

√
1 + w2

1 + w1

)
= 1

L
U̇2D. (30)

This is, up to the prefactor L−1, the flow equation of the 2D
potential defined via U3D = 1

L
U2D and ρ3D = 1

L
ρ2D. Note that

by this definition the quantities w1 = U ′
3D/k2 = U ′

2D/k2 and
w2 = (U ′

3D + 2ρ3DU ′′
3D)/k2 = (U ′

2D + 2ρ2DU ′′
2D)/k2 are

invariant. We define λ2D = U ′′
2D(0) in a vacuum such that the

effective 2D coupling strength at scale �eff is given by

λ2D
�eff

= 1

L
λ3D

�eff
. (31)

The running of the 3D coupling constant λk = λ3D
k =

U ′′
3D(0) in vacuum is found to be

λ̇k = k5

4π
F0(L̃)

λ2
k

k4
. (32)

In order to solve this equation we write

∂k

1

λk

= − 1

4π
F0(L̃) (33)

and arrive at
1

λ3D
�eff

− 1

λ3D
�

= 1

4πL

∫ L�

L�eff

dL̃ F0(L̃). (34)

Using Eq. (31) we obtain

1

λ2D
�eff

= L

λ3D
�

+ 1

4π

∫ L�

L�eff

dL̃ F0(L̃). (35)

The coupling constants λ3D
� and λ2D

�eff
can be related to the

3D and 2D scattering lengths a3D and a2D by means of the
formulas

1

λ3D
�

= − �

6π2
+ 1

8πa3D
, (36)

1

λ2D
�eff

= − 1

8π
ln

(
�2

effa
2
2D

) + 1

8π
(37)

[see Eqs. (C15) and (C16)]. Inserting these relations into
Eq. (35) we find

a2D = L exp

{
−1

2

L

a3D
+ �

}
, (38)

with

� = 2L�

3π
− ln(L�eff) + 1

2
−

∫ L�

L�eff

dL̃ F0(L̃). (39)

Note that the artificial scales �eff and � drop out due to the
particular limits of F (L̃) in Eq. (19) and we can deduce a2D

purely from the values of a3D and L. This is true for any
crossover function F (L̃) that satisfies (19) and approaches
these limits sufficiently rapidly in the variable L̃.

For a confinement along the z direction with pbc we
numerically find � = 0 and are thus left with

a
(pbc)
2D = L exp

{
−1

2

L

a3D

}
. (40)

Since � drops out of the formula, the new effective cutoff of the
2D theory is given by L−1. In particular, this formula should
be compared with the result in a harmonic trap [1,59,60] given
by

a2D = �z

√
π

A
exp

{
−

√
π

2

�z

a3D

}
, (41)

with A = 0.905 and �z = √
�/Mω0 the oscillator length. We

may identify the effective length scale �eff
z = L/

√
2π and

an effective constant Aeff to match our results to Eq. (41)
according to

a2D = �eff
z

√
π

Aeff
exp

{
−

√
π

2

�eff
z

a3D

}
. (42)

We have A
(pbc)
eff = 1

2 for the case of pbc.
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Note also that Eqs. (31) and (36) imply

λ2D,�eff = 1

L
λ3D,�eff = 1

L
8πa3D

− L�eff
6π2

. (43)

If a3D/L → 0 is sufficiently small, we can ignore the term of
order O(L�eff) in the denominator. Furthermore, neglecting
the logarithmic running of the coupling, we can identify g2D ≈
λ2D,�eff and thus arrive at

g2D ≈ 8π
a3D

L
. (44)

Written in terms of g̃ = g2D/2 and �eff
z this assumes the familiar

form

g̃ ≈
√

8π
a3D

�eff
z

, (45)

known from the case of harmonic confinement [1].

B. T matrix

The scattering properties of bosons in the dimensional
crossover are naturally included in the FRG flow equations
in the limit of vanishing density and temperature. Here
we compare and benchmark our findings with the quantum
mechanical T-matrix approach to low-energy scattering, where
the particle-particle loop is integrated directly without the
use of a flow equation. In Appendix C we give a detailed
discussion of the interrelation of both approaches and limit
this presentation to the main results. The fact that the flow
equation for the T matrix in vacuum can be solved exactly is
related to a decoupling property of the two-body sector in this
particular system; see Ref. [61] for an extensive analysis. The
route to determining the scattering properties of two particles
in a box potential via the T matrix has also been explored in
Ref. [62], and Eqs. (40) and (55) here agree with the results
therein for L = 2πR.

To compute the T matrix we utilize a sharp momentum
cutoff which equips the momentum integration with a UV
cutoff scale �. This regularization differs from the use of the
regulator Rk(Q) in Eq. (B8). We make this explicit by adding
the superscript (sh) to the microscopic coupling, λ

(sh)
� . One

result of the analysis in Appendix C is to relate λ
(sh)
� to λ�, the

latter being used in the FRG analysis in Eqs. (36) and (37).
Note at this point that it is difficult to obtain the additional term
+ 1

8π
in Eq. (37) without computing the energy dependence of

the T matrix.
The low-energy T matrix T (E) in D noncompact dimen-

sions is defined as

1

T (E)
= 1

λ
(sh)
�

−
∫ �

�q

1

E + i0 − 2q2
, (46)

where 2q2 = q2/2Mr with reduced mass Mr = M/2 (see, for
instance, Refs. [60] and [63] for a detailed discussion). In three
dimensions the integration yields

1

T 3D(E)
= 1

8π

(
1

a3D
−

√
−(E + i0)/2

)
(47)

provided we choose

1

λ
(sh)
3D,�

= − �

4π2
+ 1

8πa3D
. (48)

In the 2D case we have

1

T 2D(E)
= − 1

8π
ln

(
− (E + i0)a2

2D

2

)

= − 1

8π

[
ln

(
Ea2

2D

2

)
− iπ

]
(49)

and

1

λ
(sh)
2D,�

= − 1

8π
ln

(
�2a2

2D

)
. (50)

These universal forms of the T matrix for low-energy scattering
in three and two dimensions serve as definitions of the
scattering lengths a3D and a2D.

We now consider the generalization of T (E) when the z

direction is confined in a well of size L with pbc. We then
have the quantization qz → kn, n ∈ Z, for momenta in the z

direction, and∫ ∞

−∞

dqz

2π
→

∞∑
n=−∞

�kn

2π
= 1

L

∞∑
n=−∞

. (51)

The zero-point energy vanishes for this particular choice of
confinement. We write A = −(E + i0)/2 and find

1

T (E,L)
= 1

λ
(sh)
3D,�

+ 1

2L

∑
n

∫ �′
d2q

(2π )2

1

k2
n + q2 + A

= 1

λ
(sh)
3D,�

+ 1

2

∫ �′
d2q

(2π )2

1
2 + nB(L

√
q2 + A)√

q2 + A

= 1

λ
(sh)
3D,�

+ �′ − √
A

8π
− 1

4πL
ln(1 − e−L

√
A),

(52)

with nB(x) = (ex − 1)−1. For L = ∞, the result is finite in the
limit E → 0. It reduces to the 3D expression, (47), provided
we choose

1

λ
(sh)
3D,�

= − �′

8π
+ 1

8πa3D
, �′ = 2

π
�. (53)

(Note that � and �′ are UV cutoffs for 3D and 2D continuous
momenta, respectively, and thus do not need to coincide.) More
formally we define

1

8πa3D
:= lim

E→0
lim

L→∞
1

T (E,L)
. (54)

We thus have

1

T (E,L)
= 1

8π

(
1

a3
−

√
A

)
− 1

4πL
ln(1 − e−L

√
A). (55)

For L < ∞, the T matrix develops a logarithmic IR singu-
larity as E → 0. In particular, we find for the effective 2D
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T matrix

1

T2D(E)
:= L

T (E,L)

A→0� L

8πa3D
− 1

4π
ln(L

√
A)

= L

8πa3D
− 1

4π
ln

(
L

√
− (E + i0)

2

)

!= − 1

4π
ln

(
a2D

√
− (E + i0)

2

)

= − 1

8π
ln

(
− (E + i0)a2

2D

2

)
. (56)

We observe the effective 2D scattering length of the confined
system to be

a
(pbc)
2D (L) = L exp

{
−1

2

L

a3D

}
. (57)

This result agrees with the FRG finding in Eq. (40).

V. DISCUSSION

In this work we have studied the dimensional crossover
of nonrelativistic bosons when confining a transverse spatial
dimension. Although the derived set of flow equations is
applicable to crossovers from (D + 1) to D dimensions, our
main focus has been on the crossover from three to two dimen-
sions. The motivation for this is the intriguing nature of the
superfluid transition in this case and the considerable number
of recent cold-atom experiments on this topic. Especially, we
wish to contribute to a few open theoretical challenges in the
interpretation of the data of these as outlined below.

The present approach may, however, be extended to
describe further dimensional crossovers in condensed matter
systems. Compactifications from two dimensions to one, or
from three dimensions to one, are highly exciting from the
point of view of quantum phase transitions. Indeed, phases
with quasi-long-range order may survive in one dimension
at zero temperature and are conceptually close to the finite-
temperature superfluid phase in a 2D Bose gas; see, for
instance, Ref. [23] for an FRG perspective on this aspect
and Ref. [45] for a mean-field study of the correlations in
the dimensional crossover from three to two dimensions (one
dimension) at T > 0 (T = 0). Since the confinement only
affects spatial momenta, the characteristic frequency depen-
dence which governs quantum critical phenomena will be
resolved correctly with the FRG in the dimensional crossover
if this is the case for the system without compact dimensions.
The nature of inhomogeneous phases of fermion pairs in di-
mensional crossovers has been discussed in Refs. [64] and [65].

As an effective description of bosonic degrees of freedom,
the finite-temperature 2D Bose gas and its BKT transition may
also be applied to the pseudogap phase of underdoped cuprates
[66]. The inherent nonrelativistic nature of complex bosonic
degrees of freedom is also found in open or nonequilibrium
quantum systems such as exciton-polariton condensates in
semiconductor microcavities [67,68]. The Keldysh field
theory techniques required to describe such systems can be
incorporated into the FRG framework (see Ref. [69] for an
introduction).

In our analysis of the superfluid phase transition we have
performed the dimensional crossover in two variants: for fixed
a3D and for fixed a2D. Each procedure addresses a somewhat
different question. When fixing a3D we follow the typical cold-
atom experimental protocol of setting the value of a3D by
means of an external magnetic field B and then decreasing
the length L to eventually arrive at a 2D system. Importantly,
the size of L is typically not easily tunable in experiments
but, rather, fixed to a particular value. We can then reach a
large class of values for a2D by means of formula (40) by
changing a3D(B). In view of Fig. 4, where g3D

√
μ = 0.025,

one experiment corresponds to one certain point L
√

μ on the
abscissa. Through Eq. (24) this corresponds to a certain value
of g2D. If one were to perform the experiment with a different
value of L, one would simulate a different Bose gas (with
different g2D) for the same value of a3D. In order to plan and
devise an experimental setup it is crucial to know the effective
a2D and g2D which can be reached for a given L, and formulas
(41) and (45) are abundantly applied in the experimental cold-
atom literature.

On the other hand, in view of attempting to quantum
simulate 2D systems, we may ask: Given L �= 0, can we be sure
that we are measuring the critical temperature of the 2D system
and not that of its quasi-2D relatives? By fixing a2D (instead
of a3D) for small L in the dimensional crossover we confirm
with the study in Appendix A2, that the critical temperature is
enhanced by the residual influence of the third dimension.
This is not too surprising, as we expect the possibility of
Bose condensation in D > 2 to greatly increase the critical
temperature. Furthermore, we found that the true 2D critical
temperature is realized for a considerable range of (L/a2D)
values.

Our discussion of the low-energy T matrix to describe the
scattering properties of the Bose gas was mostly inspired by
the aim to benchmark relation (40) between the 3D and the
2D scattering lengths obtained with the FRG. However, given
an exact or approximate expression for the T matrix of the
confined system, the obstacle of analyzing current cold-atom
experiments can be resolved: At high densities—especially for
fermionic systems, which do not differ from the bosonic coun-
terparts in their scattering properties—the typical momenta of
particles are not necessarily low. Hence one needs to restrict
the experiment to low densities, or the scattering cross sections
and effective coupling constants need to be evaluated at a finite
momentum [70–73]. This may effectively be accomplished
with the energy- and momentum-resolved T matrix of the
confined system, with its particular discrete mode spectrum
such as in Eq. (55). To resolve this mode spectrum, one may
actually restrict oneself to phenomenological collective mode
spectra such as in Refs. [74–76]. Complementary approaches
to obtaining the scattering properties inside a medium from
the vacuum T matrix, however, for a true 2D system, have
been successfully applied, for instance, to the Fermi polaron
problem [77].

Upon confining the gas by means of a potential well with
pbc, the challenging task of determining the interacting ground
state of the system became particularly simple: The ground
state is still homogeneous in space and given by the minimum
of the effective potential Uk→0(φ2). However, as discussed at
the end of Sec. II, the situation becomes more complicated
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already for a box potential with infinite walls. Whereas in a
Hamiltonian formulation the ground states of the interacting
system are required to compute the expectation values of
observables, the interacting ground state enters the functional
integral formulation by the need to evaluate the effective
action �[φ] at its minimum configuration φ0(τ,�x). The latter,
however, will not be constant in space for a trapped system,
i.e., we are dealing with an inhomogeneous ground state. Thus,
strictly speaking, the ground state can no longer be found
by minimizing the effective potential Uk→0(φ2) evaluated for
constant fields. Still one might define a suitable modification of
the effective potential which captures the energy of the lowest-
lying excitations, which might be modeled in a first approxi-
mation by the noninteracting states or deformations thereof.

Finally, we discuss the relevance of our findings for trapping
potentials different from a well with pbc. The main difference
in trapping the system in a box potential versus a harmonic
trap consistsin the facts (i) that the ground states of the
latter are inhomogeneous and (ii) that the related ground-state
energies E0 are nonzero. We have addressed the first point in
the previous paragraph. In fact, it should constitute the main
technical difficulty in the computation of different confinement
scenarios with the FRG.

To understand the role of point (ii), note that the emergent
2D scattering physics relied on a logarithmic singularity of the
effective 2D T matrix as E → 0 [see Eq. (56)]. This divergence
allows us to read off the effective 2D scattering length. For a
system with nonvanishing E0, the logarithmic divergence will
appear for �E → 0, where E = E0 + �E. This is true for
harmonic confinement [59,60], and a preliminary calculation
for the T matrix in a box suggests that the same pattern appears,
with a formula relating a3D and a2D analogous to Eq. (40).
Consequently, the emergent 2D physics appear in the effective
2D continuum of states just above the zero-point energy (see
Fig. 1). Subtracting the shift of energies due to E0, e.g., by a
chemical potential or by evaluating the “effective potential” at
a nonzero frequency, the remaining field theory describing
scattering and the superfluid phase transition will be very
similar to the one considered here with pbc. In fact, we have
shown that Eqs. (40) and (44) are in one-to-one correspondence
with the results for harmonic confinement with �z once
we identify �eff

z = L/
√

2π as the effective oscillator length
of the potential well.
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APPENDIX A: SUPERFLUID TRANSITION IN THE
2D LIMIT

1. Critical temperature in two dimensions

The limiting formula, (27), for the critical temperature of
a 2D superfluid Bose gas can be studied independently of the

FIG. 5. Critical temperature Tc/μ in two dimensions as a function
of g2D over four orders of magnitude. For better comparability with
Eq. (A2) we have multiplied the function by g2D. The blue circles and
solid line constitute the FRG result for tf = −10 (as used in the text),
whereas the dashed red line corresponds to the asymptotic form of
Eq. (A2) for small g2D. For the dashed line we use the fit result from
Table I.

details of the dimensional crossover. For this purpose we set
�/

√
μ = 103 as in the text and vary the values of tf = ln(kf/�)

and λ2D,�. We define

g2D = λ2D,k=√
T (A1)

as in Eq. (25).
For tf = −10, as employed in the text, we find the g2D

dependence of Tc/μ to be in good agreement with the
asymptotic form of Eq. (27), i.e.,

Tc

μ
= 2π

g2D

A

ln(2ξμ/g2D)
, (A2)

when choosing A = 0.99 and ξμ = 6.0. We illustrate the
coupling dependence of the critical temperature in Fig. 5.
Upon varying tf in a reasonable range, we consistently find
scaling according to Eq. (A2) with only mild variations of
the parameters A and ξμ, which we list in Table I. The
corresponding values have been obtained from a fit of Tc/μ to
Eq. (A2) in the interval g2D ∈ [10−4,0.01].

2. Dimensional crossover for fixed a2D

In order to perform the dimensional crossover for fixed a2D

we need to choose the initial conditions of the flow rather
carefully. Here we collect the technical details and parameters
which allow us to conclude that the critical temperature of the
2D gas is enhanced by the influence of a sufficiently large third
dimension.

TABLE I. Fitting parameters obtained by matching the critical
temperature Tc/μ for different values of tf = ln(kf/�) to Eq. (A2) in
the interval g2D ∈ [10−4,0.01].

tf

−8 −9 −10 −11 −12

A 0.94 0.98 0.99 0.99 0.99
ξμ 5.1 5.3 6.0 6.6 7.2
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First, note that Eq. (36) implies that a3D cannot be arbitrarily
large within our model with pointlike interactions. Indeed, for
fixed �, the scattering length is bounded from above according
to a3D < amax = ( 4�

3π
)−1 = 2.36�−1 [24]. In particular, for

� → ∞ we have a3D → 0, meaning that the pointlike approx-
imation cannot describe the interacting system up to arbitrarily
high energies. For fixed L this implies a2D < Le− 1

2 (L/amax) due
to Eq. (40). Thus, in typical experiments with fixed L, the
range of accessible a2D is also limited from above.

On the other hand, one may fix a2D and � and determine
the possible values of L which realize this particular a2D. This
leads us to considering the function f (x) = 4πa2D/λ3D

� =
ln(x)

x
− 2

3π
(�a2D) with x = L/a2D. A stable solution requires

f (x) to be positive, leading to a stability interval [Lmin,Lmax]
of possible L values. From Eqs. (50) and (C16) we see that,
disregarding some modifications due to the regularization
procedure, we have �a2D < 1. For instance, choosing �a2D =
0.1 (0.01) we arrive at xmin � 1.02 (1.002) and xmax �
260 (3900). The corresponding value of Lmin, however, will
typically be too small, as we also need to satisfy L� � 1.

For our discussion of the dimensional crossover at fixed
a2D we employ μ = 1, a2D = 10−3, � = 10, kf = 10−2 and
vary L within the boundaries allowed by these constraints. We
choose Lmin = �−1 from L� > 1 and Lmax = 3885a3D from
the positivity of f (x). The critical temperature of the pure 2D
gas for this choice of parameters is Tc/μ = 1.32. The resulting
crossover of the critical temperature is shown in Fig. 6.

FIG. 6. Dimensional crossover of the superfluid critical temper-
ature Tc for a fixed value of a2D. We use the parameters described
in Appendix A. One observes three characteristic regimes for the
behavior of the critical temperature: (i) For small 0.1 � L

√
μ � 1,

the transition temperature increases. However, since we have chosen
�/

√
μ = 10 here, this region corresponds to 1 � L� � 10 and

thus violates the criterion L � �−1. Thus it is not of relevance for
this discussion. (ii) For intermediate L

√
μ, the critical temperature

settles at Tc/μ = 1.32 (dashed horizontal line), which is the transition
temperature for the corresponding 2D gas with the same value of a2D.
In this region, which corresponds to L/a2D = (1 − 3) × 103 in this
particular case, the gas is truly two-dimensional. (iii) For larger L, we
find an increase in the critical temperature. Note that the crossover
scale L

√
μ ≈ 3 between the 2D and the quasi-2D regime is still much

larger than T −1/2 and μ−1/2. The slight dimple in Tc/μ before the rise
seems to be rooted in the same oscillatory crossover behavior as found
for small L, and we do not attribute any deep physical meaning to it
at this point.

APPENDIX B: FLOW EQUATIONS

In this Appendix we derive the flow equation for the
Bose gas in the dimensional crossover within the derivative
expansion for the effective action. In this approach, the kinetic
energy of spatial excitations is approximated by a dispersion
relation,

E�q = 1

Z̄(k)

[
A(k)

(
q2

1 + · · · + q2
D

) + Az(k)q2
D+1

]
, (B1)

with k-dependent running couplings Z̄(k), A(k), and Az(k).
The distinction between A and Az is subleading for the physics
under consideration, as can be understood as follows: For
large k we have A(k) = Az(k) and the dispersion is effectively
isotropic. Deviations between Az and A appear for k � L−1.
In this regime, however, excitations with nonzero q2

D+1 =
k2
n = ( 2πn

L
)2 > 0 are disfavored by an energetic penalty ∼L−2.

Accordingly, as long as the prefactor Az remains of order
unity (i.e., it does not become exceptionally small), transverse
excitations ∼Azk

2
n decouple from the RG flow, and the precise

value of the prefactor Az is unimportant.
In the following we first derive the flow equations for

the isotropic case with A = Az. This approximation is
applied throughout the text. Afterwards we consider the
more involved anisotropic case with A �= Az. We explicitly
show that this distinction is unimportant for the observables
considered here. In particular, as shown in Fig. 7, the ratio
ξ = Az/A remains of order unity, thus validating the above
argument.

1. Isotropic derivative expansion

Our ansatz for the effective average action is given by a
derivative expansion,

�k[φ̄∗,φ̄] =
∫

X

[φ̄∗(Z̄k∂τ − Ak∇2)φ̄ + Ūk(φ̄∗φ̄)]. (B2)

By introducing renormalized fields φ = A
1/2
k φ̄ we can express

the effective average action as

�k[φ∗,φ] =
∫

X

(φ∗(Zk∂τ − ∇2)φ + Uk(φ∗φ)) (B3)

with wave-function renormalization Zk = Z̄k/Ak [see Eq. (7)]
and the effective average potential Uk(ρ) = Ūk(ρ̄). For a
detailed discussion of obtaining the projected flow equations
for Z̄k , Ak , and Ūk from the functional flow equation in
Eq. (B2), see Appendixes A–C in Ref. [78].

The flow equation for the effective potential is given by

˙̄Uk(ρ̄) = 1

2
tr

∫
Q

Ḡk(Q)Ṙk(Q) (B4)

with the regularized propagator

Ḡk(Q) = 1

detQ

(
pq + Ū ′ Z̄kq0

−Z̄kq0 pq + Ū ′ + 2ρ̄Ū ′′

)
, (B5)

where Q = (q0,�q,kn), �q = (q1, . . . ,qD) denotes the momen-
tum vector in the noncompact dimensions of space, and kn

the component of the discrete momentum modes due to the
transverse confinement. Below we specialize to the case where
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FIG. 7. Top: Characteristic scale dependence of η and ηz within
the anisotropic derivative expansion. Whereas the planar anomalous
dimension η (blue curve) remains continuous, the transverse anoma-
lous dimension ηz has discontinuous jumps due to the successive
integration of modes and the step function in the regulator, Eq. (B40).
The function ηz(k) follows the behavior of η(k) on average for k > 2π

L

and vanishes below k = 2π

L
(shown as the dashed vertical line). The

plot is shown for T = 0, L
√

μ = 15, g3D
√

μ = 0.025. The qualitative
behavior of η and ηz is independent of this choice. Bottom: Ratio
ξ = Az/A at the lowest momentum kf with parameters as in Fig. 4
for zero temperature (upper, blue curve) and at Tc (lower, red curve).
Since ξ is of order unity—and not exceptionally smallthe isotropic
derivative expansion is sufficient to compute observables like the
critical temperature.

D = 2. Further,

detQ = (pq + Ū ′ + 2ρ̄Ū ′′)(pq + Ū ′) + (Z̄kq0)2, (B6)

pq = Ak

(�q2 + k2
n

) + Rk(Q), (B7)

where a prime denotes a derivative with respect to ρ̄ and an over
dot denotes ∂t = k∂k . In this calculation we use the Litim-type
regulator [23,79,80]

Rk(Q) = Ak

(
k2 − �q2 − k2

n

)
θ
(
k2 − �q2 − k2

n

)
, (B8)

Ṙk(Q) = Ak

[
2k2 − η

(
k2 − �q2 − k2

n

)]
θ
(
k2 − �q2 − k2

n

)
,

(B9)

where we define the anomalous dimension by η = −Ȧk/Ak .
The integration in Eq. (B4) consists of a q0 integral, which is
replaced by a sum over Matsubara frequencies ωn for nonzero
temperatures and an integration over spatial dimensions.

Therefore, we have∫
Q

= T
∑
ωn

1

L

∑
kn

∫
dDq

(2π )D
. (B10)

The flow equation for the effective potential can be written
in the form

˙̄Uk =
∫

Q

pq + Ū ′ + ρ̄Ū ′′

detQ
Ṙk

= T
∑
ωn

1

L

∑
kn

4vD

∫ ∞

0
dqqD−1 pq + Ū ′ + ρ̄Ū ′′

detQ

× Ak

(
¯
2k2 − η

(
k2 − q2 − k2

n

))
θ
(
k2 − q2 − k2

n

)
.

(B11)

Here we have already performed the angular integration
of the D-dimensional integral, which gives a factor of
4vD = [2D−1πD/2�(D/2)]−1. The overall θ function limits
the integration to the region q <

√
k2 − k2

n and we may replace
pq → Akk

2 in the integrand. We switch to renormalized
quantities Zk = Z̄k/Ak and ρ = Akρ̄ and find

˙̄Uk = 4vD

[
T

∑
ωn

k2 + U ′ + ρU ′′

(k2 + U ′)(k2 + U ′ + 2ρU ′′) + (Zkωn)2

]

× 1

L

∑
kn

∫ √
k2−k2

n

0
dqqD−1

[
2k2 − η

(
k2 − q2 − k2

n

)]
× θ

(
k2 − q2 − k2

n

)
. (B12)

For the q integration we obtain analytically

∫ √
k2−k2

n

0
dqqD−1

[
2k2 − η

(
k2 − q2 − k2

n

)]
θ
(
k2 − q2 − k2

n

)

= 2

D
k2+D[1−(kn/k)2]D/2

[
1 − η

1 − (kn/k)2

D + 2

]
θ
(
k2−k2

n

)
.

(B13)

The temperature-dependent part evaluates to

T
∑
ωn

k2 + U ′ + ρU ′′

(k2 + U ′)(k2 + U ′ + 2ρU ′′) + (Zkωn)2

= 1

2Zk

(√
1 + w1

1 + w2
+

√
1 + w2

1 + w1

)

×
[

1

2
+ NB

(
k2√(1 + w1)(1 + w2)

Zk

)]
, (B14)

where we have introduced the dimensionless quantities w1 =
U ′/k2, w2 = (U ′ + 2ρU ′′)/k2 and the Bose function NB (x) =
(ex/T − 1)−1. The flow for the effective potential therefore
reads

˙̄Uk = 4vDk3+D

DZk

G1(T )F (L̃),

G1(T ) =
(√

1 + w1

1 + w2
+

√
1 + w2

1 + w1

)(
1

2
+ NB

)
,
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F (L̃) = 1

Lk

∑
kn

[1 − (kn/k)2]D/2

×
(

1 − η
1 − (kn/k)2

D + 2

)
θ
(
k2 − k2

n

)
(B15)

with L̃ = Lk.
We now specialize to two continuous dimensions. Further,

we compactify on a torus, thus kn = 2πn/L, n ∈ Z. The
θ function limits the range of summation in the crossover
function to |kn| = | 2π

L
n| < k or, equivalently, |n| < L̃

2π
. With

N = � L̃
2π

� we can write

Fpbc(L̃) = 1

L̃

[(
1 − η

4

) n=N∑
n=−N

1

−
(

1 − η

2

) n=N∑
n=−N

k2
n

k2
− η

4

n=N∑
n=−N

k4
n

k4

]
. (B16)

Together with

N∑
n=−N

k2
n

k2
= 2

(
2π

L̃

)2 N∑
n=1

n2,

(B17)
N∑

n=−N

k4
n

k4
= 2

(
2π

L̃

)4 N∑
n=1

n4

and

n=N∑
n=−N

1 = 1 + 2N,

N∑
n=1

n2 = 1

6
N (1 + N )(1 + 2N ), (B18)

N∑
n=1

n4 = 1

30
N (1 + N )(1 + 2N )(−1 + 3N + 3N2),

the crossover function evaluates to

Fpbc(L̃) =2N + 1

L̃

[
1 − η

4
− 1

L̃2

(
1 − η

2

)
4π2

3
N (N + 1)

− η

L̃4

4π4

15
N (N + 1)(−1 + 3N + 3N2)

]
. (B19)

The flow for the effective potential with v2 = 1/8π and U̇k =
˙̄Uk + ηρU ′

k reads

U̇k = ηρU ′
k + k5

4πZk

G1(T )F (L̃). (B20)

We use the derivative projection to obtain the flow equations
for the wave-function renormalizations Z̄k and Ak defined via

∂t Z̄k = − ∂

∂p0

˙̄G−1
k,12(p0,0)

∣∣∣∣
p0=0

,

(B21)

∂tAk = ∂

∂p2
˙̄G−1

k,22(0,p2)

∣∣∣∣
p=0

,

where G−1
k,ij (p0,p

2) = δ2�/(δφiδφj )|ρ0 denotes the second
functional derivative. For the flow of Z̄k we arrive at

Z̄−1
k ∂t Z̄k = 4ρU ′′2

∫
Q

k4 − 2ρU ′′(k2 + ρU ′′) + (Zkq0)2

(k2(k2 + 2ρU ′′) + (Zkq0)2)3

× [
2k2 − η

(
k2 − q2 − k2

n

)]
θ
(
k2 − q2 − k2

n

)
.

(B22)

Again, we can evaluate

1

L

∑
kn

∫
dDq

(2π )D
(
2k2 − η

(
k2 − q2 − k2

n

))
θ
(
k2 − q2 − k2

n

)

= 4vD

2

D
k3+DF (L̃), (B23)

with F (L̃) as defined in Eq. (B15). Together with U ′′ = λ and
Z̄k = ZkAk , we obtain

∂tZk = ηZk − Zk4ρλ2 8vDk3+D

D

1

2Zkk6
G2(T )F (L̃), (B24)

where we have defined the temperature-dependent function

G2(T ) = 1

(1 + w2)3/2

(
1

2
+ NB(c) − cN ′

B(c)

)

− 3

8

w2(4 + w2)

(1 + w2)5/2

×
(

1

2
+ NB(c) − cN ′

B (c) + c2

3
N ′′

B(c)

)
, (B25)

with c = k2
√

1 + w2/Zk and NB(c) = (ec/T − 1)−1. Specify-
ing to D = 2 noncompact dimensions we arrive at

∂tZk = ηZk − ρλ2

πk
G2(T )F (L̃). (B26)

For the flow equation for Ak we need to take a derivative
with respect to | �p|2. We consider the external momentum as a
2D vector �p = (px,py). We then have, with x = (�q · �p)/(qp)
and η = −(∂tAk)/Ak ,

η =8ρλ2

(
T

∑
ωn

1

det2Q

)
1

L

∑
kn

∫
d2q

(2π )2
q2x2δ

(
k2 − q2 − k2

n

)
× (

2k2 − η
(
k2 − q2 − k2

n

))
θ
(
k2 − q2 − k2

n

)
. (B27)

Angle integration over x yields another factor of 1/2. We have

η = 8ρλ2

(
T

∑
ωn

1

det2Q

)
1

L

∑
kn

4v2
1

2

∫
dqqq2

× (
2k2 − η

(
k2 − q2 − k2

n

))
δ
(
k2 − q2 − k2

n

)
× θ

(
k2 − q2 − k2

n

)
. (B28)

We further obtain

η = 32ρλ2v2

2

(
T

∑
ωn

1

det2Q

)
1

L

∑
kn

×1

2

∫
dqq3(2k2 − η

(
k2 − q2 − k2

n

))
δ
(
k2 − q2 − k2

n

)
.

(B29)
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By reformulating the δ function,

δ
(
k2 − k2

n − q2
)

= 1

2
√

k2 − k2
n

[
δ
(√

k2 − k2
n − q

) + δ
(√

k2 − k2
n + q

)]
,

(B30)

and using that the second δ function gives no contribution to
the integral, we get

η = 32ρλ2v2

2

(
T

∑
ωn

1

det2Q

)
1

L

∑
kn

× 1

2

1

2

(
k2 − k2

n

)−1/2(
k2 − k2

n

)3/2
2k2

= 32ρλ2v2

2

(
T

∑
ωn

1

det2Q

)
1

L

∑
kn

1

2
k2

(
k2 − k2

n

)
. (B31)

We find

η = 32ρλ2

32π

(
T

∑
ωn

1

det2Q

)
k4

L

∑
kn

[1 − (kn/k)2]. (B32)

And finally,

η = ρλ2

π
k5

(
T

∑
ωn

1

det2Q

)
1

L̃

∑
kn

(1 − (kn/k)2)

= ρλ2

π
k5

(
T

∑
ωn

1

det2Q

)
F0(L̃), (B33)

where F0(L̃) is the crossover function with η set equal to 0,
i.e.,

F0(L̃) = 2N + 1

L̃

[
1 − 1

L̃2

4π2

3
N (N + 1)

]
. (B34)

The Matsubara summation yields

T
∑
ωn

1

det2Q
= 1

2Zkk6
G3(T ), (B35)

with

G3(T ) = 1

(1 + w2)3/2

(
1

2
+ NB(c) − cN ′

B(c)

)
, (B36)

with c = k2(1 + w2)1/2/Zk and NB(c) = (ec/T − 1)−1 as be-
fore. The anomalous dimension then reads

η = ρ0λ
2

2πZkk
G3(T )F0(L̃). (B37)

This completes the derivation of the flow equations.

2. Anisotropic derivative expansion

In the following we consider the anisotropic extension of
Eq. (B2) given by

�k[φ̄∗,φ̄] =
∫

X

[
φ̄∗(Z̄∂τ − A∇2 − Az∂

2
z

)
φ̄ + Ū (φ̄∗φ̄)

]
,

(B38)

with ∇2 = ∂2
x + ∂2

y . For concreteness we restrict ourselves to
the crossover from three to two dimensions in this section,
and the k dependence of running couplings is understood
implicitly. We write

ξ = Az

A
, ηz = − Ȧz

A
. (B39)

The isotropic case corresponds to ξ = 1 and η = ηz. Due to
A� = Az,� = 1 this implies A = Az for all k. This behavior
is recovered in the anisotropic parametrization for large k. The
infrared regulator function is chosen to be

Rk(Q) = A
(
k2 − q2 − ξq2

z

)
θ
(
k2 − q2 − ξq2

z

)
(B40)

with q2 = �q2 = q2
x + q2

y . The regulator is designed such that
the usual replacement pq → Ak2 in the integrand is applicable.

The derivation of the flow equations for Ū , A, Az, and Z̄ is
analogous to the isotropic case so that we limit the presentation
to a few central statements. The β functions for the effective
potential Ū and frequency coefficient Z̄ in Eqs. (B20) and
(B24), respectively, need to be equipped with the modified
crossover function

Fpbc(L̃) =2N + 1

L̃

[
1 − η

4
− 1

L̃2

(
ξ − η

2

)
4π2

3
N (N + 1)

− ξ (2ηz − ξη)

L̃4

4π4

15
N (N + 1)(−1 + 3N + 3N2)

]
(B41)

instead of Eq. (B19). For the projection of the flow equations
for A and Az, respectively, we employ

Ȧ = ∂

∂p2
˙̄G−1

k,22(0, �p2 = p2, pz = 0)

∣∣∣∣
P=0

, (B42)

Ȧz = ∂

∂p2
z

˙̄G−1
k,22(0, �p2 = 0, pz)

∣∣∣∣
P=0

. (B43)

Although qz is not a continuous variable for L < ∞, this is
the natural generalization of the appropriate infinite volume
projection; see also the definition of ˙̄Z from Eq. (B21). For the
anomalous dimensions η and ηz we obtain{

η

ηz

}
= 8ρ0λ

2
∫

Q

1

det2Q

[
(2 − η)k2 + ηq2 + ηzq

2
z

]

×
{ 1

D
q2

ξ 2q2
z

}
δ
(
k2 − q2 − ξq2

z

)
θ
(
k2 − q2 − ξq2

z

)
.

(B44)

For L̃ = ∞ we can employ
∫
Q

q2
z = 1

D

∫
Q

q2 such that η = ηz

and ξ = 1 is a consistent solution. For L̃ < ∞, Eq. (B44) lead
to a linear set of equations for η and ηz, which supplements the
remaining flow equations. The flow of the running coupling ξ

is given by

ξ̇ = ηξ − ηz. (B45)

From the solution of the RG flow in the anisotropic
derivative expansion we find the following features: (i) The
anomalous dimension ηz follows the behavior of η for k > 2π

L

on average, though in a discontinuous manner. For k � 2π
L

,
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ηz vanishes, whereas η remains nonzero. This behavior is
displayed in the upper panel in Fig. 7. (ii) The value of
ξ = Az/A at k = kf remains of order unity. It is close to
ξ = 1 at zero temperature, whereas it is in the range ξ � 0.5–1
at Tc (see lower panel in Fig. 7). (iii) The extracted critical
temperature Tc as a function of L and g3D is identical to that
of the isotropic derivative expansion within the resolution of
Fig. 4. This good agreement can be understood from the fact
that ηz closely follows the behavior of η, but η itself is small.
Hence the influence of η on Tc is already a subleading effect,
such that the difference between η and ηz is only a second-order
subleading effect.

The good agreement of results within the anisotropic
versus isotropic derivative expansions justify the use of the
isotropic parametrization with Az = A for the computation of
observables in the text.

APPENDIX C: T-MATRIX, SCATTERING VERTEX, AND
DIMER PROPAGATOR

In this Appendix we clarify the roles played by the
low-energy T matrix, the scattering vertex, and the dimer
propagator in the FRG approach to scattering of nonrelativistic
bosons. A key result for the analysis of the dimensional
crossover is given by the translation formulas between the
initial couplings λ� of the RG flow and the scattering lengths
a. In this section we denote the 2D and 3D scattering lengths
a3 and a2, respectively. We further write

Pφ(Q) = PQ
φ = iq0 + q2 − μ (C1)

for the inverse atom propagator with μ � 0. The temperature
is set to T = 0 for the scattering problem.

1. T matrix

The T matrix from Eq. (46) can be defined more generally
as a function of P = (p0, �p) by

1

T (P )
= 1

λ
(sh)
�

+
∫ �

Q

1

Pφ(Q + P )Pφ(−Q)
. (C2)

The UV cutoff � only restricts the spatial momenta. Perform-
ing the loop integration we obtain

1

T (P )
=

⎧⎪⎨
⎪⎩

1
λ

(sh)
3D,�

+ �
4π2 − 1

8π

√
A (D = 3),

1
λ

(sh)
2D,�

− 1
8π

ln(A/�2) (D = 2),
(C3)

with

A = ip0

2
+ p2

4
− μ. (C4)

The analytic continuation to real frequencies (energies) E

is given by ip0 → −(E + i0). This yields the low-energy
T matrix T (E) provided we further choose p2 = μ = 0. To
summarize, we obtain the T matrix T (E) by replacing

A → −E + i0

2
. (C5)

2. Scattering vertex

By relating the running coupling constant λk to the T matrix
we are able to define a3 and a2 within the FRG setup. The
flow equation for λk in vacuum (μ = T = 0) is found from
λ̇k = U̇ ′′(0), where

U̇ (ρ) = 1

2

∫
Q

Ṙk(Q)
L

Q
φ + L

−Q
φ

L
Q
φ L

−Q
φ − (ρU ′′)2

(C6)

and L
Q
φ = Pφ(Q) + Rk(Q) + U ′ + ρU ′′. Hence

λ̇k = 2λ2
k

∫
Q

Ṙk(Q)(
PQ

φ + R
Q
k

)2(P−Q
φ + R

−Q
k

)
= −λ2

k∂t

∫
Q

1(
PQ

φ + R
Q
k

)(
P−Q

φ + R
−Q
k

) . (C7)

We conclude that

∂t

1

λk

= ∂t

∫
Q

1(
PQ

φ + R
Q
k

)(
P−Q

φ + R
−Q
k

) , (C8)

which is readily solved by

1

λk

= 1

λ�

+
∫

Q

(
1(

PQ
φ + R

Q
k

)(
P−Q

φ + R
−Q
k

)
− 1(

PQ
φ + R

Q
�

)(
P−Q

φ + R
−Q
�

)
)

= 1

λ�

+ 1

2

∫
�q

(
1

q2 + Rk(q)
− 1

q2 + R�(q)

)

(C10)= 1

λ�

+ 1

2

∫ �

�q

1

q2 + Rk(q)
− 1

2

∫ �

�q

1

�2
. (C9)

In the last line we have employed the particular form of the
Litim-type regulator given by

Rk(q) = (k2 − q2)θ (k2 − q2). (C10)

For the last term in Eq. (C9) we find

1

2

∫ �

�q

1

�2
=

{
�

12π2 (D = 3),
1

8π
(D = 2).

(C11)

We generalize this to a P -dependent scattering vertex by
defining

∂t

1

λk(P )
:= ∂t

∫
Q

1(
PQ+P

φ + R
Q+P
k

)(
P−Q

φ + R
−Q
k

) . (C12)

For nonzero P we can take the limit k → 0 and find

1

λk=0(P )
= 1

λ�

+
∫ �

Q

1

PQ+P
φ P−Q

φ

− 1

2

∫ �

�q

1

�2

due to Rk=0 = 0. Comparing this to Eq. (C2) for the T matrix
T (P ) we conclude that

T (P ) = λk=0(P ). (C13)

For the renormalization of the coupling constants we have

1

λ
(sh)
�

= 1

λ�

− 1

2

∫ �

�q

1

�2
. (C14)
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The additional term on the right-hand side results from the
particular form of the regulator (C10) employed in our FRG
approach. As a consequence, the relationship between λ� and
the scattering length a in the FRG approach is given by

1

λ3D
�

= − �

6π2
+ 1

8πa3
, (C15)

1

λ2D
�

= − 1

8π
ln

(
�2a2

2

) + 1

8π
. (C16)

3. Dimer propagator

The scattering vertex λk(P ) has an intuitive interpretation
in terms of the inverse dimer propagator

Pdim(P ) := − 1

λk=0(P )
= − 1

T (P )
, (C17)

which describes interactions between atoms by means of a
propagating dimer boson with frequency and momentum P .
Within the sharp momentum cutoff scheme we have

Pdim(P ) = − 1

λ
(sh)
�

−
∫ �

Q

1

Pφ(Q + P )Pφ(−Q)
. (C18)

Due to Galilean invariance, the P dependence of the dimer
propagator is solely in terms of

A = 1

2

(
ip0 + p2

2
− 2μ

)
, (C19)

which reflects the dimer mass and dimer chemical potential
being Mdim = 2M and μdim = 2μ, respectively.
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