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Stoner ferromagnetism of a strongly interacting Fermi gas in the quasirepulsive regime

Lianyi He,1,2 Xia-Ji Liu,3 Xu-Guang Huang,4 and Hui Hu3

1Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2Department of Physics and Collaborative Innovation Center for Quantum Matter, Tsinghua University, Beijing 100084, China

3Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne 3122, Australia
4Physics Department and Center for Particle Physics and Field Theory, Fudan University, Shanghai 200433, China

(Received 31 May 2016; published 24 June 2016)

Recent advances in rapidly quenched ultracold atomic Fermi gases near a Feshbach resonance have brought
about a number of interesting problems in the context of observing the long-sought Stoner ferromagnetic phase
transition. The possibility of experimentally obtaining a “quasirepulsive” regime in the upper branch of the energy
spectrum due to the rapid quench is currently being debated, and the Stoner transition has mainly been investigated
theoretically by using perturbation theory or at high polarization due to the limited theoretical approaches in the
strongly repulsive regime. In this work, we present a nonperturbative theoretical approach to the quasirepulsive
upper branch of a Fermi gas near a broad Feshbach resonance, and we determine the finite-temperature phase
diagram for the Stoner instability. Our results agree well with the known quantum Monte Carlo simulations
at zero temperature, and we recover the known virial expansion prediction at high temperature for arbitrary
interaction strengths. At resonance, we find that the Stoner transition temperature becomes of the order of the
Fermi temperature, around which the molecule formation rate becomes vanishingly small. This suggests a feasible
way to observe Stoner ferromagnetism in the nondegenerate temperature regime.
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I. INTRODUCTION

An ultracold atomic Fermi gas with tunable contact inter-
actions provides a paradigm to simulate strongly correlated
many-body systems due to its unprecedented controllability
[1]. With its strong attractions, it has paved the way for the
crossover from Bardeen-Cooper-Schrieffer (BCS) superflu-
idity to Bose-Einstein condensation (BEC) of tightly bound
fermionic pairs [2], while with its strong repulsions, it may
lead to the confirmation of a textbook result of a ferromagnetic
phase transition predicted nearly a century ago, the so-called
Stoner ferromagnetism [3]. However, understanding the nature
of this ferromagnetic transition is still an intriguing and
controversial topic [4]. This is largely due to the fact that
the experimental tunability of the repulsive interaction comes
at the expense of severe atom loss [5]. The regime of strong
effective repulsion can only be reached by rapidly quenching
an attractively interacting atomic Fermi gas to the metastable
upper branch of its energy spectrum near a Feshbach resonance
[6]. Initial experimental support of the Stoner ferromagnetic
transition was reported in a strongly interacting Fermi gas of
6Li atoms [7]. However, its existence in the same system
was ruled out by more advanced spin-density fluctuation
measurements [8]. Recent progress on repulsive polarons
suggests that the Stoner transition may be observable by using
a narrow Feshbach resonance [9] or at low dimensions [10].
Triggered by these intriguing experimental observations, over
the past few years there has been considerable theoretical
interest in Stoner ferromagnetism [11–29].

Stoner’s original idea of a ferromagnetic transition is based
on a simple first-order perturbation theory [3], which at zero
temperature predicts a smooth transition at kF as = π/2 for a
spin-population balanced system, where kF is the Fermi wave
vector and as is the s-wave scattering length. The application of
the second-order perturbation theory improves the threshold to
kF as � 1.054 [11], but the value is still too large to validate the

perturbation theory. Recent zero-temperature quantum Monte
Carlo simulations (QMC) [15,21,22], a lowest-order constraint
variational calculation [23], as well as a nonperturbative ladder
approximation calculation [24], suggest instead a transition
at kF as � 0.8–0.9. On the other hand, in the limit of large
spin imbalance, where the system may behave like a weakly
interacting gas of repulsive polarons, the ferromagnetic transi-
tion could be accurately determined [29]. However, a unified
theoretical framework, which is valid at all temperatures and
interaction strengths, has yet to be developed.

The purpose of this work is to present a nonperturbative
theory of Stoner ferromagnetism at finite temperature by
performing controlled calculations both in a large-N expansion
[30–32] and in a dimensional ε expansion [33–35]. Previously,
the nonperturbative approach with a large-N expansion was
applied to study the strongly interacting Bose gas [36], which
is viewed as the upper branch of a Bose gas across a Feshbach
resonance. Our prediction of Tan’s contact density agrees
with the latest results from first-principles quantum Monte
Carlo calculations [37,38], as shown in Fig. 1. In particular,
the nonmonotonic temperature dependence of the two-body
contact, predicted by our theory, is unambiguously confirmed.
Therefore, we expect that the application of this nonperturba-
tive theory to fermions will lead to a reliable description of
the Stoner ferromagnetism at finite temperatures. A rigorous
verification of our predictions can be obtained by confronting
them with more advanced Monte Carlo simulations and experi-
mental investigations of ferromagnetism at finite temperatures.

In this work, we find that the Stoner transition occurs at
finite temperature in a strongly interacting but near-degenerate
Fermi gas. The relatively high transition temperature makes
the molecule formation rate vanishingly small, and thus the
observation of the Stoner transition will no longer suffer
from severe atom loss. Our prediction thereby paves the
way toward experimental confirmation of the long-sought
Stoner ferromagnetic phase transition. Our results may also be
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FIG. 1. The temperature dependence of the two-body contact c2

of a unitary Bose gas. c2 is in units of ρ4/3, where ρ is the density
of the unitary Bose gas. Tc0 is the transition temperature of an ideal
Bose gas with density ρ. The black solid line shows the prediction of
our upper branch theory within the large-N expansion approximation
[36]. It agrees reasonably well with the latest Monte Carlo simulation
at both zero temperature (stars, from Ref. [37]) and finite temperatures
(solid circles and crosses at two different three-body parameters, from
Ref. [38]). The green dashed line is the second-order virial expansion
result that is valid at high temperatures [36].

used to better understand the occurrence of ferromagnetism
in many strongly correlated solid-state systems, including
superconductors, metals, and insulators.

One crucial component of our finite-temperature theory
is an appropriate definition of a many-body phase shift for
the quasirepulsive upper branch. In an earlier study, it was
realized that a description of quasirepulsive interaction may be
achieved by excluding the in-medium bound-state contribution
from the density equation within a Nozières-Schmitt-Rink
(NSR) approach [39]. However, this treatment predicts an
equilibrium switch between the upper and the lower branches
near the resonance at high temperature and results in a
wide forbidden area in the low-temperature phase diagram.
Alternative spectral representation of the approach that takes
into account an additional frequency-independent two-body
term still suffers from a sudden drop in the spin susceptibility
near the Feshbach resonance [40]. Here, we show that the
clarification of the quasirepulsive upper branch, together with
the controllable large-N expansion and ε expansion, provides
a reliable phase diagram at arbitrary temperatures and coupling
strengths.

Our paper is organized as follows. In the next section
(Sec. II), we review the theoretical framework of the large-
N expansion and the dimensional ε expansion, and we
examine the usefulness of these two approaches for a strongly
interacting Fermi gas in the attractive branch. We explain
the definition of the upper branch, Eq. (9), and we provide
a detailed proof of this definition from the viewpoint of the
virial expansion. The technical proof may be skipped for the
first reading. In Sec. III we present the main results of our work,
i.e., the Stoner transition at both zero temperature and finite
temperature. A finite-temperature phase diagram is shown, and
the stability of the upper branch is briefly discussed. Finally,
Sec. IV is devoted to conclusions and outlooks.

II. THEORY

We first adopt the large-N approach following the pioneer-
ing works by Nikolić et al. [30] and Veillette et al. [31] for an
attractive Fermi gas at the BEC-BCS crossover. An artificial
small parameter, 1/N , is introduced to organize the different
diagrammatic contributions or scattering processes around the
mean-field solution. The original theory is recovered in the
limit of N = 1. The motivation for the large-N expansion is
that there are no phase transitions with deceasing N , and the
large-N (i.e., mean-field) solution has the same symmetry as
the original ground state at N = 1. Therefore, we anticipate
that the large-N results connect smoothly to the physical
results at N = 1. One can then perform controlled calculations
by including all diagrams up to a certain order in 1/N .
Although in our calculations we stop at the next-to-leading-
order (1/N ), systematic improvements could be achieved by
going to higher orders. A complementary approach, which is
similar in spirit, is the dimensional ε expansion. We will briefly
discuss the ε expansion [33–35] at the end of this section.

A. Large-N expansion

We consider a three-dimensional spin-1/2 interacting Fermi
gas with N fermionic flavors (i,j = 1, . . . ,N) for each spin
degree of freedom σ = ↑,↓, described by an action (setting
the volume V = 1 and � = kB = 1) [30–32]

S =
∫

d3x dτ

⎡
⎣ N∑

i=1

∑
σ=↑,↓

ψ∗
iσ

(
∂τ − ∇2

2m
− μ

)
ψiσ

+ U0

N

N∑
i,j=1

ψ∗
i↑ψ∗

i↓ψj↓ψj↑

⎤
⎦, (1)

where ψiσ (x,τ ) are Grassmann fields representing fermionic
species of equal mass m, and the imaginary time τ takes
values from 0 to the inverse temperature β = 1/T . μ is the
chemical potential and U0 is the bare interaction strength to be
renormalized in terms of the s-wave scattering length as via
the relation

m

4πas

= 1

U0
+

∑
k

1

2εk
(2)

with εk = k2/(2m). The action possesses invariance under the
symplectic group Sp(2N), and in the case of N = 1 it describes
the usual spin-1/2 Fermi gas.

By decoupling the interaction term in the action via a
standard Hubbard-Stratonovich transformation and integrating
out the fermionic Grassmann fields, at the level of Gaussian
fluctuations (i.e., the first nontrivial correction at the order of
1/N ), we obtain the pressure [41–44]

P
T

= 2N
∑

k

ln(1 + e−βξk ) −
∑
q,iνl

ln[−−1(q,iνl)], (3)

where ξk = εk − μ and (q,iνl) is the two-particle vertex
function with bosonic Matsubara frequencies νl = 2πlT
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(l = 0,±1,±2, . . . ),

−1(q,iνl) = m

4πas

−
∑

k

[
γ (q,k)

iνl − ξq/2+k − ξq/2−k
+ 1

2εk

]
.

(4)

γ (q,k) ≡ 1 − f (ξq/2+k) − f (ξq/2−k) with the Fermi distribu-
tion f (x) = 1/(eβx + 1) includes (in-medium) Pauli blocking
of pair fluctuations. By recalling that the vertex function
is essentially the Green function of pairs, the pressure in
Eq. (3) simply describes a noninteracting mixture of 2N

fermionic species and the bosonic pairs [44]. By converting
the summation over Matsubara frequencies into an integral
over real frequency and introducing an in-medium two-particle
phase shift [41–43],

δ(q,ω) ≡ −Im{ln[−−1(q,ω + i0+)]}, (5)

the contribution from the bosonic pairs can be rewritten as

�P =
∑

q

∫ +∞

−∞

dω

π
b(ω)δ(q,ω), (6)

where b(ω) = 1/(eβω − 1) is the Bose distribution. According
to standard scattering theory, the two-particle phase shift is
associated with the density of state and increases by π when a
two-body bound state emerges [41]. It should vanish precisely
at ω = 0, as required by the integrability of Eq. (6).

For a unitary Fermi gas in the attractive (ground-state)
branch, the application of the large-N expansion has been
successful. At zero temperature, the predicted Bertsch param-
eter ξN = 0.279 [31] is in reasonable agreement with the most
recent experimental measurement ξ = 0.376 ± 0.005 [45] and
quantum Monte Carlo result ξ = 0.37–0.38 [46,47]. The pre-
dicted inverse superfluid transition temperature, (TF /Tc)N =
6.579 [30], is also very close to the experimental data
(TF /Tc)N = 6.0 ± 0.5 [45]. Near the quantum critical point
μ = 0, the large-N expansion approach was recently examined
by Enss [32] by comparing the results for the equation
of state and Tan’s contact with more favorable theoretical
predictions [i.e., bold diagrammatic Monte Carlo (BDMC)]
or the accurate experimental data [45]. It was shown that
for pressure P , there is excellent agreement (less than 4%)
between the large-N calculation PN = 0.928nkBT and the
experimental data P = 0.891 ± 0.019nkBT (or the BDMC
data P = 0.90 ± 0.02nkBT ) [32]. There is also a similar
good agreement for the entropy density S/(NkB). For Tan’s
contact C, the large-N prediction (CN = 0.0789k4

F ) is just
1.4% below the BDMC calculation (C = 0.080 ± 0.005k4

F ).
This is very impressive, given the simplicity of the large-N
calculation [32].

In Fig. 2, we provide our benchmark of the large-N theory
and systematically compare the large-N predictions with
the experimental results in the nondegenerate regime with
T > TF . The large-N expansion prediction for the universal
energy agrees reasonably well with the recent experimental
measurement by the MIT group [45] and with the second-order
virial expansion result at sufficiently large temperatures [48].

FIG. 2. Temperature dependence of the total energy of a unitary
Fermi gas predicted by the large-N expansion theory. The large-
N expansion results (solid line) are compared with the accurate
experimental measurement from the MIT group (solid circles) [45], as
well as the second-order virial expansion prediction (empty squares)
[48]. The dot-dashed line is the energy of an ideal, noninteracting
Fermi gas.

B. Phase shift of the upper branch

The above theory is only for the attractive branch (ground
state). One crucial component of our finite-temperature theory
for the quasirepulsive upper branch is an appropriate definition
of a many-body phase shift.

For the attractive ground state, the phase shift δatt(q,ω) is
generally positive, and the condition δatt(q,ω = 0) = 0 is a
sufficient criterion to determine the lowest temperature (i.e.,
Tc) for Cooper pairing instability. In the inset of Fig. 3,
we show a typical phase shift for the attractive branch at
1/(kF as) = 2 with a chemical potential at Fermi energy,
μ = εF = k2

F /(2m). With increasing frequency, the phase shift
jumps from 0 to π at a critical value ωb(q), where the vertex
function develops a pole. This simply signals the existence of a

FIG. 3. The in-medium phase shift δrep(q,ω) of a quasirepulsive
Fermi gas at the interaction parameter kF as = 0.5 and T = 0. We
have taken a chemical potential μ = εF , which is suitable for the
weakly interacting regime. The inset shows the corresponding in-
medium phase shift for an attractive Fermi gas δatt(q = 0,ω), together
with the real and imaginary parts of the negative inverse of the two-
particle vertex function, −−1(q = 0,ω).
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two-body bound state. With further increasing frequency above
the scattering threshold ωs(q) = q2/(4m) − 2μ > ωb(q), the
phase shift deviates from π as the imaginary part of −−1(q,ω)
is no longer zero, indicating the scattering continuum. We note
that in this case the criterion δatt(q,ω = 0) = 0 is clearly not
satisfied. This is because we have used an unrealistic large
chemical potential for the attractive ground state. In a realistic
solution, the chemical potential will be necessarily pinned by
the Thouless criterion to a value slightly larger than half of the
bound-state energy −1/(ma2

s ) [41].
For the quasirepulsive upper branch, we first notice that the

two-body phase shift in vacuum is given by

δ2B(E) = −Im

(
ln

[
− 1

as

+
√

−m(E + i0+)

])
. (7)

For the BEC side with as > 0, we have

δ2B(E) =

⎧⎪⎨
⎪⎩

0 −∞ < E < εB,

π εB < E < 0,

π − arctan(as

√
mE) E > 0,

(8)

where εB = −1/(ma2
s ) is the bound-state energy level. The

π -jump at E = εB shows clearly the existence of a bound
state. Therefore, to define a quasirepulsive two-body system,
the π -shift coming from the bound state should be subtracted.
Inspired by this two-body picture, we find another repulsive
solution for the phase shift by considering a different branch
cut for the argument of −−1(q,ω), which differs from δatt by
a constant shift π from the scattering threshold:

δrep(q,ω) = [δatt(q,ω) − π ]�[ω − ωs(q)]. (9)

In the following, we show that Eq. (9) is an appropriate
prescription of the phase shift for the upper branch from the
viewpoint of virial expansion [48]. In brief, it is known that
the bosonic contribution �P contains all two-particle virial
series to infinite order of the fugacity z = eβμ [48]. It can be
expressed as

�P = P (2) =
∞∑

n=2

P (2)
n , (10)

where P (2)
n ∝ zn is the nth two-particle virial contribution.

Since the two-body energy spectrum is known exactly, we
can precisely separate P (2)

n into its contributions from the
bound state and from the scattering continuum. By resumming
only the scattering contributions to all orders in z, we obtain
precisely the prescription (9).

At high temperature, the fugacity becomes small, z =
eβμ � 1. The contribution of the two-particle scattering
process to the pressure can be expressed as [48]

P (2) =
∞∑

n=2

P (2)
n = 2T

λ3
dB

∞∑
n=2

b(2)
n zn, (11)

where λdB = [2π/(mT )]1/2 is the thermal de Broglie wave-
length and b(2)

n is the two-particle contribution to the nth virial
coefficient.

The n-order contribution P (2)
n can be obtained by making

the virial expansion of the pressure �P . Toward that end,
we put the dependence on the chemical potential μ into the

distribution functions by using a new variable E = ω + 2μ −
q2/(4m). Then we obtain

P (2) =
∑

q

∫ ∞

−∞

dE

π
b

(
E + q2

4m
− 2μ

)
δ(E,q). (12)

Here the phase shift δ(E,q) in terms of E can be expressed as
δ(E,q) = −Im{ln [A(E,q) + iB(E,q)]}, where the functions
A(E,q) and B(E,q) are given by

A(E,q) = − 1

as

+ 4π

m
P

∑
k

[
γ (k,q)

E − 2εk
+ 1

2εk

]
,

B(E,q) = −4π2

m

∑
k

γ (k,q)δ(E − 2εk). (13)

For E > 0, P denotes the principal value. The virial expansion
of P (2) can be worked out by making use of the expansions
of the Bose and Fermi distribution functions. The distribution
functions can be expanded as

b

(
E + q2

4m
− 2μ

)
=

∞∑
n=1

z2ne−nβ(E+ q2

4m
) (14)

and

f (ε − μ) =
∞∑

n=1

zn(−1)n−1e−nβε. (15)

Accordingly, the phase shift δ(E,q) can be expanded as

δ(E,q) = δ2B(E) +
∞∑

n=1

znφn(E,q), (16)

where δ2B(E) is the two-body phase shift in the vacuum,
Now we consider the BEC side with as > 0. According to

the expansion (16) of the phase shift δ(E,q), we can divide the
pressure P (2) into four contributions.

(a) The first two contributions come from the leading-order
expansion of the phase shift. Keeping only the vacuum two-
body phase shift δ2B(E), we obtain

P (2)
2B =

∞∑
n=1

z2n
∑

q

e− nβq2

4m

∫ ∞

−∞

dE

π
e−nβEδ2B(E). (17)

The relative two-body motion and the center-of-mass motion
are decoupled because δ2B(E) depends only on E. We can
separate the two-body phase shift into its bound-state part
δb(E) and scattering-state part δs(E). We have δ2B(E) =
δb(E) + δs(E), where

δb(E) = π�(E − εB),

δs(E) = [δ2B(E) − π ]�(E − εB). (18)

Accordingly, the pressure P (2)
2B can be divided into its bound-

state contribution P (2)
b and its scattering-state contribution

P (2)
s . We have P (2)

2B = P (2)
b + P (2)

s , where

P (2)
b =

∞∑
n=1

z2n
∑

q

e− nβq2

4m

∫ ∞

−∞

dE

π
e−nβEδb(E),

P (2)
s =

∞∑
n=1

z2n
∑

q

e− nβq2

4m

∫ ∞

−∞

dE

π
e−nβEδs(E). (19)
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Notice that these two contributions are not simply separated
by E < 0 and E > 0. Completing the integrals over q and E,
we obtain

P (2)
b = 23/2T

λ3
dB

∞∑
n=1

z2n

n5/2
e−nβεB ,

P (2)
s = 23/2T

λ3
dB

∞∑
n=1

z2n

n5/2

∫ ∞

0

dk

π
e− nβk2

m
dδ(k)

dk
. (20)

Here δ(k) = − arctan(kas) is now the usual scattering phase
shift without a bound state. It becomes evident that P (2)

b and
P (2)

s correspond to the bound-state and scattering-state contri-
butions, respectively. For n = 1, they recover the well-known
Beth-Uhlenbeck formula of the second virial coefficient.

(b) The other two contributions come from the higher-order
expansions of the phase shift which show explicitly the
medium effect. These contributions can be called medium
corrections and can be expressed as

P (2)
m =

∞∑
n=1

∞∑
l=1

z2n+l
∑

q

e− nβq2

4m

×
∫ ∞

−∞

dE

π
e−nβEφl(E,q). (21)

We notice that the relative two-body motion and the center-of-
mass motion cannot be separated for these contributions. To
obtain the expansion coefficients φn(E,q), we need to evaluate
the expansions for A(E,q) and B(E,q). We thus consider
two regimes of E: E < 0 and E > 0. We will see that the
bound-state and scattering-state contributions are separated
by these two regimes.

(i) E < 0. In this regime we have B(E,q) = 0. The real
part A(E,q) can be expressed as

A(E,q) = − 1

as

+ √−mE +
∞∑

n=1

(−1)n−1

n
znAn(E,q), (22)

where the expansion coefficients read

An(E,q) = 16mT

πq
e− nβq2

8m

∫ ∞

0
p dp

e− nβp2

2m sinh nβpq

2m

p2 − mE
. (23)

In this regime, the medium effect (z � 1) induces a shift of
the bound-state pole. Therefore, we have formally

φl(E,q) = π

l−1∑
ν=0

δ(ν)(E − εB)ϕν
l (εB,q), (24)

where δ(ν)(x) is the νth derivative of the Dirac delta function.
The expression of ϕν

l (εB,q) is rather complicated and is
not shown here. From this formal expression, the medium
correction to the pressure in the region E < 0 can be expressed
as

P (2)
mb =

∞∑
n=1

∞∑
l=1

z2n+l
∑

q

e− nβq2

4m

∫ 0

−∞
dE e−nβE

×
l−1∑
ν=0

δ(ν)(E − εB)ϕν
l (εB,q). (25)

The integral over E can be completed and finally P (2)
mb can be

formally expressed as

P (2)
mb =

∞∑
n=1

∞∑
l=1

z2n+le−nβεBHnl(εB), (26)

where Hnl(εB) is a rather complicated function of εB (and also
T ) and will not be shown here.

(ii) E > 0. In this regime, we have

A(E,q) = − 1

as

+
∞∑

n=1

(−1)n−1

n
znAn(E,q),

(27)

B(E,q) = −
√

mE +
∞∑

n=1

(−1)n−1

n
znBn(E,q),

where

An = 16mT

πq
e− nβq2

8m P
∫ ∞

0
p dp

e− nβp2

2m sinh nβpq

2m

p2 − mE
,

Bn = 4mT

q
e− nβq2

8m e− nβE

2 sinh
nβq

√
mE

2m
. (28)

The expansion coefficients φl(E,q) can be worked out but they
are rather lengthy. Formally, they can be expressed as

φl(E,q) = m

2k

l∑
ν=1

dνδ(k)

dkν
ην

l (k,q), (29)

where we have set E = k2/m, and δ(k) = − arctan(kas) is
again the usual scattering phase shift without a bound state.
The function ην

l (k,q) is also rather lengthy and will not be
shown here. Then the medium correction to the pressure in the
scattering continuum E > 0 can be expressed as

P (2)
ms =

∞∑
n=1

∞∑
l=1

z2n+l
∑

q

e− nβq2

4m

×
∫ ∞

0

dk

π
e− nβk2

m

l∑
ν=1

dνδ(k)

dkν
ην

l (k,q). (30)

From the above discussions, we find that the pure two-body
contributions P (2)

b and P (2)
s cannot be simply distinguished by

the scattering threshold (E < 0 and E > 0). They are given
by the separation of the phase shift in Eq. (18). On the other
hand, the medium corrections P (2)

mb and P (2)
ms are separated by

the scattering threshold. We therefore identify P (2)
b and P (2)

mb as
the contributions from the bound state and P (2)

s and P (2)
ms as the

contributions from the scattering continuum. Summing only
the contributions from the scattering continuum, we obtain the
pressure of the quasirepulsive upper branch,

P (2)
rep = P (2)

s + P (2)
ms . (31)

This result can be finally rewritten in a compact form by using
the fact that

P (2)
s =

∑
q

∫ ∞

0

dE

π
b[E + ωs(q)][δ2B(E) − π ] (32)
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and

P (2)
ms =

∑
q

∫ ∞

0

dE

π
b[E + ωs(q)][δ(E,q) − δ2B(E)], (33)

where ωs(q) = q2/(4m) − 2μ is the scattering threshold as
defined in the text. We finally obtain

P (2)
rep =

∑
q

∫ ∞

0

dE

π
b[E + ωs(q)][δ(E,q) − π ]. (34)

Converting to the variable ω, we obtain

P (2)
rep =

∑
q

∫ ∞

ωs (q)

dω

π
b(ω)[δ(q,ω) − π ]. (35)

This result can be reexpressed in terms of the phase shift δrep

for the upper branch,

P (2)
rep =

∑
q

∫ ∞

−∞

dω

π
b(ω)δrep(q,ω), (36)

where the phase shift δrep(q,ω) is given by Eq. (9). Therefore,
we have shown that, by resumming the two-particle virial
contributions from the scattering continuum to all orders in
the fugacity z, we obtain precisely the formulation of the
quasirepulsive upper branch, Eq. (36).

The above discussions are based on the assumption of a
small fugacity z � 1. However, it is natural to generalize
Eq. (36) to the low-temperature region since we have re-
summed the two-body virial contributions from the scattering
continuum to infinite order in the fugacity z.

The resulting phase shift δrep(q,ω) for the upper branch is
shown in Fig. 3. It varies smoothly as a function of frequency,
vanishes identically at ω = 0, and has the correct negative
(positive) sign at positive (negative) frequency, consistent with
a phase shift for repulsive interactions. Our prescription of
the upper branch is similar but different from the excluded-
molecular-pole approximation (EMPA) proposed earlier [39].
We can show that the EMPA adopts a different phase shift
(see Appendix) for the upper branch, which leads to a sudden
drop of the interaction energy near the resonance and hence an
equilibrium switch between the upper and lower branches.
With our prescription, one can reach the repulsive unitary
limit. The violation of Tan’s adiabatic theorem near the
resonance [49,50], as predicted by the EMPA [39], can be
avoided. Together with the controllable large-N expansion and
ε expansion introduced below, we are able to access the widely
forbidden low-temperature regime, which was previously
found to be mechanically unstable [39]. Furthermore, by
extending the prescription (9) to the BCS side with as < 0,
we can recover the full upper branch as first suggested by
Pricoupenko and Castin [6].

In Fig. 4, we show the 1/N dependence of the energy of
an upper branch Fermi gas at two interaction strengths. At
weak interactions (kF as = 0.1), the dependence is essentially
linear and the use of the leading 1/N term is reasonable. For
strong interaction strengths (kF as = 0.5), the dependence is
highly nonlinear due to the unrealistic account of high-order
pair fluctuations. In this case, it is physical to keep only the
leading linear term of the order 1/N . The higher-order pair
fluctuations should be taken into account by organizing more

FIG. 4. The zero-temperature total energy of a quasirepulsive
Fermi gas. The energy is shown in units of the noninteracting energy
E0 = (3/5)nεF , as a function of 1/N at two interaction parameters:
kF as = 0.1 (empty squares) and kF as = 0.5 (solid circles). The lines
are the contribution from the linear part.

diagrams beyond Gaussian fluctuations (i.e., the single bosonic
loop) and going to the next-to-next-to-leading order O(1/N2).

C. Dimensional ε expansion

The dimensional ε-expansion theory is another nonper-
turbative theory developed by Nishida and Son for strongly
interacting unitary Fermi gases [33–35]. This approach is
based on an expansion around four or two spatial dimensions,
where the pair propagator (or Green function) of Cooper pairs
is shown to be a small quantity [34]. Therefore, one may use
the small number ε = 4 − d (near four spatial dimensions)
or ε̄ = d − 2 (near two spatial dimensions) as a parameter
to control the perturbation expansion. It was found that
even at ε = 1 and ε̄ = 1 the expansion series is reasonably
well-behaved, suggesting that it would be practically useful.
Indeed, the next-to-leading-order (NLO) expansion of a
unitary Fermi gas already leads to a surprisingly accurate
Bertsch parameter at zero temperature, ξNLO = 0.377 ± 0.014
[51], which is very close to the most recent experimental
result ξ = 0.376 ± 0.005 [45] and quantum Monte Carlo result
ξ = 0.37–0.38 [46,47]. The predicted superfluid transition
temperature (Tc/TF )NLO = 0.183 ± 0.014 [35] also agrees
very well with the measurement Tc/TF = 0.167 ± 0.013 [45].
For the attractive unitary Fermi gas, one advantage of the
dimensional ε expansion is that the Padé (or Borel-Padé)
approximation can be employed to match the expansions
around four and two spatial dimensions and therefore improves
the series summations [34,35,51,52].

However, at finite temperature so far the ε-expansion theory
has only been implemented right at the superfluid transition
temperature Tc. We have reformulated the ε-expansion theory
by using the functional path-integral approach, and we have
made the numerical calculations practically easy at finite
temperature [53]. In Fig. 5, we compare the ε-expansion results
(extrapolated from d = 4) for the universal energy E(T/TF )
of a ground-state unitary Fermi gas with the experimental
measurement reported by the MIT group [45]. The agreement
is impressively good. This is consistent with the excellent
agreement found earlier at zero temperature and at the
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FIG. 5. Temperature dependence of the total energy of a unitary
Fermi gas predicted by the dimensional ε expansion theory. As in
Fig. 3, the next-to-leading-order (NLO) ε expansion results (solid
line) are contrasted with the MIT data (solid circles), as well as the
second-order virial expansion (empty squares).

superfluid transition temperature. All these agreements
strongly suggest that the picture of the unitary Fermi gas
as a mixture of weakly interacting fermionic and bosonic
quasiparticles—which is true near four or two spatial
dimensions—could also be a useful starting point even in three
spatial dimensions.

Given the fact that there are no phase transitions by
changing the dimensionality of the system between d = 4 and
2, we hope the predictive power of the ε-expansion theory may
persist as well for a unitary Fermi gas in its quasirepulsive
branch. We note that in the context of statistical physics, the
dimensional ε expansion has been extremely successful and
has been applied to describe the continuous phase transition
close to a critical point [54–56].

III. RESULTS AND DISCUSSION

We have performed numerical calculations for arbitrary
coupling strength kF as > 0 and temperature T . For strong
coupling at low temperature, the contribution �P becomes
very significant and highly nonlinear. However, our calcula-
tions are still controllable with the choice of a large N or
a dimensionality of space close to d = 4. For the large-N
expansion, typically, we solve the chemical potential μ self-
consistently by using the number equation n = ∂P/∂μ for
N = 50–100, where n = Nk3

F /(3π2) is the number density.
Then we use the large-N expansion μ(N ) = μ0 + μ1/N +
O(1/N ) around the noninteracting chemical potential μ0 to
extract the first nontrivial correction μ1 due to pair fluctuations.
The final extrapolation to the N = 1 limit leads to μ =
μ0 + μ1. We apply similar expansions to the total energy,
inverse compressibility, and inverse spin susceptibility.

Figure 6 reports the interaction parameter dependence of
the energy and inverse spin susceptibility at T = 0 from the
large-N expansion. We find that at weak coupling our large-
N expansion results are consistent with the predictions from
second-order perturbation theory [57]. However, there is an
apparent deviation when the interaction parameter kF as > 0.4.
It is impressive that our results agree well with the latest QMC
simulations that use different interaction potentials [21,22].

FIG. 6. The zero-temperature large-N results for the energy (a)
and spin susceptibility (b) of a repulsively interacting Fermi gas
as functions of the interaction parameter kF as , normalized by the
noninteracting results at T = 0 E0 = (3/5)nεF and χ0 = 3n/(2εF ).
For comparison, we also plot the predictions from second-order per-
turbation theory (dashed line) and quantum Monte Carlo simulations
(symbols). The blue squares and red circles are the data for the
hard-sphere potential and the square-well potential, respectively. The
closed symbols are from Ref. [21] and the open symbols are from
Ref. [22]. The dot-dashed horizontal line in (a) is the energy of a fully
polarized Fermi gas, E = 22/3E0.

In particular, for the inverse spin susceptibility, the agreement
between the large-N expansion and the QMC data for the hard-
sphere potential is exceptionally good. Thus, we determine that
at T = 0 there is a Stoner ferromagnetic transition occurring
at (kF as)c � 0.79, close to the QMC prediction [21].

Figure 7 displays the inverse temperature dependence of the
energy and inverse spin susceptibility of a unitary Fermi gas

FIG. 7. The energy (a) and inverse spin susceptibility (b) of a
resonantly interacting Fermi gas in the repulsive regime, normalized
by the corresponding results of an ideal Fermi gas. In (a) we also
show the predictions from the virial expansion theory, up to second
or third order.
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FIG. 8. Phase diagram of a strongly interacting Fermi gas in
its repulsive regime. In the shadow area, the system energetically
favors spin-domain formation and exhibits Stoner ferromagnetism.
The critical temperature predicted by the second-order perturbation
theory in the low-temperature regime is shown by a dashed line.
The inset shows the inverse spin susceptibility (normalized by the
corresponding noninteracting result) at T/TF = 0 (solid line), 0.25
(dashed line), and 0.5 (dot-dashed line).

in the quasirepulsive branch. At high temperature, our results
reproduce the virial expansion predictions [17,18,48,58,59],
which are the only known results so far for a repulsive unitary
Fermi gas. It is interesting that, with decreasing temperature
down to (TF /T )c � 0.6–0.7 or Tc � 1.5–1.7TF , both large-N
expansion and ε expansion predict a divergent spin susceptibil-
ity [see Fig. 7(b)], signifying the phase transition into a Stoner
ferromagnetic state. The good agreement between the two
different nonperturbative theories strongly indicates that such
a transition is realistic and the predicted transition temperature
Tc � 1.6TF should be qualitatively reliable.

We finally show in Fig. 8 a finite-temperature phase
diagram of the Stoner ferromagnetism. For comparison, we
present also the prediction from second-order perturbation
theory [11]. At low temperature, it predicts a larger critical
interaction parameter, while close to the unitary limit it gives
an unrealistically high transition temperature due to the strong
overestimate of repulsions (not shown in the figure).

It is worth noting that, in all the cases, including the
zero temperature in Fig. 6 or the unitary limit in Fig. 7,
the compressibility of the quasirepulsive Fermi gas predicted
by our theory is always positive. The spin susceptibility is
also always well-defined. Therefore, our approach greatly
improves the earlier treatments of the quasirepulsive upper
branch [39,40].

In the experimental studies of Stoner ferromagnetism, the
Fermi gas was originally prepared with weak interactions, and
the interactions were then ramped to the strongly repulsive
regime. Dynamic rather than adiabatic preparation was used
in order to avoid molecule production. In the latest experiment
of 6Li Fermi gas at temperature T ∼ 0.3TF , it was found
that the rapid decay into bound pairs (molecules) prevents
the study of equilibrium phases [8]. The decay rate can be
theoretically estimated by studying the pair formation rate �,
which is given by the imaginary part of the complex pole of
the two-body T-matrix [5]. At low temperatures (T < 0.5TF ),

FIG. 9. The pair formation rate � as a function of the interaction
parameter kF as at T = 0.75TF and T = TF .

one finds a large pair formation rate � > 0.1εF in a wide
range of the interaction parameter kF as [5], consistent with
the experimental observation of a rapid decay into bound pairs
over times on the order of 10�/εF .

The molecule formation rate can be well estimated by
studying the in-medium two-body T-matrix [5]. The T-matrix
is given by the vertex function (q,ω) but with the chemical
potential μ replaced by the one for a noninteracting Fermi
gas. The T-matrix normally has a complex pole ω(q) = �q +
i�q, given by the equation −1(q,ω(q)) = 0. The imaginary
part �q characterizes the growth rate of pair formation in
these quenched experiments. For equal spin populations, the
maximal pair formation rate occurs at q = 0. The maximum
pair formation rate � ≡ �q=0 is determined by solving the
complex pole from the following equation:

1

as

− √−mE − 8π

m

∑
k

f (ξk)

E − 2εk
= 0. (37)

In Fig. 9, we examine the pair formation rate at higher
temperatures T = 0.75TF and T = TF . At large kF as , the
rate is sensitive to the temperature effect. In particular, in the
nondegenerate temperature regime T ∼ TF , the pair formation
rate becomes vanishingly small for large kF as . In this regime,
it is possible to study the equilibrium phases of strongly
repulsive fermions since the pair formation occurs on a very
long time scale 10�/εF . Therefore, our phase diagram Fig. 8
suggests a promising and realistic way to observe Stoner
ferromagnetism at high temperature and at large interaction
parameter kF as .

IV. SUMMARY

In summary, we have presented a nonperturbative theoret-
ical approach to the quasirepulsive upper branch of a Fermi
gas near a broad Feshbach resonance, and we determined the
finite-temperature phase diagram for the Stoner instability.
One crucial component of our finite-temperature theory is
an appropriate definition of a many-body phase shift for
the quasirepulsive upper branch. We proved this prescription
by resumming the two-body virial contributions from the
scattering continuum to infinite order in the fugacity. Our
results agree well with the known quantum Monte Carlo
simulations at zero temperature, and we recover the known
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virial expansion prediction at high temperature for arbitrary
interaction strengths. At resonance, the predicted Stoner
transition temperature becomes of order of the Fermi tem-
perature, around which the molecule formation rate becomes
vanishingly small. This suggests a feasible way to avoid
the pairing instability and observe Stoner ferromagnetism in
strongly interacting atomic Fermi gases.

Note added. Recently, we became aware of an experimental
work [60] that reported the evidence for ferromagnetic insta-
bility in the same system as studied in this paper. In that work,
the detrimental pairing instability was drastically limited by
preparing the gas in a magnetic domain-wall configuration.
The ferromagnetic instability was revealed by observing the
softening of the spin-dipole collective mode that is linked to the
increase of the spin susceptibility. The temperature-coupling
phase diagram was determined [60]. Our predictions of the
critical gas parameter at T = 0 [(kF a)c = 0.79] and the
critical temperature around resonance (∼TF ) agree with their
experimental measurements.
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APPENDIX: COMPARISON WITH THE
EXCLUDED-MOLECULAR-POLE APPROXIMATION

The concept of an upper branch is well-defined for a
two-particle system, where the whole energy spectrum can be
solved precisely [6,17]. For many-particle systems, however,
an unambiguous definition of an upper branch has yet to be
established. Indeed, even for three fermions, the identification
of the upper-branch energy levels turns out to be difficult [17].
To the best of our knowledge, the quasirepulsive upper branch
of an interacting Fermi gas (at zero temperature) was first
mentioned by Pricoupenko and Castin [6] when they used a
lowest-order constraint variational approach to understand a
strongly interacting Fermi gas at the BEC-BCS crossover. The
upper branch prescription provided in this work is a useful
extension of their idea. As a concrete example, in Fig. 10 we
show the total energy of the upper branch and the ground-state
branch at a finite temperature T = 3TF . The generic behavior
is not sensitive to the temperature. The use of the temperature
T = 3TF makes it convenient for us to compare with the result
from another approach [39]. For the upper branch, in the BEC
limit, the Fermi cloud has a weak repulsion and its energy
approaches the ideal-gas result as as → 0+. In the unitary
limit with a divergent scattering length, the energy saturates to
a finite value that depends on the temperature.

FIG. 10. The total energy of the upper branch (dashed line) and
of the attractive ground state (solid line) at T = 3TF , measured in
units of the energy of an ideal, noninteracting Fermi gas.

In an earlier work [39], Shenoy and Ho proposed a
different prescription, the so-called excluded-molecular-pole
approximation (EMPA), for the quasirepulsive upper branch
of a strongly interacting Fermi gas. An important feature of
the EMPA is that it predicts an equilibrium branch-switching
phenomenon: The energy of the upper branch reaches a
maximum when approaching the resonance from the BEC
side and then changes continuously into the lower branch at
the BCS side. Here we shall compare the EMPA with our
approach.

A key point of the EMPA is that it starts from the number
equation. In the EMPA, the number density due to two-body
interaction is given by

n(2)
rep(T ,μ) =

∑
q

∫ ∞

ωs (q)

dω

π
b(ω)

∂δ(q,ω)

∂μ
, (A1)

where the phase shift is defined as

δ(q,ω) = −Im{ln [A(q,ω) + iB(q,ω)]}. (A2)

The functions A and B are given in Eq. (13). We notice that
the ambiguity of the phase shift δ(q,ω) is avoided in the above
number equation since it contains only the derivative of the
phase shift with respect to the chemical potential. In practice,
they use the function atan2(y,x) [61,62] to evaluate the phase
shift and its derivative. Then the two-body contribution to the
pressure can be obtained by using the integration method,

P (2)
rep(T ,μ) =

∫ μ

−∞
dμ′n(2)

rep(T ,μ′). (A3)

To compare the EMPA with our prescription, it is con-
venient to convert it to an alternative form that starts from
the pressure. Toward that end, we first define a simple phase
function

δ1(q,ω) = − arctan

[
B(q,ω)

A(q,ω)

]
. (A4)

Here arctan(x) is the usual inverse tangent function with a
range (−π/2,π/2). We have

∂δ(q,ω)

∂μ
= ∂δ1(q,ω)

∂μ
(A5)
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FIG. 11. The energy, spin susceptibility, and compressibility as
functions of the interaction parameter 1/(kF as) at T = 3TF calculated
by starting from the pressure (A7) with a simple phase shift δ1(q,ω)
given by (A4). The results are consistent with those reported in [39].

for ω > ωs(q). Hence the number equation of the EMPA can
also be expressed as

n(2)
rep(T ,μ) =

∑
q

∫ ∞

ωs (q)

dω

π
b(ω)

∂δ1(q,ω)

∂μ
. (A6)

The corresponding pressure can be expressed as

P (2)
rep(T ,μ) =

∑
q

∫ ∞

ωs (q)

dω

π
b(ω)δ1(q,ω). (A7)

The proof of the above result is easy. By taking the derivative
of the above pressure with respect to μ and using the
property of the phase δ1(q,ω = ωs(q)) = 0, we obtain the
number equation (A6) and hence (A1). Therefore, the EMPA
is equivalent to a scheme starting from the pressure (A7)
with a simple phase shift given by (A4). This conclusion
can also be confirmed numerically. In Fig. 11, we show the
results of the energy, spin susceptibility, and compressibility at
T = 3TF calculated by starting from the pressure (A7). They
are consistent with the results reported in [39].

In our prescription, the two-body contribution to the
pressure is given by

P (2)
rep(T ,μ) =

∑
q

∫ ∞

ωs (q)

dω

π
b(ω)δrep(q,ω), (A8)

where

δrep(q,ω) = δatt(q,ω) − π. (A9)

Note that the attractive phase shift δatt(q,ω) should be
appropriately determined from its definition δatt(q,ω) =
−Im{ln [A(q,ω) + iB(q,ω)]} so that it changes smoothly as
a function of ω for ω > ωs(q). This ensures that the repulsive
phase shift δrep(q,ω) is also a smooth function of ω for
ω > ωs(q) and, in particular, δrep(q,ω = 0) = 0 (see Fig. 3).

In summary, the choice of the phase shift is a nontrivial
issue for a prescription of the upper branch. The EMPA
employs the phase shift δ1(q,ω) given by (A4), while our
prescription adopts the phase shift δrep(q,ω) given by (A9).
Note that our prescription for the phase shift can be proven
by resumming the two-particle virial series to all orders in the
fugacity, as we have shown in Sec. II B. It is interesting that,
in the vacuum, both phase shifts δ1(q,ω) and δrep(q,ω) recover
the repulsive two-body phase shift δ2B(k) = − arctan(kas) (for
as > 0) without a bound state. On the other hand, we can show
that both the EMPA and our prescription can recover correctly
the known perturbative equation of state at weak coupling,
kF as → 0+, and the second-order virial equation of state in the
high-temperature limit. The difference is that, in the EMPA, the
upper branch switches to the lower branch near the resonance.
At resonance, the EMPA recovers the virial equation of state
for the lower branch, while our theory can reach the repulsive
unitary limit.

In an early experiment [63], the interaction energy of a
strongly interacting Fermi gas was measured by using the
expansion properties of a 6Li gas. At temperature T � 0.6TF,
it was found that the interaction energy of the repulsive
branch suddenly jumps to negative values at magnetic field
B � 720 G, which lies at the BEC side of the resonance
(kF as ∼ 1). This may be an experimental support for the
EMPA, which predicts an equilibrium switch between the
upper and the lower branches. However, to our knowledge,
another reasonable explanation for the sudden jump of the
interaction energy at B � 720 G is the severe nonequilibrium
atom loss due to three-body recombination [4,8,63]. We
believe that, once the atom loss rate can be suppressed by
some effects (such as high temperature, narrow resonance,
mass imbalance, and low dimensionality), one can reach the
repulsive unitary limit experimentally.
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