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Bragg interferometer for gravity gradient measurements
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We report on the characterization of a dual cloud atom interferometer for gravity gradient measurements
using third-order Bragg diffraction as atom optical elements. We study the dependence of the contrast and the
gradiometer phase angle against the relevant experimental parameters and characterize the instrument sensitivity.
We achieve a sensitivity to gravity gradient measurements of 2.6 x 1078 s72 (26 E) after 2000 s of integration

time.
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I. INTRODUCTION

Light-pulse atom interferometers are extremely sensitive
and accurate quantum sensors for the measurement of inertial
forces and for testing fundamental physics [1,2].

Nowadays atom interferometry techniques find a vast
range of applications especially in metrology and in grav-
itational physics, where they have been already used for
the accurate measurement of gravitational acceleration [3-6],
Earth’s gravity gradient [7-12] and curvature [13], as gy-
roscopes [14—17], for tests of the 1/72 law [18] and tests
of the Einstein’s equivalence principle [19-22], and for the
precise measurement of the Newtonian gravitational constant
G [9,23-25] and fine-structure constant « [26,27]. The steady
improvement in the sensitivity of atom interferometry instru-
ments is opening interesting perspectives for the detection
of quantum gravity effects [28] and for the observation of
gravitational waves [29-31]. Other important applications
are found in geodesy, geophysics, engineering prospecting,
and inertial navigation [32,33]. In those cases, particular
attention is devoted to the transportability of the apparatus
which translates in stringent miniaturization and robustness
requirements [34].

Even if the present interferometry instruments already
outperform state-of-the-art mechanical and optical devices in
the measurement of inertial forces, their sensitivity has not
yet reached its ultimate limit. In particular the sensitivity of
atom interferometers improves by increasing the momentum
transferred to the atoms during the beam splitter and mirror
pulses. For this reason, many recent theoretical and experi-
mental efforts [35,36] have been devoted to the development
of large momentum transfer (LMT) atom-optics techniques.

One of the most promising LMT techniques consists
in the use of Bragg diffraction processes as atom optical
elements [37-41]. The interaction between the atomic wave
packet and the optical lattice generated by the Bragg lasers
allows for a momentum transfer larger than the conventional
2hk (k is the wave number of the interacting electromag-
netic fields) achieved in two-photon processes (e.g., Raman
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transitions). In particular, when stimulated on a n-order
Bragg process, the atom performs a 2n-photon transition
between two different momentum states separated by 2nhk.
Furthermore, differently from two-photon Raman transitions,
Bragg diffraction provides a separation of the interferometric
paths only in the external degrees of freedom, while the
internal atomic state remains unperturbed. This makes Bragg
interferometers less affected by many systematic effects, like
ac-Stark and Zeeman shifts.

In this paper we present the first experimental study of
the sensitivity and measurement systematics of an atomic
gradiometer based on multiphoton Bragg diffraction. Our
instrument reaches a sensitivity of 2.6 x 10~8 s=2 for gravity
gradient measurements. Multiphoton Bragg transitions open
interesting perspectives for pushing this sensitivity well
beyond the state-of-the-art performance presently achieved
with gravity gradiometers based on two-photon Raman pro-
cesses [8,10].

The paper is organized as follows: Sec. II briefly discusses
the theory of atomic Bragg diffraction; in Sec. III we describe
the experimental apparatus and the measurement procedure
of our Bragg gradiometer; finally, in Sec. IV we present the
results of the characterization measurements of our apparatus.

II. BRAGG MATTER-WAVE DIFFRACTION

Bragg diffraction takes place when the atom coherently
interacts with a one-dimensional optical lattice generated with
two counterpropagating laser beams. For an atomic system, a
Bragg diffraction process of order n can be interpreted as a
2n-photon transition which couples two different momentum
states. If the one-dimensional optical lattice is produced by
two counterpropagating laser beams, with slightly different
frequencies w; and w, and wave numbers k; =~ k;, the com-
plete process consists of the absorption of n photons from one
of the laser beams and in the subsequent stimulated emission
of n photons in the counterpropagating beam. The transition
is then able to transfer a total momentum of 2nhk [with
k = (ki + k»)/2], leaving the atomic internal state unchanged.
Figure 1 shows the transition diagram for a third-order Bragg
process, connecting the two states |a,0) — |a,6hk) in the
reference frame where the atom is at rest. After the diffraction,
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FIG. 1. Schematic representation of a third-order Bragg transition
from the state |a,0) to |a,6hk) in the reference frame where the atom is
atrest. Here |a) and |b) are two internal atomic states, k is the average
wave number of the interacting electromagnetic fields, and w; and
w, indicate the frequencies of the two laser beams. The energy in the
momentum space follows the parabolic law n’Aw, specified with the
dotted blue line.

the atom has acquired a kinetic energy of (2nhk)?/(2M) =
4n2hw, [where M is the atomic mass and w, = ik>/(2M) is
the recoil frequency]. This kinetic energy has to balance the
energy lost by the laser field, defining the resonance condition
for the nth diffraction order as

§ =4dnw,, @))

where § = w1 — w,.

When the resonance condition in Eq. (1) is met and the
duration o of the Bragg diffraction pulse is o > 1/w,, atoms
are coupled only to the |2nhk) momentum state. This long-
interaction-time regime is called the Bragg regime. However,
as soon as the Bragg pulse duration becomes comparable to
1/w,, the |0) state can couple to several momentum states (the
quasi-Bragg regime) and the atomic population is diffracted
into different orders [37].

Bragg diffraction from an optical lattice can be described
by using the semiclassical treatment extensively discussed
in [37]. Considering the scattering of a matter wave from
a one-dimensional optical lattice in the reference frame of
the lattice (§ = 0) and ignoring all the effects of spontaneous
emission, it is possible to demonstrate that the rate equations
for the atomic population in the momentum state indexed by
m can be written as

ihay = Mo,m® + Q0)ay + @(amu +an-2), (2

where Q(t) = Qg(t) /(2A) is the two-photon Rabi frequency,
Qo is the Rabi frequency, A is the single photon detuning,
and a,, is the amplitude of the |mhk) momentum state. If
we assume as initial conditions a_, = 1 and a,, = 0 for all
m # —n, for a duration of the Bragg pulse much longer than
1 /w,, the only two momentum states coupled by the interaction
are the initial state —n and the state +n, which are 2nhik apart in
momentum space. The solution of the rate equation can thus be
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written as

a_,(t) = cos(% / Qeff(t/)dt/),

a,(t) = —i sin(%/ Qeff(t’)dt’), 3)

where Qe¢(2) is defined as
A 1
~ Bo) ' (n = DI

“4)

S-Zeff

Equations (3) and (4) were derived in the Bragg regime where
all the intermediate momentum states between —n and n can
be neglected. Operation in this regime is therefore completely
lossless in the sense that only two momentum states can be
coupled by the transition.

In the quasi-Bragg regime, losses in momentum states other
than —n and n shall be taken into account. In this case, Eq. (2)
leads to a system of coupled differential equations that needs
to be solved numerically.

III. EXPERIMENTAL APPARATUS AND PROCEDURE

Our Bragg gravity gradiometer is a dual atom interferometer
measuring the differential acceleration between two freely
falling clouds of cold ’Rb. The atomic samples are vertically
separated by about 30 cm. Figure 2 shows a schematic of the
laser system used to induce the Bragg transitions and the main
building blocks of the fountain where the atomic samples are
in free fall during the interferometric interrogation. For a more
complete description of the apparatus see [10,42].

Atoms are initially collected in the vacuum chamber placed
at the bottom of the apparatus (not shown in the figure),
where a three-dimensional magneto-optical trap (3D-MOT)
confines ~10° cold rubidium atoms. The loading rate of the
3D-MOT is enhanced by using a two-dimensional MOT. The
sample is then cooled to a temperature of ~4 K while being
launched vertically inside the interferometric tube with the
moving-molasses technique. To have the two freely falling
atom clouds needed for the dual interferometer, two atomic
clouds are juggled and launched with different velocities
to have them simultaneously reaching the apogees of their
ballistic trajectories, respectively, at about 60 and 90 cm above
the 3D-MOT [43].

After the launch, the atoms enter a magnetically shielded
tube in which a uniform magnetic field, oriented along
the vertical direction, defines the quantization axis. In our
apparatus we are able to probe the atoms on both two-photon
Raman and multiphoton Bragg transitions. The first are used
during the preparation phase of the atomic sample for the
longitudinal velocity selection, while the second are used in
the atom interferometry sequence. As shown in Fig. 2, both
Raman and Bragg lasers are injected in the same optical
fiber, collimated, and circularly polarized before entering the
vacuum system. Finally they are retroreflected by a mirror
mounted on actuators providing tip-tilt control to compensate
for the Coriolis acceleration [44,45]. A linear frequency ramp
is applied to both the Raman and Bragg lasers to compensate
for the Doppler effect experienced by the freely falling atoms.
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FIG. 2. Schematic representation of the experimental setup. The
Bragg beams are derived from a fiber laser system in which the
emission of a seed laser is amplified and then frequency doubled.
AOM1 is used to stabilize the emission power, AOM2 controls
the temporal profile of the interferometric pulses, AOM3 generates
the two Bragg beams, and AOM4 steers the frequency difference
to account for the Doppler effect during the free fall. The two
interferometric beams are then superimposed on the last polarizing
beam splitter and injected in a polarization maintaining fiber which
delivers the light to the experiment. AOMS allows us to select whether
to switch on the Bragg beams of the interferometer or the Raman
beams for the velocity selection.

Atthe same time this defines the couples of counterpropagating
laser beams interacting with the samples.

The atoms are velocity-selected and prepared in the
magnetic-field-insensitive |F = 1,mp = 0) level of the
ground state with a series of three Raman  pulses and three
resonant laser pulses which remove atoms in the undesired
hyperfine states. This series of pulses prepares ~10° atoms
with a narrow vertical velocity distribution of ~0.16v, full
width at half maximum (v, = hk/M = 5.8mm/s is the recoil
velocity on the Rb D, line). Once the state preparation
sequence is completed, the interferometer probes the atoms
with a series of three laser pulses which induce the Bragg
transitions and act as beam splitters and mirrors for the
atomic wave function. The pulses are applied before the atom
clouds reach the apogee of their ballistic flight in order to
increase the free-fall time before the detection, thus providing
a larger spatial separation between the two momentum states
representing the two output ports of the interferometer. Our
Bragg gradiometer operates at the third difraction order which
corresponds to a momentum transfer between the atoms and
the light field of 6Ak.

The interferometric sequence is composed of three subse-
quent Bragg pulses, thus producing a typical Mach-Zehnder
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interferometer geometry: initially, at t = 0, a first 7/2 beam-
splitting pulse prepares the atomic wave function in an equal
and coherent superposition of the two momentum states |0)
and |2nhk); after a time 7 (T = 80 ms in our typical working
conditions) a mirror 7 pulse is applied to swap the population
in the two momentum states, thus redirecting the atomic
trajectories towards the output ports of the interferometer; at
t = 2T a last w/2 pulse is applied to recombine the atomic
wave packets.

Since the effective Rabi frequency 2.4 has a strong
dependence on the two-photon Rabi frequency €2 [see Eq. (4)],
i.e., on laser intensity, in order to drive high-order multiphoton
Bragg transitions high-power laser sources are required. In our
gradiometer, the Bragg beams are generated by a fiber laser
system in which a frequency stabilized seed laser source injects
a high-power fiber amplifier. The seed laser (NP Photonics
Rock Source) has an emission centered around 1560 nm.
This source can be tuned either with a piezo control or with
temperature. The light from the seed source injects an Er-doped
fiber amplifier (Keopsys fiber amplifier) with a peak emission
power of 15 W. The amplified light is then frequency doubled
by using two periodically poled lithium niobate crystals and
stabilized to the 58iF =2 — 5P3,F' =3 transition of
87Rb. The detuning from this transition can be controlled and
in the typical measurement conditions it is ~3 GHz to the blue.
Acousto-optical modulators (AOM1, AOM2, and AOM3)
stabilize the laser emission power, shape the temporal profile
of the interferometric pulses into Gaussian pulses, and split the
laser light into the two Bragg beams. Furthermore, since the
atoms are in free fall, the resonance condition for the Bragg
transition changes at a rate of about 25 MHz/s. This change is
compensated by applying a continuous radio-frequency ramp
to one of the two Bragg beams by means of AOM4. The light is
then injected into a polarization maintaining optical fiber and
delivered to the experiment after being collimated to a beam
waist of ~2 cm. Each Bragg beam has a peak optical power of
~500 mW. The injection in the fiber is controlled with AOMS,
which allows us to select whether to inject the Raman beams
during the velocity selection or the Bragg beams during the
interferometric sequence. The polarization of the Bragg beams
is modified into circular o™ — o~ with the use of quarter-wave
plates before entering the vacuum apparatus.

At the output of the interferometer, the probability of
detecting the atoms in the momentum state |0) is given by P =
(1 + cos¢)/2, where ¢ is the phase difference accumulated
between the two interferometric arms. In particular, in the
presence of a uniform gravity field g, this phase shift can be
expressed as ¢ = n(2kgT? + ¢ ), ¢ being the contribution of
the Bragg laser phase. A measurement of ¢ is thus equivalent to
ameasurement of the local acceleration due to the gravitational
field along the direction of the imparted momentum 2nhk.
Since ¢ is proportional to the Bragg diffraction order n, the
apparatus sensitivity to inertial effects improves as n increases.

In the gradiometer, the two vertically separated atomic
clouds are interrogated by the same Bragg lasers, thus
realizing two simultaneous gravimeters at different heights.
This configuration provides a measurement of the differential
acceleration between the two samples through a measurement
of the difference in the phase shifts of each interferometer.
One of the major advantages of this configuration is its strong
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FIG. 3. Typical fluorescence signal obtained at the end of one
experimental cycle. The first pair of peaks on the left corresponds to
the two interferometric outputs for the lower cloud; the peaks from
the upper cloud are on the right. In red we also show a best fit to the
data with four Gaussian peaks.

rejection of noise sources, including mechanical vibrations or
seismic noise which manifest themselves as common-mode
phase noise (¢, ) at the two conjugated interferometers.

The entire experimental cycle, which lasts about 2s, is
completed with the measurement of the normalized atomic
population in the two different momentum states. Atoms are
stimulated by laser light on the cooling transition and detected
in time of flight (TOF) by measuring their fluorescence
emission. Typical TOF signals are shown in Fig. 3.

Since the Bragg transitions do not change the internal
atomic state, differently from a Raman interferometer, the two
output ports need to be sufficiently separated in space to be
resolved.

After plotting the signal of the upper interferometer
versus the lower one, the experimental points distribute along
an ellipse. The differential phase shift between the two
simultaneous interferometers ® = ¢, — ¢; (upper and lower
interferometers) is proportional to the gravity gradient and it
can be obtained from the eccentricity and the rotation angle
of the ellipse best fitting the data [46]. We use a least-squares
algorithm which fits the parametric equations

0<0<2n

x(0) = Asin(f) + B
y(@) = Csin(@ + &)+ D

to the experimental data, providing the differential phase &,
which reflects the difference in gravitational acceleration felt
by the two vertically displaced interferometers.

IV. CHARACTERIZATION OF THE ATOMIC GRAVITY
GRADIOMETER

In this section we characterize our Bragg gradiometer.
Section IV A discusses the dependence of the gradiometric
contrast with respect to various experimental parameters. In
Sec. IV B, we characterize the phase stability of our instru-
ment and its sensitivity to gravity gradient measurements.
Section IV C is dedicated to the study of the dependence of the

PHYSICAL REVIEW A 93, 063628 (2016)

0.35 T T T T
B Lower interferometer
0.30 é ® Upper interferometer
» 0.254 % 4
S
kS
8 0.201 4
Q
g 0.15 .
o
(9]
S 0.10- ° ; |
k=
0.05 4
L]
0.00 - T T T T T T T
0 20 40 60 80

Interrogation time [ms]

FIG. 4. Interferometer contrast for the upper and lower cloud
(in red circles and blue squares, respectively) as a function of the
interrogation time 7.

gradiometric signal ® from different experimental parameters,
such as magnetic field, Bragg lasers detuning and optical
aperture.

A. Gradiometric contrast dependence on significant parameters

1. Dependence of the contrast on the interferometer
interrogation time T

We analyzed the dependence of the gradiometric contrast
for different interrogation times 7. The contrast for the upper
and lower interferometers can be obtained from the normalized
atomic population interval explored by the ellipse along the
vertical and horizontal axes, respectively.

For this characterization, the Bragg pulses had a Gaussian
time profile with o = 24 us. Figure 4 shows that the contrast
decreases progressively with the increase of the free evolution
time 7.

One striking characteristic is that the upper atomic cloud
loses contrast faster than the lower one with increasing 7.
This behavior is due to the fact that we launch the two
clouds from a single trapping region. Indeed the upper cloud
has a 80-ms longer expansion time than the lower cloud
before the interferometric sequence. Moreover, the upper
sample is also the hotter, due to the heating induced by the
light scattered from the lower sample during its loading in
the 3D-MOT. As reported in [40], the transition efficiency
of the Bragg transitions and consequently also the entire
interferometric contrast depend critically on the momentum
width and therefore the temperature of the atomic cloud.

In our apparatus, the maximum interferometer duration 7'
is not limited by the loss of contrast, but rather by the need to
run the Bragg-pulse sequence entirely during the ascent of the
atomic samples to resolve the two interferometric outputs at
detection.

2. Dependence of the contrast on the duration of the
velocity selection pulses T

As described in Sec. 111, the longitudinal velocity selection
of the sample is realized with the application of three Raman
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pulses derived from two counterpropagating laser beams. The
pulses have a rectangular temporal profile the duration Ty of
which determines the selectivity of the process. An increase in
the duration T translates in a narrower frequency spectrum
and thus in a lower number of atoms interacting with the
radiation.

For an interrogation time 7 = 40 ms, we measured the
contrast for three different durations of the velocity selection
pulses. Figure 5 shows an increase in contrast with 7. This
improvement can be attributed to the narrower momentum
distribution along the vertical direction obtained when longer
selection pulses are applied. Figure 5 also shows the number
of atoms at detection as a function of Ty. With the present
configuration of our detection scheme [10] the technical
noise at detection corresponds to the quantum projection
noise (QPN) limit for ~30000 atoms. Thus for velocity
selection pulses shorter than ~200 us we can assume that
the technical noise is slightly below the QPN limit. For the
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FIG. 6. Interferometer contrast for the upper and lower cloud (in
red circles and blue squares, respectively) as a function of the duration
of the interferometric pulses o.
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FIG. 7. Ellipse acquired with an interrogation time of 7T =
80 ms and an interferometric pulse duration of o = 12 us. The red
continuous curve is the ellipse best fitting the ~14 000 experimental
data points.

next measurements we thus fixed the duration of the Raman
pulses to T = 192 us. Increasing 7T further would indeed
bring only a slight increase in the contrast at the expenses of
major losses in terms of detected atoms.

3. Dependence of the contrast on the duration
of the interferometric pulses o

We also studied the interferometer contrast as a function of
the temporal width of the Bragg pulses o which, as discussed
in Sec. II, affects the amount of atomic losses in other
diffraction orders. With T =40 ms and Ty = 192 us, we
acquired ellipses for five different Bragg pulse durations. Each
time we adjust the peak power of the Bragg pulses optimizing
the interferometer contrast. Figure 6 shows the contrast as a
function of o. Decreasing the Bragg pulse duration brings a
general improvement on the gradiometric contrast. With the
present laser system we are technically limited to pulse lengths
o = 12 us due to the optical power available.

However, the contrast improvement obtained for o = 12 us
allowed us to operate the interferometer on an interrogation
time of 7 = 80 ms, thus quadrupling the instrument sensitivity
to accelerations. An example of the gradiometric ellipses
obtained in these conditions is shown in Fig. 7 together with a
least-squares fit of the experimental data.

As mentioned in Sec. II, operation in the ideal Bragg regime
requires that the temporal duration of the Bragg pulses o is
o > 1/w,. Our instrument is presently operated in the quasi-
Bragg regime since 1/w, >~ 42 us.

B. Phase stability and sensitivity

To evaluate the phase stability and sensitivity of our appa-
ratus, we calculated the Allan deviation of the gradiometric
phase angle over an integration time of about 8 h. The Allan
deviation (see Fig. 8) decreases as 1/ AT (¢t is the integration
time expressed in seconds), showing that our gradiometer is
mainly affected by white phase noise. Due to the large error
bars at large times we can exclude the presence of a flicker
floor only up to 1000 s of integration time.
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FIG. 8. Allan deviation of the differential phase angle extracted
from the ellipse fitting of the gravity gradiometer data. The fit to the
Allan deviation data with the function o¢ = a/ J/t, where ¢ is the
integration time in seconds, is shown in red.

After fitting the Allan deviation data (red curve), we
evaluate the short and long term sensitivities of our apparatus
to gravity gradients and differential accelerations. Considering
the vertical displacement of 30cm of our atomic samples,
the instrument sensitivity to gravity gradient measurements
is 1.2x107% s2 at 1 s of integration time, down to
2.6 x 1078 s72 at 20005, corresponding to a sensitivity for
differential accelerations of 3.6 x 1073¢g at 1 s, down to
8.0 x 1079 after 2000s.

C. Gradiometric signal dependence on significant parameters

In this section we analyze the dependence of the gradio-
metric signal ® from the relevant experimental parameters.

In general, we can decompose the gradiometric signal as
the sum of a part which depends on odd powers of k, @,
(e.g., signal from the gravity gradient and residual Coriolis
acceleration), and a part which depends on even powers of k,
d. (e.g., one-photon light shift), i.e., ® = &, + P,. To reject
all the systematic errors which induce phase shifts depending
on even powers of k we use the k-reversal technique [47]. We
reverse the direction of the momentum transferred to the atoms
at each experimental cycle, obtaining two different ellipses
corresponding to the two opposite directions of the k vector
(see Fig. 9). From each of the two ellipses we can thus derive
the angle ®girrey. The combination

q>0 _ q)dir ; cI>1'ev

®)
efficiently rejects all systematic effects which depends on even
powers of k. All our measurements apply this procedure.

1. Gradiometric signal dependence on the magnetic
quantization field

As mentioned in Sec. III, a uniform magnetic field oriented
along the 1-m-long vertical tube of the interferometer defines
the quantization axis for the atoms. Furthermore the region
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FIG. 9. Gradiometric ellipses acquired with the k-reversal pro-
cedure. Combining the angles derived from each single ellipse, ®g;r
and &, it is possible to cancel the phase contributions dependent
on even powers of k.

inside the tube is shielded from external magnetic fields by
two pu-metal layers.

To evaluate the systematic effect produced by uncontrolled
magnetic fields in the interferometric region, we measured the
differential phase of the gravity gradiometer [see Eq. (5)] for
six different values of the current in the bias field solenoid.
For each of these values we calculated the angle &, using
Eq. (5).

The effects of the magnetic field on the interferometric
signal can be evaluated by introducing in the Lagrangian the
term for the quadratic Zeeman effect:

Lp(x,%) = 27 hBB*(x), (6)

with 8 = 28.8 GHz/T?2. Inside the interferometric tube we can
suppose to have a magnetic field which over the extent of the
atomic clouds trajectories can be expressed as

B(x) = By + B'x, (7

where By and B’ represent the magnetic field bias and gradient
produced by both the solenoid surrounding the interferometer
tube and by any other field source. Substituting in Eq. (6),
we obtain

L(x,x) = 2w hB(B§ + 2ByB'x + B"”x?)
= K+ Ma,x + M7, (8)
with a,, = 4n %,BBOB’ and y,, = 4w %ﬂB’z.
A magnetic field with a linear gradient determines a
Lagrangian equivalent to that of a uniform gravitational field

plus a linear gradient. The corresponding phase shift for the
single interferometer is then given by [48]

Y T3

b = 2nk|:am T? + (12v + 6v, — 7a,T) + 0(%3)]

€))

This term will not be canceled by the k-reversal procedure
and from Eq. (9) we can evaluate the systematic shift which
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affects the gradiometric measurement. Labeling with # and /
the magnetic field bias and gradient experienced by the upper
and lower clouds we obtain

®,, = a[BYB" — B\B"], (10)

with o = 4 2275 BT2 ~ 82 x 10624,

As By and B’ carry the contributions of both the field
generated by the solenoid and residual magnetic fields, we
expect a quadratic dependence of @, from the current injected
in the solenoid:

b, =Dp+ D, +C. (11)

If we indicate with B; and By the field generated by the
solenoid and the residual fields experienced by the atoms, the
I? term in Eq. (11) will contain the contributions of B; and
By, the I term will contain the mixed products B; - B} and
By - B}, while the last term will contain the contributions of
Bg and Bj.

The gradiometric phase angle as a function of the solenoid
current is reported in Fig. 10 together with a second-order
polynomial fit of the experimental data, ®, = al*> + bl + C.
From the fit we can extrapolate the single contributions of
Eq. (11):

C = (426.7 £ 1.2) mrad,
b=(7.9+2.2) x 1072 mrad/mA,
a=(—1.140.1) x 107> mrad/mA?.

Considering that B; = 1.1 uT/mA in our apparatus, it is
possible to estimate B} = |a|/(«B;) = 0.1 uT/(mmA). If we
now suppose that the linear term is dominated by the residual
magnetic gradient B, we can also derive an upper limit for
this parameter:

B’ b 0.88 T (12)
< — =0.88—.
k B m

425 -~ - % ]
420 % ]
415 ]
410 / _

4054  / .

Gradiometric phase angle [mrad]
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FIG. 10. Gradiometric phase angle @ for different values of the
current in the bias solenoid. In red is shown a second-order polynomial
fit of the data.
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The same reasoning can also be applied to obtain an upper
limit for Bg:

b
— =7.9uT. (13)

Br <
K aB)

We can now establish an upper limit for the systematic shift
introduced by the residual magnetic fields:

b2
OF < aBrBy = — ~ (0.6 £ 0.4) mrad. (14)
a

Since the lower atomic sample is near the entrance of the tube
when the interferometric sequence is applied, i.e., in a region
where the magnetic shielding is less effective and where the
produced magnetic field is not so well characterized, we can
assume that a large fraction of this systematic shift comes from
the lower interferometer.

2. Gradiometric signal dependence on the detuning

In order to evaluate the dependence of the gradiometric
signal on the frequency detuning of the Bragg beams, we
acquired ellipses by varying the detuning in 50-MHz steps
around a blue detuning of ~3.269 GHz, representing our
standard working condition. The results are shown in Fig. 11.

By varying the detuning of the Bragg lasers, we expect to
change the amount of the atomic losses towards diffraction
orders other than n = 3. Since these loss mechanisms affect
in the same way both the upper and lower interferometers of
the gradiometer, we expect a strong rejection of any related
shift. The measurements in Fig. 11 are all compatible within
our experimental error. At this level we cannot thus detect any
effect of the detuning on the gradiometric signal.

3. Gradiometric signal dependence on the optical aperture

The two Bragg beams are delivered to the experiment
through a common polarization-maintaining optical fiber. The
fiber output is collimated into a Gaussian beam with a waist of
about 2 cm. A more uniform illumination of the atomic clouds
results in an improved gradiometric contrast. In contrast, large

427 T T T T T

426 .
425 .
424 -
423 -
422 .

421 .

Gradiometric phase angle [mrad]

420 - -

419

-1I00 -5IO 0 50 1(I)0
Nominal detuning [MHz]

FIG. 11. Gradiometric signal dependence on the detuning of the
Bragg beams. The applied detuning is measured with respect to our
standard detuning working condition, i.e., ~~3.269 GHz to the blue of
the 8Rb D, line.
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FIG. 12. (Left) Dependence of the interferometer contrast with the diaphragm aperture for both the upper and lower atomic clouds (red
circles and black squares, respectively). (Right) Gradiometric phase angle measured for the three different apertures.

Bragg beams have two obvious disadvantages: they require
more power to interrogate the atoms; moreover, they produce
diffraction effects through the finite-size apertures of the optics
used for the beam shaping and ultimately from the windows
of the interferometer tube. We have placed a diaphragm right
after the collimating lens and varied its aperture to be able
to modify the intensity profile which illuminates the atomic
clouds both in the transverse and longitudinal directions and
to study diffraction-induced effects on the gravity gradiometer
phase. An extensive treatment of the diffraction problem of a
Gaussian beam from a circular aperture can be found in [49].

In this configuration, we acquired ellipses for three different
diaphragm diameters, respectively, 25, 20, and 15 mm. With
our present optical configuration we cannot decrease further
the aperture of the diaphragm without blocking the laser beams
needed during the sample preparation sequence to eliminate
atoms in undesired hyperfine states, as mentioned in Sec. III.
The results for the interferometric contrasts and ellipse phase
angle are reported in Fig. 12.

The contrast of both the upper and lower interferometer
has a strong dependence on the diaphragm aperture and shows
a rapid decrease, with slightly different trends between the
upper and lower interferometer, when the aperture diameter is
increased. Since the detection beam has a transverse extension
of 15mm we can safely assume that the observed effects
are not due to the decreased number of atoms interrogated
when the optical aperture diameter is reduced. Even if a
quantitative analysis of these diffraction effects is beyond the
scope of this work, we can suppose that the observed loss
of contrast and the influence on the gradiometric signal are
introduced by the variations of the beam intensity profile,
which are due to diffraction from the optical aperture that
strongly affects both the longitudinal and transverse intensity
profiles. The irregularity in the longitudinal profile in particular
brings different ac-Stark shifts for the vertically separated
atomic clouds, which cannot be rejected in the differential
measurement scheme of the gradiometer.

For what concerns the contrast a qualitative understanding
of the results shown can be found considering Eq. (28)

in [49]. The equation expresses the light intensity along the
propagation axis for a Gaussian laser beam, after traversing a
circular aperture. Considering the derivative of this quantity
with respect to the distance from the circular aperture [we
can neglect the term (z /a’)2 in our experimental conditions,
where z is the distance from the optical aperture and d is the
Rayleigh range], we obtain a function which has a maximum
when the aperture radius equals the waist of the Gaussian
beam. In our system the radius of the vacuum tube is 17.5 mm,
thus the limiting optical aperture is the diaphragm aperture
radius. Since our beam has a waist of ~20 mm, reducing
the diaphragm aperture radius would result in a decreased
intensity gradient along the propagation axis which translates
in the observed increase of contrast.

V. CONCLUSIONS

We reported on the design and characterization of a
third-order Bragg gravity gradiometer. Our measurements
characterize the dependence of the interferometric contrast and
gradiometric signal as a function of the relevant experimental
parameters.

We also evaluated the sensitivity of our instrument. In
the present conditions, we can reach a sensitivity to gravity
gradients of 1.2 x 107° s72 after 1 s of integration, down to
2.6 x 1078 s72 (26 E) after 2000s. In the future, we expect
to improve the instrument performance by optimizing the
intensity profile of the Bragg lasers, which is presently our
major source of systematic error. In addition, we are working
towards the implementation of colder atomic sources to reduce
the transverse momentum spread of the samples.
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