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Hidden-symmetry-protected quantum pseudo–spin Hall effect in optical lattices
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We propose a scheme to realize a Z2 topological insulator in a square optical lattice. Different from the
conventional topological insulator protected by the time-reversal symmetry, here the optical lattice possesses a
hidden symmetry, which is responsible for the present Z2 topological order. With a properly defined pseudospin,
such a topological insulator is characterized by the helical edge states that exhibits pseudo–spin-momentum
locking, so it can be considered as a quantum pseudo–spin Hall insulator. The Z2 topological invariant is derived
and its experimental detection is discussed as well.
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I. INTRODUCTION

In recent decades, topological phases in condensed matter
have attracted much attention [1,2]. Conventionally, it was
thought that matter was classified according to symmetries
based on Landau’s theory [3]. The discovery of the integer
quantum Hall effect [4], which was first recognized to be
related to topology, changed the viewpoint of physicists
on the classification of matter [5]. The discovery of the
time-reversal symmetry-protected topological insulators has
stimulated more interest in the topological matter protected by
symmetries [6–20]. Topological classification of matter is gen-
erally correlated with symmetries. Depending on the dimen-
sionality and the symmetry classes specified by time-reversal
symmetry and particle-hole symmetry, gapped systems can
be classified into ten types of topological phases [21,22].
Besides the time-reversal and particle-hole symmetries, spatial
symmetries, such as point symmetry, can protect a new kind of
topological insulators, called topological crystalline insulators
[23–25]. In previous work a hidden symmetry in a square
lattice was found, which is responsible for the existence
of the Dirac points [26]. This kind of hidden symmetry is
a discrete antiunitary symmetry with a composite operator
consisting of translation, complex conjugation, and sublattice
exchange. A natural question is whether there exist topological
insulators protected by such a hidden symmetry. In this paper
we give an affirmative answer for this question and develop
a kind of topological insulator protected by such a hidden
symmetry.

The development of optical lattice and cold-atom tech-
niques provides versatile models, some of which are hardly
realized in solid real material. Therefore, cold atoms in
optical lattices become a platform to explore various kinds of
topological phases, especially those that are difficult to realize
in real material. In recent years, many schemes have been
proposed to realize various topological phases with neutral
atoms in optical lattices. The the Harper Hamiltonian and
effective magnetic fields have been experimentally realized
[27–31]. Resorting to staggered effective magnetic fields, the
quantum anomalous Hall effect was proposed to be realized
in honeycomb lattices [32] and non-Abelian optical lattices
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[33]. For the case with time-reversal symmetry, the quantum
spin Hall effect was proposed to be realized with neutral
atoms in optical lattices [34–37]. The schemes have also
been designed to realize the time-reversal symmetry-protected
three-dimensional topological insulators with neutral atoms in
an optical lattice [37,38]. As a result, the mature techniques of
cold atoms and optical lattices make it possible to realize the
topological insulators protected by the hidden symmetry.

Here we propose a scheme of cold atoms in an optical
lattice that preserves the hidden symmetry but breaks the
time-reversal symmetry due to the existence of the hopping-
accompanying phases. We find that this system supports the
Z2 topological insulators protected by the hidden symmetry. In
such an optical lattice, a pseudo-spin-operator can be defined,
which has eigenvalues of ±1, corresponding to the pseudo-
spin-up and pseudo-spin-down states. The pseudo-spin-up and
pseudo-spin-down states are related by the hidden-symmetry
operation. Therefore, we call the two-dimensional topological
insulators quantum pseudo–spin Hall (QPSH) insulators. The
edge states are helical, that is to say, the pseudo-spin-up and
pseudo-spin-down states move along the opposite directions
along the edge of the lattice, which is just the hallmark
of the QPSH effect. We also define the hidden-symmetry
polarization, which is an integer modulo 2, so that it is a
Z2 topological invariant. The odd and even hidden-symmetry
polarizations correspond to the QPSH insulator and the trivial
band insulator, respectively. It should be pointed out that
although the hidden symmetry plays a role in the QPSH
effect like the time-reversal symmetry does in the quantum
spin Hall effect, the hidden symmetry is distinct from the
time-reversal symmetry. The hidden symmetry includes a
translation operator, so the hidden-symmetry operator is
momentum dependent in the concrete representation.

II. MODEL

Here we consider a two-component (two-color) system on a
square lattice as shown in Fig. 1(a), where the arrows represent
the hopping-accompanying phases. Due to the presence of
these phases, the lattice is divided into two sublattices A and
B. Each sublattice has the primitive lattice vectors a1 = (1,1)
and a2 = (1,−1). In momentum space, the primitive reciprocal
vectors are b1 = (π,π ) and b2 = (π,−π ). The corresponding
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FIG. 1. (a) Schematic of the square optical lattices and the
designed phase factor (denoted by arrows). Here the solid and dashed
lines represent the nearest and next-nearest (diagonal) hopping,
respectively; the green and blue circles represent the lattice sites of
sublattices A and B, respectively; the numbers 1 and 2 in the circles
denote the intrinsic atomic states. (b) The Brillouin zone, which is
enclosed by the solid blue lines. Here the green solid circles represent
the high-symmetry points. Along the red lines, the ϒ polarization is
defined in the main text.

Brillouin zone is shown in Fig. 1(b). The tight-binding
Hamiltonian can be written as H = H0 + H1 + H2, with

H0 = −t
∑
i∈A

[e−iγ a
†
i (−iτy)bi+x̂ + e−iγ a

†
i (iτy)bi−x̂

+ eiγ a
†
i (−iτy)bi+ŷ + eiγ a

†
i (iτy)bi−ŷ + H.c.], (1)

H1 = − t1
∑
i∈A

[a†
i τzai+x̂+ŷ + a

†
i τzai−x̂−ŷ

+ a
†
i τzai−x̂+ŷ + a

†
i τzai+x̂−ŷ]

− t1
∑
i∈B

[b†i τzbi+x̂+ŷ + b
†
i τzbi−x̂−ŷ

+ b
†
i τzbi−x̂+ŷ + b

†
i τzbi+x̂−ŷ], (2)

and

H2 = λ
∑
i∈A

a
†
i τzai + λ

∑
i∈B

b
†
i τzbi, (3)

where ai = [a(1)
i ,a

(2)
i ]T and bi = [b(1)

i ,b
(2)
i ]T are the two-

component annihilation operators destructing a particle at a
lattice site of sublattices A and B, respectively; τi (i = x,y,z)
represents the Pauli matrices in the color space; t and t1
represent the amplitudes of hopping between the nearest lattice
sites and between the next-nearest lattice sites, respectively;
λ is an effective magnetic field; and 0 < γ < π/2 is a
hopping-accompanying phase. Here the model can be realized
by applying 6Li or 40K cold atoms trapped in an optical
lattice. The color-switching hopping and the accompanying
phases of hopping can be realized with laser-assisted tunneling
techniques [29–31].

Taking the Fourier transformation on the Hamil-
tonian H , we rewrite it as H = [a(1)†

k ,a
(2)†
k ,b

(1)†
k ,b

(2)†
k ]

H(k)[a(1)
k ,a

(2)
k ,b

(1)
k ,b

(2)
k ]T with

H(k) = hx(k)σx ⊗ τy + hy(k)σy ⊗ τy + m(k)I ⊗ τz, (4)

FIG. 2. Dispersion relation for (a) γ = π/4, t1 = 0, and λ = 0
and (b) γ = π/4, t1 = 0.5t , and λ = 0.3t .

where hx(k) = −2t cos γ (sin kx + sin ky) and hy(k) =
−2t sin γ (sin kx − sin ky); m(k) = (λ − 4t1 cos kx cos ky)
is the mass term; σx,y represent the Pauli matrices
in the sublattice space. The dispersion relation is
E(k)± = ±√

hx(k)2 + hy(k)2 + m(k)2, which is shown
in Fig. 2. For this system, there are four bands and the valence
and conduction bands are twofold degenerate. When the
diagonal hopping terms H1 and the effective magnetic terms
H2 are absent, the mass term in the Bloch Hamiltonian (4)
vanishes. The corresponding dispersion relation is shown in
Fig. 2(a), from which one finds that the Dirac points occur at
the points � and M in the Brillouin zone. When the diagonal
hopping terms H1 and the effective magnetic terms H2 are
present, a gap opens as shown in Fig. 2(b) and then the system
turns into an insulator.

III. HIDDEN SYMMETRY

It is easy to verify that the total system H preserves a hidden
symmetry, i.e., [H,ϒ] = 0, with the symmetry operator ϒ

defined as

ϒ = (σx ⊗ I )KTx̂, (5)

where Tx̂ is a translation operator that moves the lattice
by x̂ along the x direction, K is the complex conjugation
operator, σx is the Pauli matrix representing the sublattice
exchange, and I is the unit matrix in the color space. For the
Bloch Hamiltonian, the corresponding transformation can be
described by

ϒH(k)ϒ−1 = H(−k). (6)

Therefore, for each energy band, there always exists another
energy band corresponding to the ϒ transformed quantum
states. These two energy bands comprise a pair of bands related
to each other by the hidden symmetry ϒ , which are referred
to as the ϒ pair bands. The Bloch function is supposed to
have the form 	k(r) = [u(1)

A,k(r),u(2)
A,k(r),u(1)

B,k(r),u(2)
B,k(r)]T eik·r

in the coordinate representation. The symmetry operator ϒ

acts on the Bloch function as follows:

ϒ	k(r) =

⎛
⎜⎜⎜⎜⎜⎝

u
(1)∗
B,k(r − x̂)eikx

u
(2)∗
B,k(r − x̂)eikx

u
(1)∗
A,k(r − x̂)eikx

u
(2)∗
A,k(r − x̂)eikx

⎞
⎟⎟⎟⎟⎟⎠e−ik·r = 	 ′

k′(r). (7)

Because ϒ is the symmetry operator of the system,
	 ′

k′(r) must be a Bloch wave function of the system. Thus,
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we obtain k′ = −k, u(i)
A,k′(r) = u

(i)∗
B,k(r − x̂)eikx , and u

(i)
B,k′(r) =

u
(i)∗
A,k(r − x̂)eikx with i = 1,2. From Eq. (7) it is easy to show

that the operator ϒ has the effect when acting on wave vectors
as ϒ : k → −k = k′. If k′ = k + G, where G is the reciprocal
lattice vector, then we can say that k is an ϒ-invariant point in
momentum space. We find four distinct ϒ-invariant points in
the Brillouin zone as

� = (0,0), M = (π,0), X1,2 = (π/2, ± π/2). (8)

For the hidden-symmetry operator ϒ , we have ϒ2 = T2x̂ ,
which has the representation based on the Bloch wave
functions as ϒ2 = e−i2k·x̂ . Thus, we have ϒ2 = −1 at the
ϒ-invariant points X1,2 while ϒ2 = 1 at � and M . Since ϒ

is an antiunitary operator, it is straightforward to show that
ϒ-protected degeneracy must occur at the points X1,2 [26].

IV. QUANTUM PSEUDO–SPIN HALL EFFECT

We define an operator as

S = σz ⊗ τz, (9)

which has two eigenvalues ξ = ±1. Thus, the operator S can
be considered as a pseudo-spin-operator. It is easy to verify
that the pseudo-spin-operator S commutes with the Bloch
Hamiltonian (4), i.e., [H(k),S] = 0, so the Bloch Hamiltonian
and the pseudo-spin-operator have common eigenstates. That
is to say, every Bloch wave function can have a fixed eigenvalue
of S with +1 or −1.

When the gap opens, there exist two kinds of insulators,
which are topologically distinct. When the system turns from
one kind of insulator into the other, a topological phase
transition happens. We can manifest this scenario with band
inversions.

When the mass term m(k) is absent, the energy bands
have two distinct Dirac points at � and M in the Brillouin
zone. Around the Dirac points, the Bloch Hamiltonian can be
linearized in the form

H�,M (k) =
∑
ij

v
�,M
ij piσj ⊗ τy, (10)

with

v� =
(−2t cos γ −2t sin γ

−2t cos γ 2t sin γ

)
(11)

and

vM =
(

2t cos γ 2t sin γ

−2t cos γ 2t sin γ

)
, (12)

where p is the relative wave vector from the Dirac points.
About the Dirac points, we find w = sgn(det[v�,M ]) = ±1,
which has opposite values for the two distinct Dirac points at
� and M .

As we mentioned above, when the diagonal hopping terms
H1 and the effective magnetic terms H2 are present, a gap opens
and the system turns into an insulator for the half-filling case.
We can find that the mass terms in the Bloch Hamiltonian have
different signs in different parameter ranges. There are four
cases: (i) When λ − 4t1 > 0 and λ + 4t1 > 0, the mass terms
at two Dirac points are both positive; (ii) when λ − 4t1 < 0
and λ + 4t1 < 0, the mass terms at two Dirac points are both

−1 0 1
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−0.5

0

0.5

1

t1/t

λ
/
t

BI

BI

QPSHI QPSHI

FIG. 3. Phase diagram. Here QPSHI and BI denote quantum
pseudo–spin Hall insulators and conventional band insulators,
respectively.

negative; (iii) when λ − 4t1 < 0 and λ + 4t1 > 0, the mass at
the � point is negative and the one at the M point remains
positive; (iv) when λ − 4t1 > 0 and λ + 4t1 < 0 are satisfied,
the mass at the � point is positive and the one at the M point
is negative. For cases (i) and (ii) the mass terms at points �

and M have the same sign and the system is a conventional
band insulator. In contrast, for cases (iii) and (iv) they have
opposite signs and the system is a topological insulator. The
conventional band insulators and topological insulators can be
distinguished by the edge states. When the mass terms at one
of the points change sign, a band inversion happens, which
implies that a topological phase transition occurs. Based on
the signs of the mass terms at the Dirac points � and M , we
obtain the phase diagram as shown in Fig. 3.

We obtain the edge states by diagonalizing the Hamiltonian
of a strip geometry. The dispersion relations of a strip geometry
are shown in Fig. 4. For the parameter ranges in cases (i) and (ii)
there are no edge states, as shown in Figs. 4(a) and 4(b), which
confirms that the parameters in cases (i) and (ii) correspond
to the conventional band insulators. For parameter ranges in
cases (iii) and (iv) there is a pair of helical edge states at each
surface transversing the band gap, as shown in Figs. 4(c) and
4(d), which indicates the existence of topological insulators.

We find that the edges states |ψ±,kx
〉 of the strip geometry

are eigenstates of the operator S = σz ⊗ τz with the eigenvalue
ξ = ±1, i.e., S|ψ±,kx

〉 = ±|ψ±,kx
〉. It is easy to verify that the

operator S anticommutes with the hidden-symmetry operator
ϒ , i.e., [S,ϒ]+ = 0, so we have

ϒ |ψξ,kx
〉 = eiα|ψ−ξ,−kx

〉, (13)

where α is a phase depending on the gauge. That is to say, the
particles in different edge states on the same boundary move in
the opposite direction with different eigenvalues of S. We can
consider the operator S as the pseudo-spin-operator. Thus, the
edge states are pseudo-spin-momentum locking. The fact that
the edge states are related by the hidden-symmetry operator
ϒ is solid evidence that the edge states are protected by the
hidden symmetry ϒ .
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FIG. 4. Dispersion relations of a strip geometry for (a) case (i)
with t1 = 0.2t and λ = t , (b) case (ii) with t1 = −0.2t and λ = −t ,
(c) case (iii) with t1 = 0.2t and λ = 0.5t , and (d) case (iv) with
t1 = −0.2t and λ = −0.5t .

V. THE Z2 TOPOLOGICAL INVARIANT

It is well known that the time-reversal symmetry can
lead to the existence of the Z2 two-dimensional topological
insulators, i.e., the quantum spin Hall insulators. The system
considered here preserves a hidden symmetry, which is also
a discrete antiunitary symmetry. Similar to the time-reversal
symmetry leading to the quantum spin Hall insulators, the
hidden symmetry can also lead to a kind of Z2 topological
insulator. Similar to the definition of time-reversal polarization
for the time-reversal symmetry-protected spin quantum Hall
insulator [14,39], we can define the ϒ polarization for the
insulators preserving the ϒ symmetry.

The Bloch wave-function occupied band can be written as
|	n,k〉 = eik·r|un,k〉, where |un,k〉 is the the cell-periodic eigen-
state of the Bloch Hamiltonian H(k). The Berry connection
matrix

amn = −i〈um,k|∇k|un,k〉. (14)

For the hidden symmetry ϒ , we define a matrix as

wmn(k) = 〈um,−k|ϒ |un,k〉, (15)

which is antisymmetric at the ϒ-invariant degenerate
points X1,2.

For the present model with half filling, there are two
occupied bands, which comprise the ϒ pair bands. For the
occupied ϒ pair bands we can define the charge polarization in
terms of the Berry connection along a direction in the Brillouin
zone [see red lines in Fig. 1(b)] as

Pρ = 1

2π

[∫ X2

X1

A(k) · dk +
∫ X′

2

X′
1

A(k) · dk

]
, (16)

where A(k) is defined as tr[a(k)]. For each occupied band, the
partial charge polarization is defined as

Pi = 1

2π

[∫ X2

X1

aii(k) · dk +
∫ X′

2

X′
1

aii(k) · dk

]
. (17)

For the ϒ pair bands, we can also define the ϒ polarization as

Pϒ = P1 − P2 = 2P1 − Pρ

= 1

2π

∫ X2

X1

[A(k) − A(−k)] · dk − i

π
ln

w12(X2)

w12(X1)

= 1

iπ
ln

[√
w12(X1)2

w12(X1)
· w12(X2)√

w12(X2)2

]
, (18)

which is an integer and only defined modulo 2 due to the
ambiguity of the logarithm. The argument of the logarithm
has only two values ±1 associated with the even and odd
values of Pϒ , respectively. Therefore, we can rewrite Eq. (18)
as

(−1)Pϒ =
2∏

i=1

Pf[w(Xi)]√
det[w(Xi)]

. (19)

The Z2 topological invariant can be defined as Pϒ modulo 2.
When Pϒ is odd or even, the system is a topological insulator or
a trivial band insulator. Equation (19) gives a distinct definition
of the Z2 topological invariant. However, evaluating the Z2

topological invariant with Eq. (19) requires a continuous gauge
from the point X1 to the X2 in the Brillouin zone, which is
a difficult task for numerical calculations. Fortunately, the Z2

topological invariant can be obtained by calculating the Berry
gauge potential and the Berry curvature proposed by Fukui
and Hatsugai [40] or by evaluating the non-Abelian Berry
connection derived from the Wannier function center proposed
by Yu et al. [41].

VI. TECHNIQUES FOR EXPERIMENTAL DETECTION OF
THE Z2 TOPOLOGICAL INVARIANT

Conventionally, the topological invariants in solid materials
are detected by measuring the transport properties. However,
this method is infeasible for cold atomic systems. Thus, other
methods to identify topological insulators have been proposed
and even performed experimentally. One method is to detect
edge states by Bragg spectroscopy [42] or direct imaging [43].
Important progress in measuring the topological invariant is
the experimental realization of directly measuring the Zak
phase by using a combination of Bloch oscillations with
Ramsey interferometry [44]. Based on the same experimental
techniques, a scheme has been designed to measure the Chern
number in two-dimensional lattices [45]. Later, the scheme
was generalized to detect Z2 topological invariants based
on the same experimental techniques [46]. Therefore, these
methods can also be applied to detect the topological order in
the quantum pseudo–spin Hall insulator in our study.

VII. CONCLUSION

In summary, we have proposed a scheme to realize a Z2

topological insulator in a square optical lattice. Such a non-
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trivial topological phase is protected by the hidden-symmetry
ϒ that is a composite antiunitary symmetry consisting of
translation, complex conjugation, and sublattice exchange.
The hidden symmetry is intrinsically different from time-
reversal symmetry. Because of the inclusion of the translation
operation, the hidden symmetry is momentum dependent in
a specific representation and there are only two degenerate
symmetry-invariant points in the two-dimensional Brillouin
zone instead of four degenerate symmetry-invariant points as
in the case of time-reversal symmetry. Based on the hidden
symmetry, the pseudospin was defined and the Z2 topological
invariant was derived, for which the new topological insulator
was dubbed a quantum pseudo–spin Hall insulator. Through
numerical calculations, helical edge states were found for
the nontrivial topological phase. Helical edge states are
pseudo-spin-momentum locking and two edge states moving
in opposite directions form ϒ pairs, which is solid evidence

of the new Z2 topological insulator being protected by the
hidden symmetry ϒ . The detection of the Z2 topological
invariant through the techniques of cold atoms and optical
lattices was also discussed. Our work opens a perspective to
search for new classes of topological phases by studying the
hidden symmetries of the lattices.
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