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We study properties of the single-site reduced density matrix in the Bose-Bose resonance model as a function
of system parameters. This model describes a single-component Bose gas with a resonant coupling to a diatomic
molecular state, here defined on a lattice. A main goal is to demonstrate that the eigenstates of the single-site
reduced density matrix have structures that are characteristic for the various quantum phases of this system.
Since the Hamiltonian conserves only the global particle number but not the number of bosons and molecules
individually, these eigenstates, referred to as optimal modes, can be nontrivial linear combinations of bare
eigenstates of the molecular and boson particle number. We numerically analyze the optimal modes and their
weights, the latter giving the importance of the corresponding state, in the ground state of the Bose-Bose
resonance model. We find that the single-site von Neumann entropy is sensitive to the location of the phase
boundaries. We explain the structure of the optimal modes and their weight spectra using perturbation theory
and via a comparison to results for the single-component Bose-Hubbard model. We further study the dynamical
evolution of the optimal modes and of the single-site entanglement entropy in two quantum quenches that cross
phase boundaries of the model and show that these quantities are thermal in the steady state. For our numerical
calculations, we use the density-matrix renormalization group method for ground-state calculations and time
evolution in a Krylov subspace for the quench dynamics as well as exact diagonalization.
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I. INTRODUCTION

Studying entanglement measures in the vicinity of quantum
phase transitions of many-body Hamiltonians has become a
very active field and is quite a useful tool. For the characteri-
zation of quantum phases the finite-size scaling properties of
entanglement entropies such as the von Neumann entropy have
turned out to be very informative, providing information about
gapped phases through area laws and gapless modes via the
central charge for gapless systems with a conformally invariant
low-energy theory (see [1] for a review and references) or also
the position of soft modes in critical systems [2]. Moreover,
additional information can be extracted from the entanglement
spectrum (see, e.g., [3–9]). The scaling properties of the
entanglement entropy as a function of system size are related
to the simulability of many-body wave functions using matrix-
product state methods (or more generally, tensor networks) as
they are directly related to the spectrum of reduced density
matrices [10–13].

Numerical work has suggested that the single-site entan-
glement entropy can be sensitive to quantum phase transitions
in interacting fermionic systems in one dimension such as
the extended Hubbard model [14]. This has further been
explored and applied to spin systems [15] as well as to the
Bose-Hubbard model (BHM) [16]. The notion of single-site
(or local) entanglement entropy was introduced in much earlier
work [17] and also discussed in the context of applications
of the density-matrix renormalization group to quantum
chemistry problems [18].

The single-site entanglement entropy S
(1)
vN is directly linked

to the eigenvalues wα of the single-site reduced density matrix
ρ(1) obtained by tracing out the degrees of freedom of all
sites but one (defining the environment E) from the wave

function |ψ〉:

ρ(1) = trE(|ψ〉〈ψ |) =
∑

α

wα|α〉〈α|, (1)

S
(1)
vN = −

∑
α

wα ln(wα). (2)

Here |α〉 are the eigenstates of ρ(1) and the wα are their
weights. Since the individual particle numbers for spin up
and down are conserved in the Hubbard model and since the
local Hilbert space is only two or four dimensional for spin- 1

2
and Hubbard models, respectively, one can easily see that
there are very few free parameters, taking into account also
normalization

∑
α wα = 1. Therefore, for a spin- 1

2 system with

spin-inversion symmetry, S
(1)
vN = ln(2), independent of system

size and the actual model. For the Fermi-Hubbard model at
half filling and vanishing magnetization, there is only one free
parameter [14].

We will be interested in systems with large local bosonic
Hilbert spaces, where some crucial differences arise. First, the
local Hilbert space is much larger and, second, in models
that do not preserve particle number, the eigenstates |α〉
of ρ(1) do not need to be eigenstates of the local particle
number [plus possible additional U(1) symmetries]. This is
most notably the case for systems with phononic degrees
of freedom such as the Holstein model [19]. Originally
intended as a means to improve numerical methods, Zhang,
Jeckelmann, and White [20] introduced the term optimal
modes for the eigenstates of the single-site reduced density
matrix. Their idea was to set up algorithms in an effective
Hilbert space obtained by truncating in the spectrum of the
single-site reduced density matrix. This gives a computational
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advantage whenever the weight spectrum decays sufficiently
fast. This concept has been used in exact diagonalization
studies [21–23] and density-matrix renormalization group
algorithms [24–28] but also bears useful information about
the equilibrium [20] and nonequilibrium physics [29] of such
systems. The optimization of the basis set in fermionic systems
(relevant for, e.g., applications in quantum chemistry) has
recently been discussed [30] and can be formulated via a
sequence of local optimizations of the states for two sites.
To summarize, for systems with bosonic degrees of freedom,
ρ(1) and hence also the single-site entanglement entropy can
therefore harbor much more information than in fermionic or
spin systems.

In our work we consider a bosonic model with a global
U(1) symmetry yet two species of bosons (labeled s = a, m)
whose particle numbers are not individually conserved. This
system thus possesses nontrivial optimal modes, which, as
a function of model parameters, can undergo a mixing of the
contributions coming from the bare eigenstates of both particle
numbers, which one typically uses to set up a convenient basis
for numerical methods.

Concretely, we study the so-called one-dimensional (1D)
Bose-Bose-resonance model (BBRM) [31–37] that describes
a Bose gas with repulsive contact interactions plus resonant
interactions, here defined on a lattice (for a study in two and
three dimensions, we refer to [38]). The resonant interaction
mimics the physics of a Feshbach resonance [39,40]: When
two atoms meet on the same site, they can form a molecule.
The bosons and molecules can be thought of as living on the
two legs of a ladder, leading to the schematic representation
of the model shown in Fig. 1. The Hamiltonian reads

H = HBH,a + HBH,m + Hint + HF + HD,

HBH,s = −ts
∑

j

(s†j sj+1 + H.c.) + Us

2

∑
j

nj,s(nj,s − 1),

Hint = Ua,m

∑
j

nj,anj,m,

FIG. 1. Representation of the BBRM [Eq. (3)] as a two-leg
ladder model with the bosonic atoms (molecules) living on the
upper (lower) leg. The hopping processes of atoms (molecules) with
matrix elements ta(tm) happen along the legs of the ladder while
the atom-molecule conversion, the Feshbach term with a coupling
strength of g, operates on the rungs of the ladder. Particles repel
each other locally where Ua (Um) give the intraspecies repulsion
between atoms (molecules) and Ua,m give the interspecies repulsion.
The detuning εm regulates the overall energy offset of states on the
lower leg compared to those on the upper leg.

HF = g
∑

j

(m†
j ajaj + mja

†
j a

†
j ),

HD = εm

∑
j

nj,m. (3)

The operator sj (s†j ) annihilates (creates) a boson of species s ∈
{a,m} and nj,s = s

†
j sj measures the particle density of species

s at site j . The full Hamiltonian H consists of five parts: a
Bose-Hubbard term HBH,s for each species, a repulsive on-site
interspecies interaction term Hint, the Feshbach-coupling term
HF, and the detuning term HD. The Feshbach-coupling term
describes the conversion of two atoms into a molecule and vice
versa. Because of this conversion the Hamiltonian conserves
only the total number of particles NT = Na + 2Nm, where
Ns = ∑

j 〈nj,s〉 denotes the particle number of the individual
species s.

Our main goal is to elucidate the behavior of the single-
site entanglement entropy and the structure of optimal modes
in the quantum phases of this model and, in particular, in
the vicinity of the phase transitions. Moreover, we consider
quantum quenches between different phases and investigate
the changes in the optimal modes in nonequilibrium dynamics.

Throughout this work, we focus on the following set of
parameters, for which the phase diagram of the model is known
from Ref. [36]: tm = ta/2, Ua/2 = Um/2 = Ua,m = g = U .
Moreover, we work at fixed filling NT/L = 2, where L is
the number of sites and we set ta = 1. The phase diagram is
schematically shown in Fig. 2. There are three phases [36]:
a Mott insulator (MI), a molecular condensate (MC), and
a phase in which both atoms and molecules quasicondense
(AC + MC). Note that by using the term condensate we follow
the terminology of [36], yet, of course, in one dimension there
can only be quasi-long-range order.

Our main results are as follows. First we find that the first
derivative of the local von Neumann entropy with respect to

FIG. 2. Schematic phase diagram of the BBRM model based on
the results of Ref. [36]. The labels denote the three phases: molecular
condensate (MC), molecular and atomic condensate (AC + MC), and
Mott insulator (MI). The horizontal and vertical dashed lines mark the
two trajectories through the phase diagram along which we compute
entanglement properties and optimal modes, in both equilibrium and
quantum quenches.
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the detuning displays a maximum at the position of the phase
boundary between the MC and AC + MC phases. Further-
more, we observe that the single-site entanglement entropy is a
monotonically increasing (decreasing) function of system size
in the MI (MC) phase. We provide qualitative arguments for
this behavior and contrast it to the Mott-insulator-to-superfluid
transition in the Bose-Hubbard model. This change in the
system-size dependence leads to features in the vicinity of
the phase transition, as our numerical data suggest. Next we
study the weights and optimal-mode spectra as a function
of model parameters and explain their behavior in the three
phases indicated by the points in Fig. 2 by using density-matrix
renormalization group (DMRG) [10,41] simulations of the
BBRM, perturbation theory and a comparison to numerical
results for the Bose-Hubbard model.

While our main goal is the investigation of entanglement
properties and of optimal-mode structures, our work is also one
of the first numerical studies of quantum quenches in interact-
ing Bose gases with resonant interactions. This is relevant
to ultracold quantum gas physics [39], where such quenches
play an important role and were studied experimentally in Bose
gases (see, e.g., [42,43]). Recent experiments have investigated
quenches in Bose gases to unitarity [44]. Here, however, we do
not aim at making contact with any experiment with a Feshbach
resonance. For recent studies of nonequilibrium properties in
fermionic and bosonic systems coupled to bound states via
Feshbach interactions, see [45–50].

We report results for two quantum quenches where we
start from a point deep in the MI (MC) phase and quench
the system over to the MC (AC + MC) phase (Fig. 2).
The pre- and postquench parameters are chosen such that
they correspond to the cases studied in the ground-state
section, i.e., those indicated in Fig. 2, deep in the respective
phases. In addition to the local von Neumann entropy and
the structure of the optimal modes (Sec. IV B), we discuss
the time evolution of the momentum distribution function
for both molecules and atoms. Because of the large bosonic
Hilbert space and fluctuations, the question of thermalization
is already interesting for a single-site object. We find that the
single-site reduced density matrix is thermal in the steady state
by comparison to the corresponding expectation values in the
canonical ensemble.

The plan of the paper is the following. We start by defining
the computational basis and the relevant observables and
introducing numerical methods in Sec. II. In Sec. III, we study
the ground-state properties of our system. More specifically,
the number of molecules and the single-site von Neumann
entropy (Sec. III A) as well as the weight spectrum and
structure of the optimal modes (Sec. III B) are studied as a
function of detuning and inverse interaction strength along two
different trajectories through the phase diagram. Section IV
illustrates the behavior of the BBRM system under a global
quench from the MI to the MC phase and from the MC to the
AC + MC phase. We conclude in Sec. V with a summary of
our results.

II. OBSERVABLES, DEFINITIONS, AND
NUMERICAL METHODS

For the BBRM we measure the atomic and molecular
particle numbers, the momentum distribution function, the

optimal-mode weights and spectra (i.e., the optimal mode
expressed in the bare occupation number basis), as well as
the single-site entanglement entropy for the ground state and
during quenches between different phases.

A. Optimal modes and von Neumann entropy

The optimal modes and their weights can be obtained by
diagonalizing the single-site reduced density matrix,

ρ(1) = trEρ

=
∑
n,n′

∑
j

ψ∗
njψn′j |n〉〈n′|

(4)
=

∑
α

wα|α〉〈α|,

|α〉 =
∑

n

〈n|α〉|n〉,

where ρ is the density matrix of the full system, the
|α〉’s denote the optimal modes, and wα’s denote their
weights (relative importance). We refer to the decomposition
coefficients |〈α|n〉|2 as optimal-mode spectrum. From the
weights one can directly calculate the single-site von Neumann
entropy,

S
(1)
vN = −

∑
α

wα ln(wα). (5)

B. Computational basis

To numerically simulate the BBRM model, we need a two-
component basis consisting of both an atomic and a molecular
part. As already stated, because of the Feshbach term in Eq. (3)
they do not completely decouple and only the total particle
number NT is conserved. As a consequence, the basis splits
into blocks of tensor products between atomic and molecular
sub-basis sets with a fixed number of particles N

(1)
T . For bare

local states we use the convention

|n〉 = ∣∣N (1)
a ; N (1)

m

〉
, (6)

where N (1)
a (N (1)

m ) denotes the local particle number of atoms
(molecules) leading to the total local particle number of N

(1)
T =

N (1)
a + 2N (1)

m . Table I shows a subset of the states that make
up the local basis labeled by index n. They are ordered first
by the total number of particles on the site N

(1)
T and second

by the number of molecules on the site. Since the Feshbach
term cannot change N

(1)
T , only states that are in the same row

in the table can mix in the local reduced density matrix. In
general, for a fixed N

(1)
T , there are �(N (1)

T + 2)/2� local states
that can mix. As a consequence of the conservation of NT ,
for any finite system size, the local state space spanned by the
states |N (1)

a ,N (1)
m 〉 is finite dimensional. Thus, the single-site

entanglement entropy is a well-defined quantity.

C. Momentum distribution function

The momentum distribution function is obtained from a
Fourier transformation of the respective one-particle density
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TABLE I. Bare local basis sets for a fixed number of total particles
N

(1)
T on a site. The number n to the left of the respective state is its

position in the full local basis. As N
(1)
T increases, a growing number

of states can mix due to the Feshbach term.

N
(1)
T n: |N (1)

a ,N (1)
m 〉

0 0: |0; 0〉
1 1: |1; 0〉
2 2: |2; 0〉 3: |0; 1〉
3 4: |3; 0〉 5: |1; 1〉
4 6: |4; 0〉 7: |2; 1〉 8: |0; 2〉
5 9: |5; 0〉 10: |3; 1〉 11: |1; 2〉
6 12: |6; 0〉 13: |4; 1〉 14: |2; 2〉 15: |0; 3〉
7 16: |7; 0〉 17: |5; 1〉 18: |3; 2〉 19: |1; 3〉
8 20: |8; 0〉 21: |6; 1〉 22: |4; 2〉 23: |2; 3〉 24: |0; 4〉
...

matrices of atoms and molecules,

ns
k = 1

L

∑
j,j ′

e−ik(j−j ′)〈s†j sj ′ 〉

=
∑

x

eikx〈�(x)〉, (7)

where �(x) = 1
L

∑
j s

†
j sj+x is the correlator between site j

and j + x for species s.

D. Numerical methods

We use two wave-function-based numerical methods: ex-
act diagonalization (ED) and density-matrix renormalization
group (DMRG) methods. DMRG is a matrix-product states-
based algorithm [10,13,41]. To treat the rather large local
state-space dimension efficiently, we employ the so-called
single-site DMRG with subspace expansion [51]. This par-
ticular method has the advantage that it scales with O(d2)
instead of O(d3) as the well-known two-site DMRG, where
d denotes the size of the local Hilbert space. To keep the size
of the Hilbert space manageable we conserve the number of
particles NT during the simulation.

The ED method is used to get numerically exact data for
small systems. Time evolution is performed in the Krylov
space with the time step chosen small enough to be accurate
keeping 20 Krylov states. As mentioned earlier, since both
atoms and molecules are bosons the local dimension d is
very large. To deal with this we exploit particle number
conservation, translation symmetry and reflection symmetry
on a lattice with periodic boundary conditions. In numerical
simulations, we set ta = 1 (as well as � and lattice spacing)
and express all quantities in units of ta = 1 such that only
dimensionless quantities are plotted in the figures.

III. GROUND-STATE PROPERTIES

Here we present our results for properties of the single-site
entanglement entropy and of the optimal modes in the three
phases, the molecular condensate (MC), atomic and molecular
condensate (AC + MC), and the Mott insulating (MI) phases.

A. Single-site von Neumann entropy and molecular density

In this section we study the number of molecules and
the von Neumann entropy as a function of detuning εm

and interaction strength U . For this purpose we choose two
trajectories through the phase diagram as indicated by the
arrows in Fig. 2.

1. MC to AC + MC phase

The first contour connects the MC to the AC + MC phases
by varying εm only (see the horizontal dashed line in Fig. 2).
The results for this case are presented in Fig. 3. Figure 3(a)
shows the density of molecules as a function of the detuning.
For εm = −6ta, there are practically only molecules present
in the system. This is expected because for a fixed interaction
U/ta the detuning regulates which one of the two species,
atoms or molecules, are favored in the ground state, and thus,

lim
εm→−∞ Nm(εm) = NT

2
. (8)

For εm = 2ta, the number of molecules is small since

lim
εm→∞ Nm(εm) = 0 . (9)

Figure 3(b) illustrates the dependence of the single-site
von Neumann entropy on the detuning. For large positive and
negative εm, S

(1)
vN saturates at finite values, while there is a

maximum slightly to the right of the phase boundary between

0
0.2
0.4
0.6
0.8

1

n m
(ε

m
)

(a)

AC+MCMC

L = 16
L = 32
L = 64

1
1.2
1.4
1.6
1.8

S
(1

)
vN

(ε
m

)

(b)

S
(1)
vN for ta/U = 3, L = 64

-6 -4 -2 0 2
εm/ta

0

0.5

1

(d
/d

ε m
)S

(1
)

vN
(ε

m
)

(c)

nT = NT/L = 2

FIG. 3. (a) Density of molecules and (b) single-site von Neumann
entropy for the ground state along the trajectory between the MC
(εm = −6ta, ta/U = 3) and AC + MC (εm = 2ta, ta/U = 3) phases.
The horizontal dashed lines show the values for the local entangle-
ment entropy calculated for a Bose-Hubbard model at unit filling and
U/ta = 20 in the MC limit and double filling and U/ta = 10 in the
AC + MC limit. (c) First derivative of S

(1)
vN with respect to εm. The

vertical dashed line marks the position εc
m of the phase transition taken

from [36]. The data are calculated using DMRG with a local cutoff
N

(1)
T = 30 and a bond dimension D = 200.
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the MC and the AC + MC phases (indicated by the dashed
line).

The difference S
(1)
vN(εm → ∞) − S

(1)
vN(εm → −∞) between

the values for εm � −ta and εm � ta can be estimated from
calculating the von Neumann entropy of a pure MC or a
pure AC condensate since very large εm fully suppresses
the molecules in the AC + MC phase. In the noninteracting
case and for a bipartition of the system into blocks A and B
with lengths LA = 1 and LB = L − 1, S

(1)
vN can be calculated

analytically, yielding for N particles [52]

S
(1)
vN = −

N∑
α=0

wα ln wα, (10)

wα = L−N

(
N

α

)
(L − 1)(N−α). (11)

This results in

lim
εm→−∞ SvN(εm) ≈ 1.27, (12)

lim
εm→∞ SvN(εm) ≈ 1.66, (13)

where the difference arises from the different filling factors in
these limits (namely the corresponding particle numbers are
N = Nm = L and N = Na = 2L, respectively). Those two
limiting values overestimate the actual numerical values due
to the nonzero repulsive interactions Ua/2 = Um/2 = U > 0
that lead to a condensate depletion. We compare the data in
Fig. 3(b) to the numerical value for a Bose-Hubbard model on
a lattice with L = 64 sites and the corresponding interaction
strength: N = 128, t = 1, U/2 = t/3 for the AC + MC phase
and N = 64, t = 0.5, U/2 = 2t/3 for the MC phase [plotted
in Fig. 3(b) as dashed lines]. The results for the BHM agree
very well with the data for the BBRM in the appropriate limits.

The most striking feature is the system-size dependence
of S

(1)
vN(εm) close to the transition at εc

m (vertical dashed line
in Fig. 3). This translates into a pronounced maximum in the
derivative of S

(1)
vN(εm) with respect to εm in the vicinity of εc

m,
which is plotted in Fig. 3(c). With increasing system size L the
maximum value grows and an extrapolation to large system
sizes via 1/L → 0 leads to a finite value for the maximal value
in an infinite system. This suggests that S

(1)
vN(εm) is sensitive to

this phase transition.
The behavior of S

(1)
vN and of its derivative in the vicinity of

εc
m can be understood in the limit of U/ta → 0. In this case

(note that g = U ), the system is described by the Hamiltonian

H = − ta
∑

j

(a†
j aj+1 + H.c.)

− tm
∑

j

(m†
jmj+1 + H.c.)

+ εm

∑
j

nm
j . (14)

Thus, the ground state is a condensate of either atoms or
molecules depending on the value of εm. Since the two species
cannot mix for g = 0, the transition happens abruptly at a
critical detuning ε̃m = −3ta for tm = ta/2, where the system

goes from NT = Na = 2L to NT = 2Nm = 2L. This leads to a
sudden jump in the local von Neumann entropy and, therefore,
a singularity in its derivative with respect to the detuning at
ε̃m. The effect of finite interactions is to smoothen this jump,
which leads to a finite value for the maximum of the derivative
and also a shift of the critical point to a smaller value than
ε̃m = −3ta.

2. MI to MC phase

Figure 4 shows the density of molecules and the von
Neumann entropy for the second trajectory which connects
the MC and MI phases (compare the vertical line Fig. 2).
Along this line, εm = const while ta/U is varied. The density
of molecules nm is a monotonically increasing function of
ta/U [see Fig. 4(a)]. The value of nm, in the limiting case
of ta/U � 1, is nm = 1, the maximum possible one for the
chosen filling of NT/L = 2.

The molecular density and its dependence on εm can also
be understood in the limit of weak interactions ta/U → ∞
(in this limit, g = 0 as well). As discussed above, there is a
critical ε̃m for which one obtains either molecules (εm < ε̃m)
or atoms (εm > ε̃m) only, with ε̃m = −3ta. For the parameters

0.8

0.85

0.9

0.95

1

n m
(U

)

L = 16
L = 32
L = 64

0 0.5 1 1.5 2 2.5 3
ta/U

0

0.5

1

S
(1

)
vN

(U
)

BHM, L = 64

1.1 1.15 1.2 1.25 1.3
ta/U

-1

0δS
L(U

).
10

-3

L = 16
L = 24
L = 32
L = 40

1.2 1.25
ta/U

0

0.25

(a)

(b)

(c)

MCMI

L

FIG. 4. (a) Density of molecules and (b) single-site von
Neumann entropy in the ground state along the trajec-
tory between the MC and MI phases [see the vertical
line in Fig. 2 connecting (εm = −6ta,

ta
U

= 3) to (εm = −6ta,
ta
U

= 0.1)]. The arrows in (b) indicate the change of this quantity with
increasing system size. (c) Difference of local von Neumann entropy
between systems with 2L and L [Eq. (19)] as a function of inverse
interaction ta/U . The dashed line indicates the phase boundary [36].
The squares in (a) and (b) are the values for a fully local Hamiltonian
Eq. (15), while the star in (b) is for a Bose-Hubbard model (L = 64)
and appropriately chosen parameters. The data are calculated using
DMRG with a local cutoff N

(1)
T = 30 and a bond dimension D = 400.
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of Fig. 4, we have εm = −6ta and hence mostly molecules for
ta/U � 1.

In the limit of large U/ta, the Hamiltonian is fully local and
block diagonal in the total local particle number N

(1)
T ,

H = U
∑

j

[nj,a(nj,a − 1) + nj,m(nj,m − 1)

+ nj,anj,m + m
†
j aj aj + mja

†
j a

†
j ]. (15)

The ground state in the N
(1)
T = 2 subspace and for g = 0 is thus

a product state, with the local state consisting of one molecule
per site:

∣∣ψMI,g=0
0

〉 =
∏
j

∣∣φMI,g=0
0

〉
j
, (16)

∣∣φMI,g=0
0

〉
j

= |0; 1〉. (17)

A nonzero g can only couple the states in the N
(1)
T = 2 sector

and thus mixes in the state with two atoms. For the case of
g = U (and setting εm = 0), we obtain

∣∣φMI,g=U

0

〉 = 1√
3 − √

3

(
1 − √

3√
2

|2; 0〉 + |0; 1〉
)

. (18)

Using this state, we can calculate the molecular density in
this limit, finding nm(U/ta � 1) ≈ 0.789, which is in perfect
agreement with the numerical results shown in Fig. 4(a) when
extrapolated to ta/U = 0.

Figure 4(b) shows the single-site von Neumann entropy
as a function of ta/U . In the limit of U/ta = 0, the system
is in a (noninteracting) molecular condensate. Hence, the
von Neumann entropy approaches the value S

(1)
vN = 1.27 [see

Eq. (13)] with decreasing U/ta [indicated by the horizontal
dotted line in Fig. 4(b)]. In the opposite limit, the Hamiltonian
is fully local and the entanglement entropy thus vanishes.
Between these limits, S

(1)
vN is a monotonically increasing

function of ta/U .
Contrary to Fig. 3(b) there is no directly obvious feature

in S
(1)
vN at the phase transition. S

(1)
vN exhibits a maximum in its

first derivative which, however, converges to a point far below
(U/ta)c = 1.176 as L increases and this maximum is therefore
not connected to the phase transition between the superfluid
and the MI phase. In fact, previous studies [16,53] of the
Bose-Hubbard model at unit filling found a similar behavior
of the single-site entanglement entropy.

However, comparing the curves for different system sizes,
we find that S

(1)
vN is a monotonically increasing (decreasing)

function of L in the MI (MC) phase [see the arrows in
Fig. 4(b)]. The qualitative behavior in the MI phase can be
explained as a consequence of the finite correlation length [54].
Because of that, the local entropy has to increase with system
size until it saturates at a finite value when the system is large
enough to support the full correlation length. This behavior
can be verified numerically for a point deep in the MI phase
for both BBRM and BHM.

The behavior in the MC phase can be obtained by
calculating the first derivative of the local von Neumann
entropy [Eq. (10)] with respect to system size L explicitly
in leading order in 1/L in a noninteracting condensate. In

order to be able to do this analytically we use an upper bound
for the binomial coefficient

(
n

k

)
� nk/k! (for details, see the

Appendix). We find, to leading order, S
(1)
vN = a + b/L, where

a,b are constants. Again, choosing a point deep in the MC
phase this behavior can be verified for both the BBRM and the
BHM.

This suggests to study the L dependence of the difference
between two curves for system sizes L and 2L,

δSL(U ) = S
(1)
vN,L(U ) − S

(1)
vN,2L(U ). (19)

This choice ensures that the ratio between system sizes is kept
constant. Interestingly, the difference in local entanglement
entropy is a linear function of ta/U in the vicinity of the
phase transition [see Fig. 3(c)]. The point where the curves
cross zero are the points where the monotony of the local
entropy changes as a function of L. This corresponds to the
observation that the local entropy increases in the MI phase,
while it decreases in the MC phase. With increasing system
size two effects occur. The slope decreases and the point where
the curve hits zero shifts to the left, in the direction of the phase
boundary (indicated by the dashed line in Fig. 3(c) [36]). A
naive extrapolation to 1/L = 0, however, yields an estimate
for the critical point that is below the literature value. We
also study the BHM at unit filling, which corresponds to the
εm → −∞ limit of the BBRM for our choice of parameters.
In this case, the local von Neumann entropy [and δSL(U ) as
defined in Eq. (19)] behaves in exactly the same way as in the
BBRM, as expected.

B. Structure of optimal modes

In this section we study the structure of optimal modes
(defined in Sec. II A) for specific points in each one of the three
phases and then we investigate the changes in these states as
the phase boundaries are crossed.

1. MI phase

We start with the MI phase, considering the parameters ta
U

=
0.1, εm = −6ta. We first take a look at the weight spectrum
wα shown in Fig. 5(a). The spectrum is dominated by the
first optimal mode with w0 � 1. Then there are sequences of
plateaus of several states, each with very similar weights. In
the first of these plateaus, there are two pairs of states that are
very close to each other.

The optimal-mode spectra are shown in Fig. 6(a). First,
we see that the optimal modes are very simple superpositions
of the bare modes. They are constrained in form because, as
discussed above, they can only mix bare states with the same
total particle number N

(1)
T . Therefore, the more interesting

modes are the ones that mix bare modes, e.g., α = 0,1,4,5,
where the relative contributions of the bare modes in the large
U/ta limit depend on the parameters εm and g (the latter being
tied to U in our study).

More information can be obtained from perturbation theory
in the hopping parameter ta (remember that in our case, tm =
ta/2). From the previous discussion (Sec. III A), we know that
in the ta/U = 0 limit the ground state is a product state of the
local state given in Eq. (18). Therefore, for exactly ta/U = 0,

|α = 0〉 = ∣∣φMI,g=U

0

〉
. (20)

063624-6



PROPERTIES OF THE SINGLE-SITE REDUCED DENSITY . . . PHYSICAL REVIEW A 93, 063624 (2016)

10
-12

10
-8

10
-4

10
0

DMRG
PT

10
-12

10
-8

10
-4

w
α

BHM, NT
(1)

=L

0 4 8 12 16 20 24
α

10
-12

10
-8

10
-4 BHM, NT

(1)
=2L

(a) MI

(b) MC

(c) AC+MC

FIG. 5. Weights of the optimal modes in (a) MI (εm = −6ta,
ta
U

=
0.1), (b) MC (εm = −6ta,

ta
U

= 3), and (c) AC + MC (εm = 2ta,
ta
U

=
3) phase. Closed symbols, DMRG for L = 64; open symbols, in (a)
perturbative results, (b) Bose-Hubbard model with N = L = 64, and
(c) N = 2L = 128.

A first approximation to the weight spectrum of the first five
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when considering the first-order correction terms of the wave
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function,

|ψ̃0〉 ∝ ∣∣ψ (0)
0

〉 + ta

U

∣∣ψ (1)
0

〉
,

ρ(1) ≈ trE(|ψ̃0〉〈ψ̃0|). (21)

The weight spectrum and structure calculated from per-
turbation theory (PT) are shown in Figs. 5(a) and 6(a) as
open symbols. Both are very close to the numerically exact
data because we are very deep in the large U/ta limit. The
plateau structure in Fig. 5(a) thus emerges in first-order
perturbation theory. Qualitatively, the structure of the weight
spectrum and the optimal-mode spectra can be understood
from the following observation. In first order the atomic
hopping term couples the optimal mode in the ta/U = 0 limit
[see Eq. (18)], which resides in the N

(1)
T = 2 subspace to a

state in the N
(1)
T = 1 subspace and a state in the N

(1)
T = 3

subspace. By contrast, the molecular hopping term couples
this state to a state in the N

(1)
T = 0 subspace and a state in

the N
(1)
T = 4 subspace. Because of that there are two pairs

of degenerate optimal modes. This perfectly describes the
relative positions of the optimal-mode spectra of the modes
α = 1, 2, 3, and 4 in Fig. 6(a). Following this reasoning we
can also qualitatively explain the second and third plateaus in
the spectrum. In second order the system couples to the states
in the N

(1)
T = 0,1,2,3,4,5,6 subspaces. Since the N

(1)
T = 0,1

subspaces are nondegenerate and contain only one state, they
do not contribute to the second plateau. By comparison to
the numerics we find that the second plateau corresponds
exactly to the remaining five states originating from the
N

(1)
T = 2,3,4,5,6 subspaces. The same argument holds also

for the third plateau present in Fig. 5(a).

2. MC and AC + MC phase

Next, we consider the weight spectrum and optimal modes
for the MC and AC + MC phases, which are illustrated in
Figs. 5(b) and 5(c) and 6(b) and 6(c), respectively. The weights
for the MC and AC + MC phases [Figs. 5(b) and 5(c)] are
compared to those computed for a Bose-Hubbard model at
unit (MC) and double filling (AC + MC). In the MC phase
we compare to a BHM with NT = L particles because for
our choice of parameters, the number of atoms is negligible
[see Fig. 3(a)]. In the AC + MC phase we compare to a BHM
with NT = 2L particles since for these parameters very few
molecules are present [again consult Fig. 3(a)] and, thus, all
the particles are unbound. The weights are computed using
DMRG for a system of size L = 64.

These estimates provide a very good approximation of the
exact values until they begin to deviate at wα ≈ 10−4, where
the weights start to decay slower in the BBRM compared to
the (single-component) BHM. The reason is that there are
more than just one species present in both states, plus effects
of the Feshbach term.

Figure 6(b) shows the optimal-mode spectra for a point in
the MC phase. The individual optimal modes in this phase
are the bare occupation number states, with virtually no
mixing in the degenerate subspaces (e.g., NT = 2). The first
noticeable deviation between the prediction for the optimal-
mode structure from considering a BHM compared to the
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m (n)〉 contributing to the

optimal modes as a function of detuning. DMRG results for L = 80.
The dashed line indicates the phase boundary [36]. The respective
physical state corresponding to the index n is defined in Table I.

numerical data occurs for the α = 4 optimal mode: This mode
consists of a molecule and an atom, showing that the presence
of atoms is still important for this state. The simple structure
of the optimal modes in the MC phase roots in the fact that
adding an atom is suppressed for this choice of εm.

In the AC + MC phase we observe a very similar behavior:
The first two modes are perfectly peaked. The other ones are
already mixtures of atoms and molecules, which shows that
one cannot neglect one of those species in this phase.

C. Evolution of optimal modes across phase transitions

In this section we discuss the optimal-mode structure when
tuning the system continuously crossing one of two phase
boundaries, i.e., either the MC-to-(AC + MC) transition or
the MI-to-MC transition.

1. The MC-to-(AC + MC) transition

As discussed before, the local entanglement entropy is
sensitive to the location of this transition (Sec. III A). It is
very curious to ask how the optimal-mode structure changes
as a function of detuning εm. Figures 7(a)–7(h) show the
projection of the most important eight optimal modes on the
nth bare mode as a function of detuning εm. Generally, all

eight states seem to change significantly in the vicinity of the
phase boundary. This is expected by inspection of Fig. 6: The
optimal-mode structures at the two points deep in the phases
are different, and at some point a reorganization has to occur.
Also, we see that this transition manifests itself in one of two
ways.

(i) A continuous transition. When the two modes are located
in the same block (i.e., they can be labeled with the same total
number of particles N

(1)
T ), the transition is smooth (excluding

the case of U = 0). An example for this behavior is given in
Fig. 7(a): We see in Fig. 6 that the most important optimal
mode in the MC phase is in the N

(1)
T = 2 block where the two

atoms are bound inside a molecule. The corresponding optimal
mode in the AC + MC phase lies in the same block but is a
state where the two particles are unbound.

(ii) A level crossing. When two modes are located in
different blocks, a sudden jump can occur when the weights
cross each other. An example for this behavior is shown in
Fig. 7(b): In this case the modes cannot smoothly transform
into each other and the structures stay roughly the same until
their weights suddenly swap position and, therefore, one mode
becomes more important than the other one. Since the weights
are a smooth function of the detuning (at least for our system
size) this means that a mode that has a low weight in the
initial state and a high one in the final state has to climb until
it reaches its final position. Examples for this behavior are
shown in Figs. 7(b), 7(c), and 7(d): The N

(1)
T = 1 state has

a low weight in the MC phase and thus has to ascend the
ladder of optimal states until it reaches its final position as the
secondmost important mode in the AC + MC phase state. Its
ascent can first be seen in Fig. 7(d), where this state first gains
appreciable weight, while upon further increasing εm, it moves
to Fig. 7(c), where it stays only shortly until it reaches its final
position in Fig. 7(b) for all larger values of the detuning.

So far, we have discussed how two different modes can
transform directly into another. We want to get some insight
into what happens to the optimal modes when crossing the
phase boundary. Figure 7(a) shows how the α = 0 mode
evolves during the transition: For small detuning the majority
of the weight is in the |n = 3〉 = |0,1〉 state. As the detuning
increases the weight gets shifted over to the |n = 2〉 = |2,0〉
state. Thereby, without having any other information we
can conclude that the system favors molecules in one phase
and atoms in the other. The same happens in all other
modes where the optimal modes mix more than one state.
An interesting feature emerges in the higher optimal modes
α = 5,6 [Figs. 7(f) and 7(g)]: The corresponding optimal
modes change their structure abruptly by jumping from (linear
combinations of) small to large n states. The occurrence of this
jump is independent of system size and sits right at the phase
boundary. We note that most rearrangements in the optimal
modes, independent of their nature, happen in the vicinity
of the phase boundary (indicated by the dashed lines in the
figures), and thereby the changes in the optimal modes are
correlated to this transition.

2. The MI-to-MC transition

The second transition that we study is the one from the
MI to the MC phase by varying the interaction U only.
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The corresponding results are shown in Figs. 8(a)–8(d). By
inspecting Fig. 6, we see that apart from the first optimal
mode no pair of them is located in the same block and thus
they all have to undergo a level crossing. The change in the
second and third mode shown in Figs. 8(b) and 8(c) occurs at
a value close to ta/U = 0.1. Again, the α = 0 mode lies in
the N

(1)
T = 2 subspace for the whole range of observed values

of ta/U . With increasing ta/U the atomic contribution to this
mode gets suppressed because the detuning term dominates
the occupation ratio. Another feature in the vicinity of the
phase transition is shown in Fig. 8(d): A jump occurs where the
N

(1)
T = 3 mode drops to an even lower weight and the N

(1)
T = 6

mode moves to its final relative position. Again, the optimal
modes show features in the vicinity of the phase boundary
which suggest that they are sensitive to this transition as well.

IV. QUANTUM QUENCHES

In the last section we calculated observables in the ground
state along two trajectories in the phase diagram where both
crossed a phase boundary (see Fig. 2). This procedure can
be seen as evolving the system in time from one point in the
phase diagram to another one adiabatically. In this section we
change parameters instantaneously between the points marked
in Fig. 2 via a quantum quench.

A. Number of molecules and single-site von Neumann entropy

For the quenches, in addition to the real-space observables
nm and S

(1)
vN, we also study the k = 0 component of the

quasimomentum distribution function of atoms (molecules)
rescaled by the total number of atoms (molecules). Also, we
calculate the long-time limit of the expectation value of the
molecular density which is given by its expectation value in

the so-called diagonal ensemble [55]

〈nm〉diag =
∑

n

|〈ψ0|ψn〉|2〈ψn|nm|ψn〉, (22)

where |ψn〉 are the eigenstates of the postquench Hamil-
tonian and |ψ0〉 is the initial state before quenching.
Additionally, we compare the expectation value of the
molecular particle number density in the diagonal ensem-
ble with the one in the canonical ensemble and of the local
von Neumann entropy in the steady state with the one in the
canonical ensemble. For the calculation of expectation values
in the diagonal and canonical ensembles we use a system of
size L = 6 due to the need of a full diagonalization of the
Hamiltonians.

1. Quench between the MC and the AC + MC phase

The dynamics in the first quench from the MC to the
AC + MC phase is illustrated in Fig. 9 for system sizes L =
6,8. In the first few time steps the k = 0 quasimomentum oc-
cupations of both species—atoms and molecules—decrease.
The decrease of nk=0

m is consistent with the behavior of the
molecular density nm = Nm/L: It decreases in time, which
means that atoms are created.

We define the quench energy as

Eq = E − E0; E = 〈ψ0|H |ψ0〉, (23)

where H is the postquench Hamiltonian. The quench energy
in this quench is finite and so large that the initial-state
samples primarily eigenstates in the bulk of the spectrum

0
0.25

0.5
0.75

1

na k=
0(t

)/
N

a(t
)

L = 6, NT = 12
L = 8, NT = 16

0
0.25

0.5
0.75

nm k=
0(t

)/
N

m
(t

)

AC+MC GS

0
0.25

0.5
0.75

n m
(t

) nm
diag

0 5 10 15 20 25 30
t/ta

1
1.5

2
2.5

S
(1

)
vN

(t
)

(a)

(b)

(c)

(d)

FIG. 9. Evolution of the k = 0 component of the (a) atomic and
(b) molecular momentum distribution function, (c) the molecular den-
sity, and (d) the single-site von Neumann entropy as a function of time
along the trajectory from the MC (εm = −6ta,

ta
U

= 3) to the AC +
MC phase (εm = 2ta,

ta
U

= 3). The dashed line in (c) gives the ex-
pectation value of the molecular density in the diagonal ensemble
[Eq. (22)] for a system of size L = 6, which shows that we reach the
long-time steady state in the observed time. The quench energy is
Eq/L = (E − E0)/L = 4.1227ta. ED results for L = 6,8.

063624-9



F. DORFNER AND F. HEIDRICH-MEISNER PHYSICAL REVIEW A 93, 063624 (2016)

and it is therefore not surprising that the observables are not
comparable to their ground-state expectation values.

We also calculate the diagonal and canonical ensemble
average for the molecular density in a system of size L = 6
[diagonal ensemble: dotted line in Fig. 9(c)] [56]. For the
calculation of the canonical expectation value we first extract
the canonical temperature T by fixing the expectation value
of the energy in the canonical ensemble to the energy of the
initial state with respect to the postquench Hamiltonian,

〈H 〉can(β) =
∑

n Ene
−βEn∑

n e−βEn

!= 〈ψ(t = 0)|H |ψ(t = 0)〉. (24)

Expectation values of observables Ô in the canonical ensemble
are computed from

〈Ô〉 = tr(ρcanÔ), ρcan = e−βH /Z, (25)

where Z is the partition function and β = 1/T .
The real-time data for both system sizes lie on top of the

diagonal ensemble average value, which shows that the molec-
ular density has fully relaxed to its infinite-time value. The
canonical ensemble average is close to the diagonal ensemble
average with a relative difference of (ndiag

m − ncan
m )/n

diag
m ≈ 9%

for L = 6. The remaining difference can be attributed to
finite-size effects [56]. As expected, the local von Neumann
entropy increases in time up to a point where the system
reaches a steady state. Increasing system size has two effects:
First, the atomic zero-quasimomentum occupation decreases
and, second, oscillations in time vanish. Apart from this, the
data for all considered system sizes agree very well. We
calculate the local von Neumann entropy in the canonical
ensemble and find that it deviates from the steady-state value
(S(1)

vN)st by [(S(1)
vN)st − (S(1)

vN)can]/(S(1)
vN)st ≈ 1% (L = 6).

2. Quench from the MI to the MC phase

Figure 10 shows our results for a quench from the MI
to the MC phase. Here, the quench energy is much smaller,
probing the postquench spectrum at its lower edge. Similar to
the previously discussed quench, the changes in all observed
quantities occur very rapidly: After a very short transient
time a relaxation to a steady-state value occurs. The zero-
quasimomentum occupations of neither the atoms nor the
molecules change significantly as a function of time. Also, the
molecular density increases only slightly. The most dramatic
change happens in the von Neumann entropy, which shows
a very steep increase and then stays constant. Again, the
finite size of the system introduces fast oscillations whose
amplitudes decrease as system size is increased. The molecular
density reaches its long-time limit during the observed time
as indicated by the diagonal ensemble average [dashed line in
Fig. 10(c)]. For this quench the relative difference between
diagonal and canonical ensembles is (ndiag

m − ncan
m )/n

diag
m ≈

2%. For the local von Neumann entropy, we find a relative
deviation the steady-state value from the canonical ensemble
[(S(1)

vN)st − (S(1)
vN)can]/(S(1)

vN)st ≈ 7% (L = 6).

3. Postquench eigenstate expectation values

The relaxation of the system to a steady state can be
understood from the distribution of diagonal postquench
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FIG. 10. Evolution of the k = 0 component of the (a) atomic
and (b) molecular momentum distribution function, (c) the molecular
density, and (d) the single-site von Neumann entropy as a function
of time along the trajectory from the MI (εm = −6ta,

ta
U

= 0.1) to
the MC phase (εm = −6ta,

ta
U

= 3). The dashed line in (c) gives the
expectation value of the molecular density in the diagonal ensemble
[Eq. (22)] for a system of size L = 6, which shows that we reach the
long-time steady state in the observed time. The quench energy is
Eq/L = (E − E0)/L = 1.3923ta. ED results for L = 6,8.

eigenstate expectation values (DPQEV) Onn = 〈ψn|Ô|ψn〉
and the overlaps of the initial state with the eigenstates
of the postquench Hamiltonian. This relates the notion of
thermalization in a closed quantum system to the eigenstate
thermalization hypothesis (ETH) [55,57,58], which is a widely
used concept in this field (see, e.g., [56] and references therein).
We summarize its essence here.

The overlaps cn of the initial state with the postquench
eigenstates, given by

|ψ(t = 0)〉 =
∑

n

cn|ψn〉, (26)

determine which eigenstates contribute significantly to the
time evolution. The time evolution of any observable is given
by (ignoring degeneracies)

〈Ô〉(t) =
∑

n

|cn|2〈ψn|Ô|ψn〉

+
∑

nn′,n�=n′
c∗
ncn′ 〈ψn|Ô|ψn′ 〉ei(En−En′ )t . (27)

For long-time averages the oscillating terms cancel (see the
discussion in [55]) and we are left with the time-independent
part only,

〈Ô〉 =
∑

n

|cn|2〈ψn|Ô|ψn〉. (28)

This is the diagonal ensemble. Up to this point the statements
are exact and the above equation has to hold for every observ-
able. One can now ask when the above-defined expectation
value coincides with the expectation value computed in a
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thermal ensemble. Since in our closed quantum system, energy,
particle number, and volume are fixed, it is natural to compare
Eq. (28) to the microcanonical expectation value

〈Ô〉mic = 1

N
∑

E−
E<En<E+
E

〈ψn|Ô|ψn〉, (29)

∑
n

|cn|2Onn
!= 1

N
∑

E−
E<En<E+
E

〈ψn|Ô|ψn〉, (30)

where 
E is a small width around the mean energy E

and N gives the number of states with an energy inside
that energy window. The eigenstate thermalization hypothesis
(ETH) [55,57,58] makes a statement of how Eq. (30) can be
fulfilled: It will, in general, work out when (i) the |cn|2 sample
just a very narrow energy region (comparable to 
E) and (ii)
the Onn are a sharp distribution and thus only a function of
energy in the region that the |cn|2 sample.

We now consider the distribution of postquench eigenstates
expectation values of the molecular density as an example.
First, let us note that, for our system, the initial-state overlap
|cn|2 with the eigenstates of the postquench Hamiltonian is
already a relatively narrow function of the energy on the system
sizes considered [see Figs. 11(b) and 12(b)].

Figure 11(a) shows the distribution of postquench eigen-
state expectation values for the quench from the MC to the
AC + MC phase in a system of size L = 6. Already on
such a small system, the DPQEV is a smooth and fairly
sharp distribution for energies located in the bulk of the
eigenspectrum. By comparing to the overlap of the initial state
with the eigenstates of the postquench Hamiltonian plotted in
Fig. 11(b), we find that the initial state is very sharply peaked
at an energy (E − E0)/L ≈ 4ta, which is well inside the bulk
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FIG. 11. (a) Distribution of postquench expectation values of the
molecule particle number operator in the AC + MC phase (εm =
2ta, ta/U = 3) along with (b) the overlaps of the initial state with
the eigenstates in a system of size L = 6. The dashed line indicates
the quench energy. We show results for the subspace with zero
quasimomentum (k = 0) and even parity (p = 0).
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FIG. 12. (a) Distribution of postquench expectation values of
the molecular particle number operator in the MC phase (εm =
−6ta, ta/U = 3) along with (b) the overlaps of the initial state with
the eigenstates. The dashed line indicates the quench energy. We show
results for the subspace with zero quasimomentum (k = 0) and even
parity (p = 0).

of the eigenspectrum where the DPQEV is a sharp distribution,
practically depending only on energy. We therefore conclude
that in this case the ETH works (as expected for a generic
quantum many-body system) and thus the system thermalizes,
consistent with our numerical observations.

Figure 12 shows the DPQEV for the quench from the MI
to the MC phase for system sizes L = 4,6. The data for L = 4
show plateaus at integer values of the number of molecules
(similar to the double occupancy in the strongly interacting
regime of the Fermi-Hubbard model [59]). Increasing the
system size introduces more eigenstates with intermediate (i.e.,
noninteger) molecular particle numbers but a general plateau
structure can still be discerned. The initial state overlaps |cn|2
are again a strongly peaked function of the energy. Comparison
to the DPQEV shows that it does not sample the bulk of the
system but that this quench puts the system at the edge of
the spectrum, where the ETH is expected to work only for
very large systems (see, e.g., [56,60–62]). Nevertheless, our
numerical results indicate a reasonable agreement between
the diagonal and thermal ensembles already on fairly small
systems.

B. Structure of optimal modes

This section illustrates the dynamics of the optimal-mode
spectra for the two quenches. Results for the first quantum
quench are shown in Figs. 13(a)–13(d). For small values of
t/ta, the mode spectra are the ones from the MI phase as
shown in Fig. 6. Generally, the spectra change significantly as
a function of time: They start from states in the NT = 0,2,4,6
subspaces and change into states in the NT = 0,1,2 subspaces.
We can compare those to Fig. 7 and find that after some time
only the α = 1 mode [Fig. 13(b)] is the same as in the ground
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FIG. 13. (a)–(d) Evolution of the first four optimal modes |α〉 in
time along the trajectory from the MC (εm = −6ta,

ta
U

= 3) to the
AC + MC phase (εm = 2ta,

ta
U

= 3). The figure shows the weights
|〈α|n〉|2 of the bare local states |n〉 = |N (1)

a (n), N (1)
m (n)〉 contributing

to the optimal modes as a function of t/ta. ED results for L = 8. The
respective physical state corresponding to the index n is defined in
Table I.

state deep in the AC + MC phase while the other three evolve
to different structures. Of course, this is no surprise as during
the quench we pump energy into the system, leading to a
final state that is generally not the postquench ground state.
Apart from this we can read off that the contribution of atoms
increases. This is visible in the final distribution of the bare
states: The three most important bare modes in the steady state
after the quench are the ones with N (1)

a = 0,1,2. Also, we see in
the third and fourth modes that the molecular contribution gets
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FIG. 14. (a)–(d) Evolution of the first four optimal modes |α〉
in time along the trajectory from the MI (εm = −6ta,

ta
U

= 0.1) to
the MC phase (εm = −6ta,

ta
U

= 3). The figure shows the weights
|〈α|n〉|2 of the bare local states |n〉 = |N (1)

a (n), N (1)
m (n)〉 contributing

to the optimal modes as a function of t/ta. ED results for L = 8. The
respective physical state corresponding to the index n is defined in
Table I.

suppressed with time. The high weight of the N
(1)
T = 0 mode

implies that there are increased fluctuations in local particle
number in the steady state.

Results for the second quench are shown in Figs. 14(a)–
14(d). We see that the evolution to the final optimal-mode
structure is very fast (taking less than t/ta ∼ 2). This is similar
to the behavior of the quantities shown in Fig. 10. In Fig. 10
we see that the number of molecules is not greatly influenced
by the quench. The fact that the highest weighted bare mode
is again the N

(1)
T = 0 one suggests that fluctuations increase as

time progresses.
Generally, the largest changes in the optimal-mode spectra

happen over the same time window in which the local entropy
S

(1)
vN varies significantly. To find out if the optimal modes

are thermal, we compare the mode spectrum in the steady state
with the optimal modes calculated in the canonical ensemble
for both quenches. In both cases (results not shown here) we
find a strong similarity and therefore conclude that the optimal
modes are thermal.

V. CONCLUSION

In summary, we analyzed the single-site reduced density
matrix in the Bose-Bose resonance model both in equilibrium
and in quantum quenches. As an example we considered the
case of double filling NT = 2L. Since this model features
two bosonic species, atoms and molecules, and since their
individual particle numbers are not conserved, the local
reduced density matrix is not diagonal in the basis of local
bare modes (being eigenstates of both atomic and molecular
particle number). The analysis of the equilibrium properties
shows that phase transitions can lead to features in the local
von Neumann entropy. For the phase transition between the
MC and AC + MC phase one has to consider the first derivative
of the local von Neumann entropy with respect to the detuning
parameter. At the boundary, this quantity shows a sharp
maximum. For the phase transition from the MI to the MC
phase one can use the different L dependence of the local
von Neumann entropy on the MI and MC sides of the phase
boundary. In the MI phase, the local von Neumann entropy
saturates to a finite value from below while in the MC phase
we show that it saturates to a finite value from above. The
point at which this monotony behavior in the system-size
dependence changes is close to the known value for this phase
transition.

We further studied the optimal modes and their weights as a
function of the control parameters for both trajectories through
the phase diagram. These quantities are shown to be different
when one considers the system at a point deep in either one
of the three phases. Monitoring the change of the first few
most important modes as a function of the control parameters
along the two trajectories, we conclude that they also reflect
the phase transition.

Finally, we performed two quantum quenches along the two
trajectories where we start from the ground state in one phase
and quench the system over to the final parameters. For those
quenches we study the fraction of atoms and molecules which
are at quasimomentum k = 0, the density of molecules, and
the local von Neumann entropy as a function of time. We also

063624-12



PROPERTIES OF THE SINGLE-SITE REDUCED DENSITY . . . PHYSICAL REVIEW A 93, 063624 (2016)

compute the diagonal and canonical ensemble averages for
the molecular density and find that both agree quite well with
the steady-state value. The good agreement with the canonical
expectation value is, for the first quantum quench, explained
by the sharply peaked initial state and the sharp distribution
of postquench eigenstate expectation values (and therefore the
realization that the conditions for the eigenstate thermalization
hypothesis to apply are fulfilled, already on small systems).

We finally considered the optimal-mode spectra as a
function of time and observe that their steady-state structure is
clearly different from the structure in both the initial state
and the ground state at the postquench parameters. Most
importantly, the comparison of the steady-state values of the
single-site entanglement entropy and the optimal modes to the
canonical ensemble shows that the single-site reduced density
matrix is thermal in the steady state.

Note that in two recent optical-lattice experiments, the
Renyi entropy (closely related to the entanglement entropy
studied here) was successfully measured in the Bose-Hubbard
model at half filling, both in equilibrium [63] and in global
quantum quenches [64]. Their results for the equilibrium
behavior of the Renyi entropy as a function of U/J correspond
to the case studied in our Fig. 4, while the quench studied in
Ref. [64] corresponds to our Fig. 10.

The decomposition of the local reduced density matrix into
weights and optimal modes does not only give physical insight
but can also be used to design numerical methods [25,28,65],
following the ideas of [21], suggesting to set up an effective
basis using the eigenstates of single-site reduced density
matrices plus truncation in their spectrum. In principle, this
method can be used to greatly reduce the local state space in
a controlled way. This has been shown to work for the ground
state of the Holstein model using ED [65], a matrix-product
state method applied to the spin-boson model [25], and,
more recently, the time evolution in electron-phonon problems
using the time evolving block decimation algorithm [28]. The
application of such ideas to ground-state DMRG algorithms
for electron-phonon systems is an open problem. Considering
the behavior of the single-site entanglement entropy and of the
optimal modes, the Hubbard-Holstein model is an interesting
candidate for further studies since the structure of the optimal
modes can be richer than in the system considered here. A
further sophistication of the model would be to allow for a
dispersion of phonons.
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APPENDIX: LOCAL VON NEUMANN ENTROPY
IN THE SF CASE

This section details the calculation of the behavior of the
local von Neumann entropy as a function of system size for

the case of the noninteracting Bose-Hubbard model. For this
system the weights of the local reduced density matrix can be
calculated exactly [52],

λl = L−N

(
N

l

)
(L − 1)(N−l). (A1)

For unit filling (L = N ) we get

λl = (L − 1)L−l

LL

(
L

l

)
. (A2)

In order to go on we use an upper bound for the binomial factor(
L

l

) ≈ Ll

l! ,

λl =
(

L − 1

L

)L−l 1

l!
. (A3)

We define

Fl(L) =
(

L − 1

L

)L−l

, (A4)

∂

∂L
Fl(L) =

[
ln

(
L − 1

L

)
+ 1

L − 1
− l

L(L − 1)

]
Fl(L).

(A5)

We can now derive the behavior of the local von Neumann
entropy,

S
(1)
vN(L) = −

∑
l

Fl(L)

l!
ln

[
Fl(L)

l!

]
, (A6)

∂

∂L
S

(1)
vN(L) =

∑
l

F ′
l (L)

l!
{ln(l!) − ln[Fl(L)] − 1}. (A7)

We are interested in large systems, so we go to the asymptotic
limit

lim
L→∞

Fl(L) ≈1

e
+ l − 1/2

eL
+ 12l2 − 5

24eL2
, (A8)

lim
L→∞

F ′
l (L) ≈1

e

(
1

2
− l

)
1

L2
, (A9)

where all terms were kept up to second order in 1/L. The
derivative of the local von Neumann entropy then becomes

lim
L→∞

S
(1)
vN

′
(L) ≈

∑
l

Fl
′(L)

l!
ln(l!). (A10)

Inspecting F ′
l (L) we see that this quantity is always negative

except for l = 0. Since the ln(l!) term kills all terms in the
sum with l < 2 we see that the derivative of the local von
Neumann entropy with respect to system size L is always
negative. Plugging Eqs. (A8) and (A9) into Eq. (A6) we see
that S

(1)
vN approaches its asymptotic value from above with a

1/L correction.
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Rev. B 91, 155115 (2015).
[52] W. Ding and K. Yang, Phys. Rev. A 80, 012329 (2009).
[53] P. Buonsante and A. Vezzani, Phys. Rev. Lett. 98, 110601 (2007).
[54] S. Ejima, H. Fehske, F. Gebhard, K. zu Münster, M. Knap, E.

Arrigoni, and W. von der Linden, Phys. Rev. A 85, 053644
(2012).

[55] M. Rigol, V. Dunjko, and M. Olshanii, Nature (London) 452,
854 (2008).

[56] S. Sorg, L. Vidmar, L. Pollet, and F. Heidrich-Meisner, Phys.
Rev. A 90, 033606 (2014).

[57] M. Srednicki, Phys. Rev. E 50, 888 (1994).
[58] J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
[59] A. Bauer, F. Dorfner, and F. Heidrich-Meisner, Phys. Rev. A 91,

053628 (2015).
[60] M. Rigol, Phys. Rev. Lett. 103, 100403 (2009).
[61] G. Roux, Phys. Rev. A 79, 021608 (2009).
[62] G. Roux, Phys. Rev. A 81, 053604 (2010).
[63] R. Islam, R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M. Rispoli,

and M. Greiner, Nature (London) 528, 77 (2015).
[64] A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R. Schittko,

P. M. Preiss, and M. Greiner, arXiv:1603.04409.
[65] E. Jeckelmann and S. R. White, Phys. Rev. B 57, 6376 (1998).

063624-14

http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/PhysRevLett.99.087203
http://dx.doi.org/10.1103/PhysRevLett.99.087203
http://dx.doi.org/10.1103/PhysRevLett.99.087203
http://dx.doi.org/10.1103/PhysRevLett.99.087203
http://dx.doi.org/10.1103/PhysRevLett.101.010504
http://dx.doi.org/10.1103/PhysRevLett.101.010504
http://dx.doi.org/10.1103/PhysRevLett.101.010504
http://dx.doi.org/10.1103/PhysRevLett.101.010504
http://dx.doi.org/10.1103/PhysRevLett.104.130502
http://dx.doi.org/10.1103/PhysRevLett.104.130502
http://dx.doi.org/10.1103/PhysRevLett.104.130502
http://dx.doi.org/10.1103/PhysRevLett.104.130502
http://dx.doi.org/10.1103/PhysRevLett.104.180502
http://dx.doi.org/10.1103/PhysRevLett.104.180502
http://dx.doi.org/10.1103/PhysRevLett.104.180502
http://dx.doi.org/10.1103/PhysRevLett.104.180502
http://dx.doi.org/10.1103/PhysRevB.81.064439
http://dx.doi.org/10.1103/PhysRevB.81.064439
http://dx.doi.org/10.1103/PhysRevB.81.064439
http://dx.doi.org/10.1103/PhysRevB.81.064439
http://dx.doi.org/10.1103/PhysRevB.82.241102
http://dx.doi.org/10.1103/PhysRevB.82.241102
http://dx.doi.org/10.1103/PhysRevB.82.241102
http://dx.doi.org/10.1103/PhysRevB.82.241102
http://dx.doi.org/10.1103/PhysRevLett.104.156404
http://dx.doi.org/10.1103/PhysRevLett.104.156404
http://dx.doi.org/10.1103/PhysRevLett.104.156404
http://dx.doi.org/10.1103/PhysRevLett.104.156404
http://dx.doi.org/10.1103/PhysRevLett.110.260403
http://dx.doi.org/10.1103/PhysRevLett.110.260403
http://dx.doi.org/10.1103/PhysRevLett.110.260403
http://dx.doi.org/10.1103/PhysRevLett.110.260403
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1143/JPSJ.64.3598
http://dx.doi.org/10.1143/JPSJ.64.3598
http://dx.doi.org/10.1143/JPSJ.64.3598
http://dx.doi.org/10.1143/JPSJ.64.3598
http://dx.doi.org/10.1002/(SICI)1521-3889(199902)8:2<153::AID-ANDP153>3.0.CO;2-N
http://dx.doi.org/10.1002/(SICI)1521-3889(199902)8:2<153::AID-ANDP153>3.0.CO;2-N
http://dx.doi.org/10.1002/(SICI)1521-3889(199902)8:2<153::AID-ANDP153>3.0.CO;2-N
http://dx.doi.org/10.1002/(SICI)1521-3889(199902)8:2<153::AID-ANDP153>3.0.CO;2-N
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1103/PhysRevLett.93.086402
http://dx.doi.org/10.1103/PhysRevLett.93.086402
http://dx.doi.org/10.1103/PhysRevLett.93.086402
http://dx.doi.org/10.1103/PhysRevLett.93.086402
http://dx.doi.org/10.1103/PhysRevLett.96.116401
http://dx.doi.org/10.1103/PhysRevLett.96.116401
http://dx.doi.org/10.1103/PhysRevLett.96.116401
http://dx.doi.org/10.1103/PhysRevLett.96.116401
http://dx.doi.org/10.1209/epl/i2004-10129-2
http://dx.doi.org/10.1209/epl/i2004-10129-2
http://dx.doi.org/10.1209/epl/i2004-10129-2
http://dx.doi.org/10.1209/epl/i2004-10129-2
http://dx.doi.org/10.1103/PhysRevA.65.042101
http://dx.doi.org/10.1103/PhysRevA.65.042101
http://dx.doi.org/10.1103/PhysRevA.65.042101
http://dx.doi.org/10.1103/PhysRevA.65.042101
http://dx.doi.org/10.1103/PhysRevB.68.195116
http://dx.doi.org/10.1103/PhysRevB.68.195116
http://dx.doi.org/10.1103/PhysRevB.68.195116
http://dx.doi.org/10.1103/PhysRevB.68.195116
http://dx.doi.org/10.1016/0003-4916(59)90002-8
http://dx.doi.org/10.1016/0003-4916(59)90002-8
http://dx.doi.org/10.1016/0003-4916(59)90002-8
http://dx.doi.org/10.1016/0003-4916(59)90002-8
http://dx.doi.org/10.1103/PhysRevLett.80.2661
http://dx.doi.org/10.1103/PhysRevLett.80.2661
http://dx.doi.org/10.1103/PhysRevLett.80.2661
http://dx.doi.org/10.1103/PhysRevLett.80.2661
http://dx.doi.org/10.1103/PhysRevB.60.14092
http://dx.doi.org/10.1103/PhysRevB.60.14092
http://dx.doi.org/10.1103/PhysRevB.60.14092
http://dx.doi.org/10.1103/PhysRevB.60.14092
http://dx.doi.org/10.1103/PhysRevB.62.R747
http://dx.doi.org/10.1103/PhysRevB.62.R747
http://dx.doi.org/10.1103/PhysRevB.62.R747
http://dx.doi.org/10.1103/PhysRevB.62.R747
http://dx.doi.org/10.1103/PhysRevB.81.165113
http://dx.doi.org/10.1103/PhysRevB.81.165113
http://dx.doi.org/10.1103/PhysRevB.81.165113
http://dx.doi.org/10.1103/PhysRevB.81.165113
http://dx.doi.org/10.1103/PhysRevB.61.6701
http://dx.doi.org/10.1103/PhysRevB.61.6701
http://dx.doi.org/10.1103/PhysRevB.61.6701
http://dx.doi.org/10.1103/PhysRevB.61.6701
http://dx.doi.org/10.1103/PhysRevLett.108.160401
http://dx.doi.org/10.1103/PhysRevLett.108.160401
http://dx.doi.org/10.1103/PhysRevLett.108.160401
http://dx.doi.org/10.1103/PhysRevLett.108.160401
http://dx.doi.org/10.1103/PhysRevB.90.245130
http://dx.doi.org/10.1103/PhysRevB.90.245130
http://dx.doi.org/10.1103/PhysRevB.90.245130
http://dx.doi.org/10.1103/PhysRevB.90.245130
http://dx.doi.org/10.1103/PhysRevB.93.075105
http://dx.doi.org/10.1103/PhysRevB.93.075105
http://dx.doi.org/10.1103/PhysRevB.93.075105
http://dx.doi.org/10.1103/PhysRevB.93.075105
http://dx.doi.org/10.1103/PhysRevB.92.241106
http://dx.doi.org/10.1103/PhysRevB.92.241106
http://dx.doi.org/10.1103/PhysRevB.92.241106
http://dx.doi.org/10.1103/PhysRevB.92.241106
http://dx.doi.org/10.1103/PhysRevB.91.104302
http://dx.doi.org/10.1103/PhysRevB.91.104302
http://dx.doi.org/10.1103/PhysRevB.91.104302
http://dx.doi.org/10.1103/PhysRevB.91.104302
http://arxiv.org/abs/arXiv:1504.00042
http://dx.doi.org/10.1103/PhysRevLett.93.020405
http://dx.doi.org/10.1103/PhysRevLett.93.020405
http://dx.doi.org/10.1103/PhysRevLett.93.020405
http://dx.doi.org/10.1103/PhysRevLett.93.020405
http://dx.doi.org/10.1103/PhysRevLett.92.160402
http://dx.doi.org/10.1103/PhysRevLett.92.160402
http://dx.doi.org/10.1103/PhysRevLett.92.160402
http://dx.doi.org/10.1103/PhysRevLett.92.160402
http://dx.doi.org/10.1209/epl/i2004-10514-9
http://dx.doi.org/10.1209/epl/i2004-10514-9
http://dx.doi.org/10.1209/epl/i2004-10514-9
http://dx.doi.org/10.1209/epl/i2004-10514-9
http://dx.doi.org/10.1016/j.aop.2008.05.008
http://dx.doi.org/10.1016/j.aop.2008.05.008
http://dx.doi.org/10.1016/j.aop.2008.05.008
http://dx.doi.org/10.1016/j.aop.2008.05.008
http://dx.doi.org/10.1103/PhysRevLett.105.199603
http://dx.doi.org/10.1103/PhysRevLett.105.199603
http://dx.doi.org/10.1103/PhysRevLett.105.199603
http://dx.doi.org/10.1103/PhysRevLett.105.199603
http://dx.doi.org/10.1103/PhysRevLett.106.015303
http://dx.doi.org/10.1103/PhysRevLett.106.015303
http://dx.doi.org/10.1103/PhysRevLett.106.015303
http://dx.doi.org/10.1103/PhysRevLett.106.015303
http://dx.doi.org/10.1103/PhysRevA.85.033636
http://dx.doi.org/10.1103/PhysRevA.85.033636
http://dx.doi.org/10.1103/PhysRevA.85.033636
http://dx.doi.org/10.1103/PhysRevA.85.033636
http://dx.doi.org/10.1103/PhysRevLett.114.195302
http://dx.doi.org/10.1103/PhysRevLett.114.195302
http://dx.doi.org/10.1103/PhysRevLett.114.195302
http://dx.doi.org/10.1103/PhysRevLett.114.195302
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/PhysRevLett.89.010401
http://dx.doi.org/10.1103/PhysRevLett.89.010401
http://dx.doi.org/10.1103/PhysRevLett.89.010401
http://dx.doi.org/10.1103/PhysRevLett.89.010401
http://dx.doi.org/10.1038/417529a
http://dx.doi.org/10.1038/417529a
http://dx.doi.org/10.1038/417529a
http://dx.doi.org/10.1038/417529a
http://dx.doi.org/10.1038/nphys2850
http://dx.doi.org/10.1038/nphys2850
http://dx.doi.org/10.1038/nphys2850
http://dx.doi.org/10.1038/nphys2850
http://dx.doi.org/10.1016/S0370-1573(99)00025-3
http://dx.doi.org/10.1016/S0370-1573(99)00025-3
http://dx.doi.org/10.1016/S0370-1573(99)00025-3
http://dx.doi.org/10.1016/S0370-1573(99)00025-3
http://dx.doi.org/10.1103/PhysRevLett.86.1915
http://dx.doi.org/10.1103/PhysRevLett.86.1915
http://dx.doi.org/10.1103/PhysRevLett.86.1915
http://dx.doi.org/10.1103/PhysRevLett.86.1915
http://dx.doi.org/10.1103/PhysRevLett.96.050402
http://dx.doi.org/10.1103/PhysRevLett.96.050402
http://dx.doi.org/10.1103/PhysRevLett.96.050402
http://dx.doi.org/10.1103/PhysRevLett.96.050402
http://dx.doi.org/10.1103/PhysRevA.86.053604
http://dx.doi.org/10.1103/PhysRevA.86.053604
http://dx.doi.org/10.1103/PhysRevA.86.053604
http://dx.doi.org/10.1103/PhysRevA.86.053604
http://dx.doi.org/10.1103/PhysRevA.88.033617
http://dx.doi.org/10.1103/PhysRevA.88.033617
http://dx.doi.org/10.1103/PhysRevA.88.033617
http://dx.doi.org/10.1103/PhysRevA.88.033617
http://dx.doi.org/10.1103/PhysRevA.93.033653
http://dx.doi.org/10.1103/PhysRevA.93.033653
http://dx.doi.org/10.1103/PhysRevA.93.033653
http://dx.doi.org/10.1103/PhysRevA.93.033653
http://dx.doi.org/10.1103/PhysRevB.91.155115
http://dx.doi.org/10.1103/PhysRevB.91.155115
http://dx.doi.org/10.1103/PhysRevB.91.155115
http://dx.doi.org/10.1103/PhysRevB.91.155115
http://dx.doi.org/10.1103/PhysRevA.80.012329
http://dx.doi.org/10.1103/PhysRevA.80.012329
http://dx.doi.org/10.1103/PhysRevA.80.012329
http://dx.doi.org/10.1103/PhysRevA.80.012329
http://dx.doi.org/10.1103/PhysRevLett.98.110601
http://dx.doi.org/10.1103/PhysRevLett.98.110601
http://dx.doi.org/10.1103/PhysRevLett.98.110601
http://dx.doi.org/10.1103/PhysRevLett.98.110601
http://dx.doi.org/10.1103/PhysRevA.85.053644
http://dx.doi.org/10.1103/PhysRevA.85.053644
http://dx.doi.org/10.1103/PhysRevA.85.053644
http://dx.doi.org/10.1103/PhysRevA.85.053644
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1103/PhysRevA.90.033606
http://dx.doi.org/10.1103/PhysRevA.90.033606
http://dx.doi.org/10.1103/PhysRevA.90.033606
http://dx.doi.org/10.1103/PhysRevA.90.033606
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1103/PhysRevA.43.2046
http://dx.doi.org/10.1103/PhysRevA.43.2046
http://dx.doi.org/10.1103/PhysRevA.43.2046
http://dx.doi.org/10.1103/PhysRevA.43.2046
http://dx.doi.org/10.1103/PhysRevA.91.053628
http://dx.doi.org/10.1103/PhysRevA.91.053628
http://dx.doi.org/10.1103/PhysRevA.91.053628
http://dx.doi.org/10.1103/PhysRevA.91.053628
http://dx.doi.org/10.1103/PhysRevLett.103.100403
http://dx.doi.org/10.1103/PhysRevLett.103.100403
http://dx.doi.org/10.1103/PhysRevLett.103.100403
http://dx.doi.org/10.1103/PhysRevLett.103.100403
http://dx.doi.org/10.1103/PhysRevA.79.021608
http://dx.doi.org/10.1103/PhysRevA.79.021608
http://dx.doi.org/10.1103/PhysRevA.79.021608
http://dx.doi.org/10.1103/PhysRevA.79.021608
http://dx.doi.org/10.1103/PhysRevA.81.053604
http://dx.doi.org/10.1103/PhysRevA.81.053604
http://dx.doi.org/10.1103/PhysRevA.81.053604
http://dx.doi.org/10.1103/PhysRevA.81.053604
http://dx.doi.org/10.1038/nature15750
http://dx.doi.org/10.1038/nature15750
http://dx.doi.org/10.1038/nature15750
http://dx.doi.org/10.1038/nature15750
http://arxiv.org/abs/arXiv:1603.04409
http://dx.doi.org/10.1103/PhysRevB.57.6376
http://dx.doi.org/10.1103/PhysRevB.57.6376
http://dx.doi.org/10.1103/PhysRevB.57.6376
http://dx.doi.org/10.1103/PhysRevB.57.6376



