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Contact resistance and phase slips in mesoscopic superfluid-atom transport
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We experimentally measure transport of superfluid, bosonic atoms in a mesoscopic system: a small channel
connecting two large reservoirs. Starting far from equilibrium (superfluid in a single reservoir), we observe first
resistive flow transitioning at a critical current into superflow, characterized by oscillations. We reproduce this full
evolution with a simple electronic circuit model. We compare our fitted conductance to two different microscopic
phenomenological models. We also show that the oscillations are consistent with LC oscillations as estimated by
the kinetic inductance and effective capacitance in our system. Our experiment provides an attractive platform to
begin to probe the mesoscopic transport properties of a dilute, superfluid, Bose gas.
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I. INTRODUCTION

Transport phenomena in mesoscopic systems are charac-
terized by the importance of quantum phase coherence. In
these systems, the length scale associated with the device is
typically smaller than or comparable to the inelastic mean
free path. This can lead to a wide variety of different effects,
including quantum conductance [1] and quantum persistent
currents in normal metal rings [2,3]. Cold atomic gases
typically have mean free paths longer than the system size,
and thus mesoscopic transport effects are crucial. For example,
in degenerate Fermi gases, quantum conductance has been
observed [4]. Here, we measure mesoscopic transport in a
Bose-condensed gas and observe superflow below a critical
current and resistive flow, possibly associated with the creation
of vortex pairs, above this critical current. The dynamics of this
system is well described using a simple circuit model which
captures the essential physics. In turn, the circuit parameters
can be used to search for a microscopic explanation or to
inform a more full modeling of system with mean-field theory.

Our system consists of two large condensates, or reservoirs,
connected by a channel that is long compared to the healing
length [5] of the condensate but short compared to the mean
free path (Fig. 1). In a similar experiment with thermal bosons,
a ballistic (Sharvin) resistance was observed [6]. Experi-
ments in an analogous experiment [4,7-12] with fermions
demonstrated the superfluid transition [8] and thermoelectric
effects [9]. Our system, prototypical of many mesoscopic
transport devices, is of theoretical interest [13,14] because
it may help lead to new cooling mechanisms [15,16] and
observation of the superfluid fountain effect [17]. In addition,
if the channel is in the one-dimensional (1D) regime it
can be described with a Hamiltonian similar to that of a
Luttinger liquid [18] and could violate the Wiedemann-Franz
law [19]. Because of the long length of our channel, we
expect to see different transport effects compared to those
seen using either tunnel barriers or short weak links [20,21].
Experiments with such junctions have demonstrated quantum
effects like macroscopic quantum self-trapping [22], ac and
dc Josephson effects [23], and the transition from tunneling
junctions to weak links [24]. Similar experiments with weak

*wth@umd.edu

2469-9926/2016/93(6)/063619(8)

063619-1

links and tunnel junctions in rings have shown resistive flow
in superfluids [25,26], persistent currents [27], and discrete
phase slips [28-30].

In the experiments reported here, we observe that while
the phase difference between the condensates governs the
superfluid transport, there is also large dissipation. This
dissipation is related to the creation of excitations in one of the
reservoirs, an effect thought to contribute to the resistance [26]
but not conclusively shown. Because the creation of excitations
appears to occur not within the channel but at the interface with
the reservoir, the model allows us to consider our dissipation
a contact resistance. Contact resistance is a hallmark of
mesoscopic transport: because the channel length is shorter
than the inelastic mean free path, any dissipation must occur
in the contacts.

II. BRIEF EXPERIMENTAL DESCRIPTION

We start our experiments with all the atoms contained in
one of the two reservoirs, as shown in Fig. 1. The atoms are
contained in this source reservoir by a gate potential. When
the gate potential is removed, the condensate starts to expand
through the channel. Atoms that enter the channel are accel-
erated by the change in the interaction mean-field energy and
spray into the drain reservoir. They then bounce off the walls
of the reservoir and each other, causing them to thermalize.

Once a superfluid Bose-Einstein condensate (BEC) is estab-
lished in the drain reservoir, we expect that the supercurrent
I; between the two reservoirs will be related to differences
between their two phases. If the rate is higher than the critical
current of the channel, excitations will be created [31-43].
Such excitations remove energy from the flow and eventually
dissipate as heat. Time-of-flight imaging shows vortices in the
drain reservoir [Fig. 2(a)], and while they are not the only type
of excitation, these vortex excitations might play a key role.
The existence of vortices in this geometry is suggestive of the
process described by Feynman [32] and shown in Fig. 2(b).
There, a channel of width d carries atoms into a large reservoir,
producing vortices at the corners where contact is made. In
Refs. [44,45] the Feynman model was successfully used to
predict the critical velocity of superfluid liquid helium flowing
through an orifice into a reservoir.

As the entire system moves toward equilibrium, the
current drops below a critical value (the critical current) and
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FIG. 1. In situ images of a BEC of 495(16) x 10°> **Na atoms in
the dumbbell-shaped potential for trapping parameters that yield an
equilibrium 1D density of atoms in the channel of 790(25) wm™!.
Atoms are initially trapped in the left reservoir. At time # = 0 ms, a
gate is removed, and the atoms are allowed to flow freely between
the reservoirs.

dissipation decreases dramatically. Any chemical potential
imbalance that still exists at this time will result in number
oscillations between the two reservoirs. These oscillations
are analogous to plasma oscillations in a superconducting
junction [46] and isothermal oscillations in superfluid liquid
helium transport experiments [47,48].

Therefore, we expect to see two distinct behaviors, depend-
ing on the time after release. We first expect to have a large
amount of dissipation from the excitations that causes the mass
imbalance to decay. After the current drops below the critical
value, we expect the resistive flow to decrease significantly
and the current to oscillate. Experiments with superfluid liquid
helium in similar configurations produce qualitatively similar
behavior (for examples, see Refs. [48,49]).

III. EXPERIMENTAL DETAILS

Our experimental setup consists of a BEC of
|F = 1,mp = —1)**Na atoms in an optical dipole trap. Our

FIG. 2. (a) Example 10-ms time-of-flight (TOF) images of the
condensate after the atom number imbalance has reached equilibrium
(612 ms after opening the gate). In almost all TOF images, we observe
vortices, primarily in the initially empty reservoir, showing evidence
of the Feynman mechanism for vortex production [32]. (b) In the
Feynman model, superfluid flows out of a channel into a reservoir.
When the flow rate exceeds a critical value, vortex-antivortex pairs
are created.
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BECs are created using standard laser cooling techniques,
followed by evaporation in magnetic followed by optical
dipole traps. The number of atoms in the condensate can
be tuned between 10° and 5 x 10° atoms, corresponding
to equilibrium chemical potentials of u./h ~ 27 x (500 Hz)
to we/h =~ 2w x (1000 Hz). Vertical confinement is created
using a red-detuned (1064 nm) optical dipole trap in the shape
of a sheet. This sheet has a vertical trapping frequency of
w, /2w ~ 529(2) Hz [50]. The sheet also provides confinement
in the plane of the dumbbell. This residual confinement is
characterized by a horizontal trapping frequency of ~9 Hz
along the long axis of the dumbbell trap.

In the horizontal plane, we use a direct intensity masking
technique [51] to create the blue-detuned (532 nm) trap in the
shape of a dumbbell. This approach uses a Gaussian beam
passing through a photomask in the shape of our desired
potential. The mask is imaged onto the atoms using the same
optical system used to observe them. The full-width, half-
maximum of the Gaussian beam is chosen to be approximately
the end-to-end length of the dumbbell-shaped potential. In
the plane, the reservoirs are nearly hard-walled, with a
diameter D = 40(3) um. They are connected by a channel
of length / = 22(1) um whose potential in y is complicated
by imperfections in the imaging process. We empirically
observe that the apparent Thomas-Fermi width of the channel
d = 6.4(2) um is independent of both the total atom number
N and the strength of the optical potential U,,. However, the 1D
density of atoms in the channel, np, does change with both U,,
and N.

There is also a variable-height gate potential that is used
to block the channel in the middle. The gate potential is
created with a blue-detuned Gaussian beam that is scanned
across the channel at 2 kHz using an acousto-optic deflector.
The combined height of this time-averaged gate potential and
the static channel potential can be adjusted to be higher than
the initial chemical potential of the source reservoir, blocking
the channel.

Due to the blue-detuned dumbbell trap having local minima
outside the region of interest, we adiabatically transfer the
atoms into the source reservoir from an initial red-detuned
optical dipole trap. The atoms are held in this configuration
for at least 2 s to equilibrate, then the gate beam is turned off
suddenly and the system is allowed to evolve.

At various times after opening the channel (typically
ranging from 5 ms to <1 s), we count the number of atoms in
each reservoir using partial-transfer absorption imaging [52].
To count the atoms in a given reservoir accurately, the transfer
fraction is chosen to produce images with maximum optical
densities between 1 and 2. For ¢ near 0, images that count the
number of atoms in the source reservoir will therefore have a
small transfer fraction and cannot accurately count the small
number of atoms in the drain. To correct for this, a second
image is taken with a larger transfer fraction to accurately
count the atoms in the drain. Therefore, for each time observed,
a pair of images is taken to determine the atom number in each
reservoir. In general, the resulting atom numbers from three
or four pairs of images are averaged to determine the atom
number imbalance at a given discharge time.

Because determining the 2D density from the optical den-
sity requires division by the transfer fraction, atomic densities
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determined from images with smaller transfer fractions will
have larger noise. This effect can be seen in Fig. 1. The images
used to determine the atomic density in the source reservoir
have a smaller transfer fraction and larger relative noise than
the images used to determine the atomic density in the drain.

For these experiments, the temperature of our condensate
is 2100 nK. This temperature is determined by time-of-flight
absorption imaging in a direction parallel to the plane of the
dumbbell. In this direction, the optical density of the thermal
component is sufficiently large for detection. In the plane
of the dumbbell, the thermal component is too sparse to be
effectively imaged. We estimate the critical temperature of our
condensate to be ~500 nK, and thus >95% of the atoms are
in the condensed state. Therefore, we expect little contribution
to the bulk transport from the remaining 5% thermal atoms.
Moreover, the thermal cloud exists in regions outside the
dumbbell (but still confined by the sheet potential), so we
expect reasonable thermal contact between the two reservoirs.

The process of discharge represents a conversion of energy
from chemical potential both to kinetic energy (in the form of
collective excitations) and, eventually, to thermal energy. We
can estimate the maximum temperature increase of the system
by considering the total energy of the condensate £ ~ N .
The difference in the total energies of the initial state (u/kp =~
30 to 80 nK, depending on the parameters) and the final state
(u/kp =~ 20 to 50 nK) per particle represents the maximum
increase in temperature. For the parameters of our system, we
expect this increase to be ~10 to ~20 nK.

IV. DATA AND CIRCUIT MODEL

Figure 3 shows the atom number imbalance between the
two reservoirs as a function of the time after the gate potential
is switched off. Here we define N,, the equilibrium number
of atoms in either reservoir. We further define AN as the
number imbalance, making N, + AN (N, — AN) the number
of atoms in the source (drain) reservoir. The plotted value,
n = AN/2N,, is the normalized atom number imbalance and
can vary between —1 and 1 [where n > 0 (n < 0) represents
more atoms in the source (drain) reservoir]. The evolution
for three np values with 472(22) x 10° atoms is shown. As
predicted, the atom number imbalance undergoes a short-time
decay followed by an oscillation. (No statistically significant
conclusion can be drawn with respect to the time scale of the
decay.) We note that n;p (not shown) reaches an equilibrium
quickly, typically <20 ms.

To fit this behavior, we model our system as a circuit that
captures the essential physics described above. Specifically, we
consider the circuit in the inset in Fig. 3, which is a capacitor
C [6] that discharges through an inductor L connected in series
to a resistance-shunted weak link (Josephson junction). The
capacitor represents energy stored in the chemical potential
difference A between the two reservoirs, while the inductor
represents kinetic energy stored in the flow of atoms, both
outside and inside the channel. (C is the only parameter we
calculate a priori; see Sec. IV A.) The weak link sets the critical
current /. of the superfluid, and the resistor in parallel allows
additional current to flow, but with dissipation.

There are three dynamical variables in this circuit: the
number imbalance in the capacitor AN (defined above), the
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FIG. 3. Normalized atom number imbalance between the two
reservoirs vs time, for a total atom number of 472(22) x 10°. The
three plots shown are for different one-dimensional densities of
atoms in the channel np: red circles, 790(25) um™!; green triangles,
665(16) wm™"; and blue inverted triangles, 599(17) um~"'. For clarity,
decay measurements are artificially offset vertically by 0.5. Solid
curves are fits to the expected dynamics from the circuit shown in the
inset (see text).

superfluid phase difference across the weak link y, and the
number current /. The corresponding differential equations
are

d(AN)
dr

1, (D

Wy _Riu-1 ) 2)
o7 =V =RU=Lf()l.

Ldl AN % AN R(I -1 3
T [c + }— [c + R( cf(y))], 3)
where I, = I, f(y) is the current-phase relationship of the
weak link, V is the voltage across the resistor and weak
link, and & = h/27. Equation (1) defines the current, Eq. (2)
is the ac Josephson law, and Eq. (3) is Kirchhoff’s law for
voltage around the full circuit. These equations are integrated
numerically with three independent parameters, T = RC,
0> =1/LC, and I, which are determined by fitting to the
data. The curves shown in Fig. 3 are the best fits for these
data assuming f(y) = siny. [Aslong as f(y) is 2 -periodic,
different current-phase relationships do not significantly alter
the curves.] By calculating C, we are able to extract the values
of R and L from the fitted parameters in our model, 7 and w.

A. The capacitance

We calculate the chemical capacitance following the meth-
ods used in Ref. [6] using our knowledge of the reservoir
potential (see the Appendix, Sec. 1). We calculate numerically,
using the Thomas-Fermi approximation, how the chemical
potential changes as a function of the atom number for a
fixed U, /h = 27 x 1.8 kHz. The result is shown by the green
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FIG. 4. Calculated reservoir chemical potential o (green points)
vs atom number N. The magenta line shows the best-fit power law.
Inset: Measured power required in the gate beam to trap all the atoms
in the source with the Thomas-Fermi calculated chemical potential
/. The dashed red line shows a linear fit and confirms the expected
scaling.

circles in Fig. 4. The calculated p is best fit by a power law
of the form u = o + BNV, where y = 0.52(1), o/ h = 45(1)
Hz, and 8/h = 1.60(2) Hz. While y is roughly independent
of Uy, the constants « and 8 depend strongly on U,,.

By measuring the chemical potential relative to the height
of our gate beam, we can experimentally verify this scaling
behavior. In particular, we measured the power of the gate
beam that is required to prevent any atoms from spilling
from the source reservoir into the drain for U,, = 1.8(4) kHz.
The data are shown in the inset in Fig. 4, plotted versus
the calculated Thomas-Fermi chemical potential. The scaling
should be linear, with an offset in p that is roughly given by the
offset in the channel potential (as the gate is placed across the
channel and thus adds to it). The fitted offset value of 300(100)
Hz agrees with our knowledge of the channel potential (see
the Appendix, Sec. 2).

The chemical capacitance of the system can now be
calculated from the difference in chemical potential between
the two reservoirs:

Ap = B[(N, + AN)" — (N, — AN)"], 4)
AN e —
o 4 =
(,BNe )2y N, 2y N, AN. 5)

With y = 0.52, the linear approximation made here represents
an error of less than 10% over a number imbalance up to
approximately AN /N, = £0.80. With this approximation,
the chemical capacitance of our system is then given by

AN N,
Ap 2y (ue — 05).

(6)

B. The weak link

The phase between the two condensates is approximated
as being well defined in our model, as the variable y is the
phase difference across the weak link. The 27 periodicity of
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f(y) causes the supercurrent to oscillate when the chemical
potential difference across the weak link V' is large. This is the
ac Josephson effect. Thus, the decay portion of the dynamics
is similar to the self-trapped regime observed in Refs. [22]
and [23]. However, due to the inductance, the high-frequency
(initially, about 500-Hz) oscillating current does not appear on
the capacitor, and the observed total current does not contain
visible Josephson oscillations, even in the model.

Given the nature of the discharge, one might wonder if
approximating the superfluid flow as being through a weak
link is accurate. For example, at times before a superfluid is
established in the drain reservoir, the phase difference should
be undefined and the flow should be completely resistive.
The model works at these early times because the modeled
superfluid flow is oscillating rapidly and averages to 0. At later
times when the oscillation is dominant, the phase profile in the
drain is complicated by excitations, yet the model effectively
averages the phase over the entire reservoir. This two-mode
approximation [53] works because the local phase fluctuations
in the drain due to excitations fluctuate at time scales that are
smaller than the oscillation frequency. A reasonable estimate of
this time scale is the time for a phonon to traverse the reservoir,
i.e., the diameter of the reservoir divided by the speed of sound.
For our system, this ranges from 10 to 20 ms, depending
on the parameters. Thus, over the period of oscillation, the
fluctuations of the phase in the drain average out.

C. The conductance

Figure 5 shows our extracted conductances G = 1/R. In
mesoscopic transport, the conductance is generally deter-
mined by the number of available single-particle transport
modes [54]. A fermionic system with a small number of
transport modes (i.e., transverse single-particle modes that
have an energy cutoff less than the chemical potential in
either reservoir) displays quantum conductance, with each
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FIG. 5. Measured conductance G vs (a) the one-dimensional
density of atoms in the channel, np, and (b) the height of the optical
potential, U,,. The solid black line is a linear fit, and the colored curves
are the fits to the Feynman conductance (see text). Experimental data
are grouped by total atom number: violet squares, 472(22) x 10%;
cyan inverted triangle, 331(11) x 10%; green triangles, 229(9) x 10%;
red circles, 125(6) x 10°. Violet squares correspond to the data shown
in Fig. 3.
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channel contributing a conductance of 2!, where & is Planck’s
constant. Our particles are condensed bosons, and the absence
of the Pauli exclusion principle implies no restriction on the
conductance of an individual channel.

We calculate the number of single-particle transport modes
that are available in the channel. As described in Sec. 2
in the Appendix, the exact form of the channel potential
is unknown but is best described by V o y*, with a non-
negligible offset that has a component that is proportional
to U, and a component that is constant. Because the exact
details of the channel remain unknown, we instead make a
conservative estimate of the number of open transport channels
by neglecting the offsets and considering the channel to be
harmonic in the Z direction and a square well with width d in
the y direction. In this case, the energies of the single-particle
states with zero transverse momentum are given by

n2h*n?

1
Y+ (nz + z)hwz, (7)

E(nyng) = =

where n, and n; are the quantum numbers of the square well
and harmonic oscillator, respectively, and m is the mass of
an atom. The number of transport modes is then given by the
number of combinations of n, and n_ that satisfy

E(ny,n;) < p. (®)

Our system thus has between 3 and 11 transport channels,
depending on u and U,,, yet we observe conductance of up to
2000 A~

As shown in Fig. 5(a), we observe that G is directly
proportional to nip. Because I = GV &~ GAp during the
decay, this dependence implies that the average velocity of
the atoms in the channel is directly proportional to Apu.
Alternatively, because G/ h is unitless, G/h = anp implies
the existence of a constant length scale a = 3.7(4) um in the
system.

Reference [26] suggested a simple model of phase-slip-
dominated conductance. In this model, the conductance is
attributed to the creation of excitations that carry np& atoms,
where & = /h/2mu is the condensate healing length and
thus is the relevant length scale for excitations. The resulting
conductance is Gps/h = 2n1p&. We find a good fit with a
single scaling parameter, G = apsGps, wWhere aps = 3.9(4),
but only when using the local & in the reservoirs (as opposed
to the local & in the channel).

The Feynman model

In the model that Feynman describes, superfluid flows at
a constant rate through a channel into an infinite reservoir,
as shown in Fig. 2(b). Above some critical velocity, the fluid
can no longer sustain superflow, and vortices will be produced
in pairs at either side of the channel, dissipating energy. Our
experimental setup provides a unique opportunity to observe
a system similar to that envisioned by Feynman.

This model calculates the rate of vortex production y,, as

vim I*m

2T ©)
2nh 2w hnfD

Yp =
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vortex pairs per second, where v is the flow velocity. In the
reservoir, we can also estimate the energy of a pair of vortices
separated by a distance w as [32]

]:LZ
E,= ””% In (%) (10)

where nyp is the 2D superfluid density. This calculation is for
a vortex-antivortex pair in a homogeneous BEC. To account
for our finite geometry, we can use a method of images similar
to that used in electromagnetism [55] to numerically calculate
the energy of a pair of vortices close to the wall of a circularly
contained BEC. This calculation involves introducing image
vortices outside of the reservoir such that the velocity field
satisfies the boundary condition that it is tangent to the edges
of the reservoir. Calculating the energy of the BEC with the
resulting velocity field gives a correction factor of ¥ & 1.7 to
the energy in Eq. (10). Because the vortex pairs will be created
at either side of the channel, we set w = d in this calculation,
where d is the width of the channel.

From Egs. (9) and (10), the rate of energy dissipation in the
system will be

hn d
P =«y,E, =kl 2D1n<—>. 11
KYpLp =K ZH%D £ (11)
Equating this power with the power dissipated by a current
through aresistor, P = [ 2R r, we can now define the Feynman
resistance in our system as

RF=L=Khnﬁln (‘—l) (12)
G F ZH%D E

The critical current can be calculated by equating the power
in the flow of atoms in the channel, v%mnle2 = %ml3n1_[§,
to the power dissipated by vortices, Eq. (11) [32]. For
simplicity, we use the equilibrium value of the chemical
potential . to determine &. For fitting to the experimental
data, we use the experimentally determined densities 7n;p and
nyp. Because nip & dnyp, G is approximately proportional
tonip.

We fit this theory to the data through G = ¢ G, where
o is a fit parameter. The results of this fit are shown in
Fig. 5(b). The model somewhat captures the trend, and the
best-fit parameter is ar = 0.47(10). The discrepancy from
o = 1 may be due to the approximate nature of the Feynman
model, the nature of our channel, and/or the fact that there are
other types of excitations not considered.

D. The inductance and critical current

After the current drops below the critical current, the
dissipation drops significantly, and we expect oscillations,
described as plasma oscillations in Ref. [16]. Such oscilla-
tions represent energy coherently oscillating between kinetic
energy (atoms moving through the channel) and chemical
potential differences. (Similar oscillations in liquid helium
experiments are known as isothermal oscillations [47] or
plasma oscillations in Josephson junctions.) Equivalently, it
can be considered the first normal mode of our trap. Such
oscillations occur with statistical significance in roughly half
of our decay measurements. All oscillations shown in Fig. 3
are significant.
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FIG. 6. Comparison between experimentally observed and theo-
retical values for both (a) the period of LC oscillation and (b) the
critical velocity for vortex production in the system. In both plots,
the data points are the values for each decay measurement (run), and
the solid line is the weighted mean of these values, with the standard
deviation represented by the shaded region. Experimental data are
grouped by total atom number and delineated by color and symbol as
in Fig. 5.

A good estimate of the kinetic inductance in our system
is given by the kinetic inductance of the channel L, =
ml/nip [6]. Using this and our calculation of the capacitance,
we can estimate the expected oscillation frequency for our os-
cillator. Figure 6(a) shows a comparison of the experimentally
measured frequency to that predicted by 1/4/L.C. We find
that the experimentally measured frequencies are, on average,
~15% lower than predicted.

Figure 6(b) shows a comparison of the measured critical
current, extracted from the amplitude of the oscillation, and the
critical current predicted by the Feynman model. We consider
only decay measurements where the oscillation is statistically
significant. (The amplitude of oscillation is a complicated
function of the critical current, resistance, and capacitance.
Therefore, lack of a clear oscillation does not indicate a zero
critical current.) Our average measured critical current is a
factor of approximately 5 below the predicted value. This
suggests that other excitations with lower critical velocities
may be playing a role.

V. CONCLUSION

Our experiment provides an attractive platform to probe
the mesoscopic transport properties of a dilute, superfluid,
Bose gas through a small channel. The mechanism of vortex
production as described by Feynman [32], scaled by a
factor of 2, predicts the general trend in our data (Fig. 5).
Combined with the direct observation of vortices (Fig. 2),
our experimental data suggest that the Feynman mechanism
for vortex production plays a role in determining the conduc-
tance. To conclusively show the relevance of the Feynman
mechanism in similar mesoscopic cold-atom experiments,
future experiments should use an initial condition where both
reservoirs are partially filled and current bias the system by
contracting one reservoir and expanding the second. Finally,
when the current drops below the critical value, we observe
plasma oscillations that are not visibly damped.

Our experiment sets the stage for a number of other
experiments. First, with tighter channel potentials or fewer
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atoms, the number of open transport channels could be further
reduced. By controlling the initial imbalance, it might then
become possible to see changes in the conductance as transport
channels are opened or closed. Moreover, this geometry could
be used in studies of unique cooling mechanisms [15,16],
the superfluid fountain effect [17], or possibly visualization
of quantized conductance with bosons [56]. Because this
experimental arrangement is capable of producing hundreds
of vortex pairs, it could also prove useful in studying quantum
turbulence [57] and perhaps the emergence of states like the
Onsager vortex [58].
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APPENDIX: MODELING THE DUMBBELL POTENTIAL

Here, we model the potentials of the reservoir and channel to
determine simple functional forms and best-fit parameters. We
note, however, that in the present paper we do not rely on these
best-fit parameters in our understanding of the conductance or
the Feynman model, as we have explicitly written our models
to use the measured np of the channel, n,p, and the apparent
Thomas-Fermi width d of the channel. We include these
models to better understand subtle effects (such as the effect of
the residual transverse confinement on the capacitance of the
system) and for possible future modeling of our experiment.

1. The reservoirs

As described in Sec. 111, the reservoir potential is made of
three components: the harmonic confinement in the Z direction,
the residual transverse harmonic confinement in the X-y plane,
and the near-square-well potential in the X-9 plane created by
the dumbbell potential itself. The residual transverse harmonic
confinement has its center between the two reservoirs of
the dumbbell. As can be gleaned from Fig. 1, this residual
harmonic confinement is a perturbation of the overall potential,
asitdoes not drastically alter the measured 2D density of atoms
along the long axis of the channel.

As for the box portion of the potential, diffraction and
imaging imperfections cause the hard-walled nature to be
smoothed out. If we approximate the aberrated point-spread
function of our imaging system as a Gaussian with 1/e? radius
w, then the resulting box portion of the reservoir potential will
be given by the convolution of that point-spread function with
the optical mask used to generate the potential. The resulting
form of the reservoir potential is then

V= SRS S S S
= Ema)xx + Ema)yy + zmwzz

+%[l+erf<x/§r;ro>],

> (AL)
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where r = \/ (x — yo)?2 + (x — y.)? is the radial coordinate
relative to the center of the reservoir, x. (y.) is the X (9)
coordinate of the center of the reservoir, rq is the radius of
the reservoir, erf is the error function, and w; is the trapping
frequency in the ith direction.

We use this form of the potential along with the known
number of atoms to calculate an expected 2D density. We then
fit, using all available equilibrium densities of both reservoirs,
for the parameters w,, w,, o, and w. The best-fit values are
wy/2r =9.19)Hz, w, /27 = 9.4(6) Hz, w = 12(2) um, and
ro = 27(2) um. Given the numerical aperture of the imaging
stack, the expected value of w is &3 pum. The anomalously
large value is most likely due to imaging aberrations, as
described in detail in the next subsection.

2. The channel

If the imaging process were perfect with infinite resolution
(i.e., no diffraction), we would expect that the channel potential
would be given by a square well with a width d ~ 14 pm.
However, even in the absence of aberrations, our imaging
system would produce an approximate square well with walls
that changed from O to the maximum height U, over a
length scale ~3 um. The potential is further complicated by
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the presence of optical aberrations, including both spherical
aberration and astigmatism. As a result, a region of sightly
depleted density appears in the channel along the long axis
nearly in the center. This “ridge” is visible if one looks
carefully at Fig. 1. These aberrations make effective modeling
of the potential a priori virtually impossible, as it is unclear
whether these aberrations are present in both imaging of the
potential and subsequent imaging of the atoms and, if so, in
what relative quantities.

Instead, we choose to model the channel potential phe-
nomenologically, using observables such as the apparent
Thomas-Fermi width, integrated 1D density np, and cross-
sectional profile (density vs $). We find that the potential is best
described by V' o< y* potential, with the bottom of the potential
having an offset given by bU,, + V), where b = 0.15(2) and
Vo/h = 223(30) Hz. Here, b represents the contribution to the
offset due to imaging aberrations and V| represents a constant
background potential, most likely due to a localized high point
in the potential generated by the sheet beam. Note that to
accurately reproduce the data, one must take into account the
2D-3D crossover: if u — V(y = 0) < hw,, we use only the
ground state of the harmonic oscillator in the Z direction; if
u—V(y =0) 2 hw,, we use the Thomas-Fermi solution in
the Z direction.
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