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Robust spatial coherence 5 μm from a room-temperature atom chip
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We study spatial coherence near a classical environment by loading a Bose-Einstein condensate into a
magnetic lattice potential and observing diffraction. Even very close to a surface (5 μm), and even when the
surface is at room temperature, spatial coherence persists for a relatively long time (� 500 ms). In addition, the
observed spatial coherence extends over several lattice sites, a significantly greater distance than the atom-surface
separation. This opens the door for atomic circuits, and may help elucidate the interplay between spatial dephasing,
interatomic interactions, and external noise.
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I. INTRODUCTION

Recent developments in ultracold atomic physics include
realistic prospects for atomic circuits [1–7]. Such an analog
of electronics, which has been coined “atomtronics,” offers
significant opportunities in both fundamental and applied
physics, due to the rich atomic degrees of freedom. To fully
realize such a device, at least three milestones—adapted from
electronic devices—need to be met: the ability to design and
realize arbitrary potentials for guides and traps; single-site
addressability; and controllable interactions and transport
via tunneling barriers. The latter requirement demands that
potentials be sculptured with a resolution on the order of
the de-Broglie wavelength of the atoms or less (< 1 μm).
To achieve these milestones in a scalable, “solid state” type
of device, one must be able to trap the atoms and manipulate
their external degrees of freedom coherently not more than a
few micrometers away from the surface used to generate the
potential fields [8].

Atom chips [9–11] are promising candidates as a platform
for atomic circuits. Alongside fundamental experiments
[12–17], impressive progress towards clocks, acceleration
sensors, and quantum information processing is being made
on these chips.

Interference or diffraction patterns, hallmarks of spatial
coherence, have so far been observed for trapped atoms
only when held ∼ 50 μm or further from atom chip surfaces
[18–22] (in contrast, internal-state coherence has been realized
much closer to the surface [23]). These experiments were
not intended to measure (or avoid) disruptive effects close
to surfaces, and their observed loss of coherence is at least
partially attributable to atom-atom interactions. Additional
disruptive influences that may have affected previous attempts
to measure spatial coherence below ∼ 10 μm from the sur-
face include potential corrugations, Johnson noise, technical
current fluctuations, quasicondensate phase fluctuations, and
heating effects ([24] and references therein). We note that
spatial coherence has also been demonstrated 44 μm from an
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atom chip using trapped-BEC interferometry with internal-
state labeling [25].

Permanent-magnet atom chips have been used successfully
to trap atoms 6–8 μm from the surface but interference
between adjacent sites was not observed [26–28], while
diffraction has been observed for atoms dynamically reflected
from surfaces, but without trapping [29]. The present work
combines long-lived magnetic lattice traps with measurements
of diffraction when the atoms are released, thus demonstrating
persistent spatial coherence very close (5 μm) to the atom chip
surface.

Even when the surface is at room temperature (thus creating
an extreme temperature differential from the ultracold atoms),
we find that spatial coherence over a length of at least 15 μm
can be maintained for a relatively long time, τcoh � 500 ms.
Specifically, we enter the regime in which the distance of the
atoms from the classical environment of an atom chip is smaller
than the observed coherence length. In this regime, in which
the correlation length of the Johnson noise is smaller than
the probed coherence length, dephasing should be strongest.
Furthermore, it is apparent that potential corrugations due to
material impurities and fabrication imperfections that become
evident close to the surface [30–32] do not destroy the long-
lived spatial coherence achieved in this study. The experiment
described here thus constitutes a major step towards the
realization of atomtronics with atom chips.

Section II of this paper outlines the loading of the BEC
into the magnetic lattice of our atom chip, as well as our data
analysis procedures. In Sec. III we show that the fringe patterns
observed upon release from the magnetic lattice are indeed de-
terministic, exhibiting repeatable fringe positions and spacings
indicative of phase preservation. Our analysis of these fringes
is conducted in Sec. IV in terms of the spatial coherence
length. The evolution of the atomic cloud while trapped
in the magnetic lattice, and its subsequent expansion after
release, are calculated in the Gross-Pitaevskii approximation
as described in Sec. V. These calculations enable a quantitative
understanding of factors affecting the experimental results and
provide a basis for further discussion in Sec. VI. Finally, we
summarize our results and conclude in Sec. VII.

II. EXPERIMENTAL PROCEDURES

A. Magnetic lattice loading and release

The experiment is conducted using an atom chip setup
[9–11], as shown schematically in Fig. 1(a). The BEC is
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FIG. 1. Experimental configuration. (a) An artist’s view of the
trapped cloud of atoms a few μm from the surface of an atom chip. The
atoms are trapped below the surface to allow their spatial distribution
to evolve after release from the trap without being adsorbed onto
the chip. (b) An optical microscope image of the current-carrying
“snake wire” (500-nm-thick Au) that creates a magnetic lattice
potential along the x axis. The main “trapping wire” is not shown.
(c) The modulated potential along the x axis is depicted together
with the harmonic potential produced by the trapping wire, giving
rise to the atom density profile sketched in (a). The trapping wire is
used to adjust the distance d of the trap from the snake wire, with
progressively stronger potential modulation controlled by reducing d

from 9.0 μm (no modulation) to 4.0 μm (greatest modulation shown).
The modulation amplitude may also be fine-tuned by adjusting the
snake-wire current. Not shown is the radial confinement potential
that prevents the atoms from hitting the surface. The imaging beam
propagates along the y axis but we do not provide in situ images of
the modulated atom density because of insufficient imaging resolution
(∼ 7 μm).

generated by collecting 87Rb atoms in a magneto-optical trap
and transferring them, in the |F = 2,mF = 2〉 hyperfine state,
into an elongated magnetic trap created by the current in a large
copper Z-shaped wire (the “trapping wire”) and bias fields in
the x (longitudinal), y (imaging), and z (vertical) directions.
After RF evaporative cooling, the BEC contains about 104

atoms at z ≈ 340 μm from the atom chip surface.
The sinusoidal shape of the atom chip “snake wire” shown

in Fig. 1(b) causes its current to periodically change direction,
thereby modulating the magnetic potential with the same
5-μm periodicity of the wire. The modulated potential be-
comes effective for distances closer than ≈ 9 μm from the
chip surface [Fig. 1(c)].

Loading the magnetic lattice is realized in two steps. The
first step brings the condensate to z ≈ 25 μm by reducing
the trapping-wire current. Simultaneously, we reduce the bias
field in the x direction, thereby increasing the magnetic field
at the trap minimum from 0.2 G to 18.3 G. We also turn on
the snake wire with a current of 30 mA. At the end of the first
step, performed in 200 ms, the BEC is located in a smooth
harmonic trap produced by currents in both the trapping wire
and the snake wire, as in previous work [33].

In the second step, we reduce the current in the snake
wire to bring the trap location down to z = 5.0 ± 0.5 μm (see

Appendix A). This turns on the modulation [Fig. 1(c)]. The
second step is completed in 8 ms, a much shorter time than
required for perfectly adiabatic loading; we carefully optimize
a nonlinear current ramp in order to avoid oscillation and
excitation [34]. Fine adjustments of the trap position in the x,
y, and z directions are pre-determined by currents in a pair of
U-shaped atom chip wires [33], the z-axis bias coils, and very
slight changes in the trapping-wire current, respectively.

As shown in Fig. 1(c), the modulation of the potential may
be controlled by adjusting the distance of the trap from the
surface. Indeed, experiments conducted with an atomic cloud
located a few μm further from the surface show no effects due
to the potential modulation (Sec. V B), while enhanced effects
are seen when the cloud is moved closer.

The external bias field and currents used for the final trap are
Bext = (0.0,39.3,0.2) G, IZ = 32.1 A, and Isnake = 5.5 mA.
Isopotentials for this trap show that its depth is ≈ 2 μK,
with negligible perturbations from the Casimir-Polder force
for z � 2 μm [8].

After a brief holding time in the trap and subsequent release,
we measure up to 4000 atoms, indicating some loss upon
loading into the trap. We do not measure the number of atoms
in the magnetic lattice trap in situ, since such measurements
would only be qualitative due to high magnetic fields and
optical densities.

The field at the trap minimum is kept at a relatively high
value of B0 = 18.3 G in order to avoid generating a trap with
an excessively high aspect ratio. This reduces random phase
fluctuations that are characteristic of the 1D BEC regime
[35] and also facilitates optimization of the “launching” stage
implemented just before release (see below). Smaller atom-
surface distances could be achieved in future experiments by
reducing B0, which would increase the potential barrier to
the surface, while maintaining the aspect ratio through more
control over the longitudinal frequency ωx .

The BEC is held for times t = 30–500 ms in the magnetic
lattice at z = 5.0 ± 0.5 μm. The harmonic trap frequencies
in the longitudinal and transverse directions are ωx = 2π ×
45 Hz and ωy ≈ ωz ≈ 2π × 950 Hz, respectively. The longi-
tudinal frequency is measured for an atom-surface distance
> 9 μm where there is no potential modulation [Fig. 1(c)]; this
frequency does not depend strongly on the distance from the
surface. The transverse harmonic frequencies are calculated
since they do depend strongly on the distance. Finally,
we estimate that the peak-to-valley potential modulation is
≈80 nK at z = 5.0 μm, with a longitudinal frequency within
each magnetic lattice site of about ωsite = 2π × 500 Hz. In
situ absorption images show that the BEC is up to 30 μm long,
thereby covering six sites of the magnetic lattice.

Releasing the condensate after the holding time t is
conducted in two steps. We first “launch” the condensate by
suddenly increasing the current in the snake wire from 5.5
to 18 mA in 100 μs. The launching step has two functions.
First, it forces the atoms away from the chip so that they avoid
crashing into the surface, which would otherwise occur as
the atomic cloud expands. Second, and more important, the
cloud still experiences the harmonic longitudinal confinement
potential (the trapping wire current is still turned on), creating a
focusing effect for the BEC [36–38]. The trap is fully released
2.3 ms later by turning off all currents and fields, finally
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allowing free-fall under gravity. We use resonant absorption
imaging to measure the atomic density distribution after 12 ms
of time of flight (TOF). The focusing effect engineered by
our two-step release sequence plays a crucial role in the
experiment: conducting the complete trap release in a single
step would require an impractically long time-of-flight to
develop the far-field diffraction pattern that we wish to study
(Sec. V B).

B. Data acquisition and averaging

Spatial coherence may be demonstrated by repeated re-
alizations of the experiment showing the same location of
the spatial interference fringes. Such a demonstration requires
a high level of stability with respect to various sources of
experimental drift and noise. During long experimental runs
that span many days, our atom chip mount is observed to drift
slowly along the horizontal (x) direction, apparent as motion
of the in situ images shown in Fig. 2. Here we describe our
post-selection and post-correction procedures, implemented
to avoid excessive smearing of the observed fringes that can
be caused by such drifts when averaging many experimental
realizations. These procedures are not required for short-term
data samples, however, for which we are able to observe
stable fringes without applying any such post-selection or
post-correction as shown in Sec. III.

The initial warm-up period of the experiment produces a
drift of about 20 μm and appears to be caused by thermal
stresses in the atom chip mount upon ohmic heating of the
copper wires and their leads. The resulting translation of the

FIG. 2. Experimental drifts and the effect of jitter. (a) Horizontal
(x) position of the center of the atomic cloud, measured in situ during
the first 3–5 h of two experimental runs performed several weeks
apart (black and red squares). The blue lines depict linear fits to a
fast movement during an initial ≈ 1-h warm-up period, followed
by a slower drift for the remainder of these experimental runs.
(b) Loss of contrast that can be caused by residual “jitter” (i.e., shot-
to-shot variability in the in situ horizontal position) and inaccuracies
in our post-correction procedures. The blue curves are calculated
by applying random displacements along x to a short-term average
of 30 consecutive experimental cycles, with standard deviations of
2.0 μm (dashed) and 3.6 μm (solid). The extent of smearing due to
assumed jitter is consistent with data obtained by averaging over 200
experimental cycles acquired over several days (red curve).

entire atom chip mount equilibrates after about 1–1.5 h of
operation. We do not use data taken during this warm-up
period. A much slower drift continues even after the warm-up
period and appears to be caused by slight movements in the
position of the trapping wire relative to the atom chip itself.
As small as these slow-drift movements are, however, they are
a significant fraction of the magnetic lattice spacing and could
cause significant smearing of the observed diffraction pattern.

The in situ x-axis position of the condensate depends on
the harmonic potential created by the trapping wire. This
provides a simple method to correct for these small slow-drift
movements after the initial warm-up period.

For a given holding time, we acquire a series of 5–10 TOF
images, after which we re-measure the in situ position in an
additional experimental cycle. Our post-selection procedure is
then straightforward: We reject the entire series of 5–10 images
if the in situ horizontal position has wandered outside a range
of ±7 μm or if the distance from the atom chip is outside
the range z = 5.0 ± 0.5 μm. These selection criteria generally
result in rejecting about 60%–70% of the experimental cycles.
We then apply a post-correction procedure to account for the
slow drift by shifting each measurement in the series by an
average of the shifts observed in the in situ images taken at the
beginning and end of the series. These corrections are �3 μm
since this is the maximum difference between successive
in situ measurements, evident as the shot-to-shot variability
during the slow-drift period in Fig. 2(a). Finally, we average
all the post-selected and post-corrected images for a given
holding time. Despite various instabilities [e.g., as depicted
in Fig. 2(b)], these averages show stable fringes, even for
experiments conducted over several weeks that accumulated
over 1000 images (Sec. III).

We find an additional slow drift in the in situ distance
of the cloud from the atom chip surface. This is caused by
vertical (z-axis) motion of the trapping wire due to ohmic
heating of its copper leads, and results in a monotonically
increasing atom-surface distance. We periodically adjust the
trapping-wire current (by < 2%) to maintain this distance
within the range noted above and of course, we repeat the in
situ calibration measurements before proceeding with further
TOF acquisition.

The shot-to-shot positional variability (“jitter”) evident in
Fig. 2(a) cannot be easily compensated, and it inevitably
contributes to smearing the fringes that we observe after
long-term data acquisition and averaging. Figure 2(b) shows
quantitatively how a short-term data sample, convoluted with
assumed amounts of random jitter, produces the less well-
resolved fringes characteristic of our longer-term averages.
The amounts of added jitter assumed in generating these
comparisons are consistent with the jitter seen after the initial
warm-up period of Fig. 2(a).

III. RESULTS

An average of 30 consecutive images is presented in
Figs. 3(a) and 3(b) for a trap holding time of 100 ms. The
zero- and first-order diffraction peaks are clearly visible. For
this short-term sample, no post-selection or post-correction
has been used. We have confirmed experimentally that the
observed diffraction pattern periodicity of about 15 μm is
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FIG. 3. Experimental signal. Diffraction pattern observed after
a trap holding time of t = 100 ms for 30 consecutive experimental
cycles (no post-selection or post-correction is used). (a) Average of
images acquired by absorption imaging. (b) A cut through the center
of (a). The pronounced contrast of ≈ 0.6 is highly unlikely to result
from any random processes, thus demonstrating spatial coherence.
The origin of the observed asymmetry is discussed in Sec. V C. Only
a narrow vertical integration band is required for obtaining a relatively
high signal-to-noise ratio, but a wider band would not significantly
reduce the observed contrast since the fringes are straight and parallel
to the vertical axis z.

independent of the trap-to-surface distance, the purity of the
BEC, the position of the trapped cloud along the lattice, and
the amplitude of the diffraction orders. The expected fringe
pattern periodicity for a time-of-flight of tTOF = 12 ms is
htTOF/mλ = 11 μm, where λ = 5 μm is the lattice period.
The launch time of 2.3 ms also contributes to the fringe
separation, so the measurement is only slightly larger than
this simple estimate. Our imaging may also contribute to this
slight difference (Appendix A).

The observed contrast is much higher than would be ex-
pected from an average of 30 images with random fringes, thus
demonstrating coherence [41], and is typical of the superfluid
phase of a BEC [42]. These results show that the BEC’s most
fragile feature, its spatial coherence, can be maintained for at
least as long as, for example, spin-flip lifetimes for neutral
atoms, even so close to a room-temperature surface.

A much larger sample of images—more than 1000—is
presented in Fig. 4(a). This sample includes holding times
t up to 500 ms, much longer than in Fig. 3. We find that the
first-order diffraction peaks are “locked” at about ±15 μm,
independent of t , clearly demonstrating the robustness of the

FIG. 4. Robust spatial coherence. (a) Repeating the cut of
Fig. 3(b) for trap holding times of t =30–500 ms, averaged over
all post-selected experimental cycles for each holding time. Here we
include a 100-μm-wide wide band along the vertical (z) axis in order
to improve the signal-to-noise ratio. We find that the first-order peaks
are “locked” at about ±15 μm, independent of t , for the > 1000
images collected in this figure. The progressively declining OD for
increasing t indicates an atom lifetime of 500 ± 50 ms, consistent
with measured spin-flip rates for this experiment, which are mostly
due to technical noise [39]. (b) Data points [same color code as
in (a)] show the optical density difference (“OD diff”) between
the diffraction side-peak maxima and minima, averaged over all
the experimental images obtained for each holding time. Error bars
are extracted from a bootstrapping procedure [40]. The black curve
simulates how the same OD difference, after averaging a given
number of images, would drop towards zero for a random distribution
of phases amongst the potential wells. The shaded band around this
curve shows a 1σ standard deviation for the average that would be
caused by such random phases. The data lie 2-5 σ outside this band.

observed fringes. Nevertheless, the fringe contrast is reduced
compared to Fig. 3(b). This loss of contrast may arise in
several ways. Experimental factors include detection noise
due to low optical density, thermal background, imperfect
loading of the magnetic lattice that may populate excited
states, and shot-to-shot positional jitter [Fig. 2(b)]. We do
not compensate for these factors in the data analysis. We do,
however, compensate for long-term drifts: Due to the large
number of experimental cycles used here (spanning several
days for each holding time), slight drifts of the lattice and
experimental conditions become important. The data in Fig. 4
are therefore post-selected and post-corrected for a range
of atom-surface distances and horizontal placements of the
trapped cloud, as discussed in Sec. II B.

Factors that may cause intrinsic loss of contrast include
1D quasicondensate phase fluctuations that would produce
far-field peaks with random amplitudes and periods for each
single-shot realization. We do not expect that this 1D regime
would be fully entered for most of the data in Fig. 4 since
that would require a condensate of about 500 atoms or less,
even for the harmonic potential (ωx = 2π × 45 Hz; ωy ≈
ωz ≈ 2π × 950 Hz, Sec. II A) [43]. Nevertheless, 1D effects
can be expected even above this limit for a sufficiently high
temperature [35]. We were unable to determine the temperature
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experimentally (see Appendix B). We consider 1D effects
upon estimates of the correlation length in our experiment
in Sec. IV B.

In Fig. 4(b) we compare the fringe contrast of the observed
diffraction side peaks to the contrast expected from simulated
averages over a given number of experimental realizations,
each with high contrast but with varying fringe positions due
to random phases amongst the potential wells. It is apparent
that the experimental data lie 2–5 standard deviations beyond
the combined simulated and experimental errors, even for the
longest trap holding times [the data of Fig. 3(b) correspond to
an even higher number of standard deviations]. We conclude
that the signals observed in Fig. 4(a) cannot arise from random
phases for each experimental realization and must instead arise
from spatial coherence over at least several magnetic lattice
sites, as quantified further in Sec. IV B.

IV. ANALYSIS

A. Contrast

The observed fringe patterns are asymmetric and their three
peaks appear to have different widths, making it difficult to fit
them with simple functional forms. Low signal-to-noise ratios
further preclude reliable fitting and unambiguous identification
of the three peaks for single-shot images. We therefore apply
the following automated algorithm to analyze averages of at
least 25 experimental images: (a) the central peak is identified;
(b) secondary maxima are identified on the left and right
sides if they occur with a separation of 6–20 μm from the
central peak; (c) if a secondary maximum cannot be found
then the contrast on that side is defined to be zero; (d) if there
are two or more maxima on one side then the highest one
is chosen; (e) minima are identified between the side-peak
maxima and the central peak. The contrast is then calculated
by defining an ODint

max value which is interpolated between
the central and side peaks at the position of the minimum on
each side (i.e., we define a triangular envelope on each side of
the central peak). The contrast is then defined as the mean of
(ODint

max − ODmin)/(ODint
max + ODmin), again averaged over all

the experimental images for a given holding time. Error bars
are extracted from a bootstrapping procedure [40].

An ideal analysis of the decoherence time in our experiment
would require that all experimental parameters that could affect
the contrast are independent of the holding time. In particular,
however, we cannot maintain the same number of atoms N

due to atom loss, as seen in Fig. 4(a). This loss can affect
the observed contrast in several ways, including the fact that
fewer atoms occupy less sites so that the coherence increases
for a given coherence length, and that more atoms increase the
density between sites, giving rise to Fourier components that
diminish the contrast. Furthermore, one should not exclude the
possibility that N -dependent nonlinear effects (e.g., repulsion)
are taking place during the launch and expansion times.

To quantify the result of these effects, we count N for each
of the individual images collected in Fig. 4(a). We integrate the
optical density over −60 < x < 60 μm and −50 < z < 50 μm
and use the absorption cross section for 87Rb, after subtracting
a sloping background that is linearly interpolated from data
beyond these regions of significant atom density. Each image

FIG. 5. Persistent spatial coherence. (a) Average contrast of the
two first-order fringes for all images containing 1100 < N < 1900
atoms. Error bars are extracted from a bootstrapping procedure [40]
that yields the experimental statistical errors for each holding time.
The shaded band shows systematic errors corresponding to several
different ranges of N (see text). (b) Average contrast of the two
fringes, showing a systematic dependence on N , hence requiring
the restricted range used in (a). See text for possible sources of this
dependence. The dashed line is an exponential fit to guide the eye;
error bars are omitted for clarity. Color code and symbol types as in
Fig. 4.

is then binned into successive ranges of N , such that each bin
for a given holding time uses the same number of images.
Finally, the average contrast for the images in each bin is
analyzed as described above, and the mean number of atoms
〈N〉 is calculated for that bin.

The range of 1100 < N < 1900 atoms gives the best
overlap between the highest N for t = 500 ms and the lowest
N for t = 30 ms (i.e., there are very few experimental images
yielding N < 1100 atoms for t = 30 ms or N > 1900 atoms
for t = 500 ms). This range is sufficiently narrow to remove
most of the N dependence, but wide enough that it includes
35–75 images for each holding time t . We then plot the
contrast as a function of the holding time in Fig. 5(a). The
strong dependence of contrast on N that is evident from
Fig. 5(b) clearly justifies this post-acquisition control of N

for quantitatively comparing the observed contrast vs holding
time t .

To verify the stability of this analysis, we re-calculated the
contrast for several intervals of N . The shaded band in Fig. 5(a)
includes results for the ranges N=1200–1800, 1300–1900,
1100–1800, and 1350–1950, where these ranges were chosen
such that the sample used would have at least 25 experimental
cycles for each t . The shaded band of the figure shows that
the observed behavior of the contrast does not depend on the
range of N used. Further checks confirming the validity of this
analysis are described in Appendix B. We conclude that the
spatial coherence is temporally robust, with no loss of contrast
for at least 500 ms (i.e., no dephasing).

B. Coherence length

In Fig. 6 we examine the spatial coherence length by
comparing the observed contrast to that calculated from two
simple numerical models. In our experiment the atoms are
characterized essentially as a 3D condensate with potential
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FIG. 6. Coherence length. Comparison of the observed contrast
(dashed line) to two simple numerical models for the contrast
expected when averaging 30 images. The BEC is assumed to be
coherent over a given number of lattice sites n and random for the
remainder (blue points), or it is assumed that the phase correlation
drops exponentially over a 1/e distance of n sites (yellow points). In
both cases, the observed contrast corresponds to a spatial coherence
extending over ≈ 4 sites, i.e., 15 μm.

barriers progressively higher relative to the chemical potential
for magnetic lattice sites furthest from the center [Fig. 1(c)].
Consequently, the outermost sites could be fully disconnected,
resulting in coherence only for the innermost lattice sites. In
this case, the most relevant parameter for characterizing the
coherence is roughly the number of coherently connected sites
n, where the phase is assumed to be constant over 1,2, . . . ,n

central lattice sites and random over the remaining sites. A
second model corresponds more directly to the notion of
“coherence length” by accounting for possible cases in which
the condensate is (at least partially) connected over the whole
range but coherence is lost due to various factors. In this model,
we assume partially random phases between the lattice sites
such that the correlation between them drops exponentially
over a 1/e distance of n sites.

The results of both models are shown in Fig. 6. The
error bars represent statistical deviations and an additional
uncertainty in the width and central position of the atomic
distribution among the sites. For the first model, these error
bars become smaller when the phase is completely random
(n = 1) or almost completely constant (n = 6). Our optical
resolution limits the maximal contrast for n = 6.

The dashed line represents the contrast obtained from the
experimental data of Fig. 3(b) (averaged over the left and
right peaks), and corresponds to an observed spatial phase
coherence over about four sites for both models. Since a
reduction in the observed contrast may be caused by a variety
of reasons as discussed above, we conclude from our data
that the spatial coherence length is at least 15 μm. Given the
proximity of our trap to the surface, this observed coherence
length is a significantly greater distance than expected if

decoherence arises from, for example, Johnson noise (the
correlation length of Johnson noise is expected to be about
5 μm in our experiment [44]).

V. THEORY

A. Simulation of atom dynamics

In order to gain a quantitative understanding of the exper-
imental results, we have performed an extensive simulation
of the dynamics of the atoms during the experiment, which
takes into account the atom-atom interactions through the
mean-field Gross-Pitaevskii (GP) theory. Here we describe
the simulation procedure and present some of its results. The
simulation is intended to mimic the experimental conditions
in a realistic manner, but it does not take into account possible
systematic or random nonideal effects due to fabrication
defects or misalignment of system elements or imperfections
in the preparation of the BEC. Such imperfections may cause
some of the asymmetry of the observed diffraction patterns,
as well as some of the observed loss of contrast, but a detailed
exploration of these effects is beyond the scope of the present
paper.

The magnetic potential is calculated by applying the Biot-
Savart law for the current density in the atom chip wires,
as derived from a finite-element solution for the measured
wire geometry. Unintended potential corrugations due to
imperfections of the edge or bulk of the “snake” wire are
not taken into account. The magnetic potential at a distance r,
a few μm from the snake wire, has the approximate form,

V (r) ≈ 1
2 m

[
ω2

xx
2 + ω2

yy
2 + ω2

z (z − z0)2
]

+V0 e−(z−z0)/l sin(kx), (1)

where ωx and ωy ≈ ωz are the (unmodulated) longitudinal and
transverse frequencies, respectively, z0 ≈ 5 μm is the trapping
distance, and k = 2π/λ gives the periodicity of the potential
modulation with λ = 5 μm. The amplitude of the modulation
decreases exponentially with the atom-surface distance, with a
range parameter of l ≈ 1 μm; in addition, V0 and the transverse
frequencies increase parametrically as the trapping distance z0

decreases. Modulation of the longitudinal potential gives rise
to a series of traps as shown in Fig. 1(c), with each site having
a frequency of ωsite ≈ k

√
V0/m ∼ 2π × 500 Hz, about half of

the transverse frequencies ωy and ωz.
The simulation starts with N atoms in a BEC ground

state that mimics the atomic cloud before it is loaded into
the modulated potential. The modulation is then ramped up
in 1 ms until the full potential is attained, at which time it
may be approximated by Eq. (1) with V0 = 40 nK (80 nK
peak-to-valley). This ramp-up of the modulation provides an
adequate approximation of the loading procedure, achieved
experimentally by lowering the snake-wire current and thereby
bringing the potential minimum to z0. After the potential
modulation is turned on at time t = 0, the evolution in the
trap is calculated up to 30 ms, corresponding to the shortest
holding time used in our experiments. Snapshots of the atomic
density in the trap for several times during this period are
presented in Figs. 7(a)–7(e).

After the holding time we simulate launching of the BEC
by ramping the current in the snake wire from 5.5 to 18 mA

063615-6



ROBUST SPATIAL COHERENCE 5 μm FROM A ROOM- . . . PHYSICAL REVIEW A 93, 063615 (2016)

FIG. 7. Simulated evolution during the holding time. (a) Initial
ground-state BEC with N = 1500 atoms in the nearly harmonic
(unmodulated) potential. (b)–(e) Re-distribution of the atomic density
as a function of the holding time t in the magnetic lattice, shown as
atomic column densities in the x-z plane. (f) Atomic density per
unit volume (red) and unit length (black) are shown as an average
over t = 5,10, . . . ,30 ms. In this simulation, the chemical potential
slightly exceeds the barrier height (Sec. VI). The density between the
barriers becomes smaller with horizontal positions further from the
center due to the rising longitudinal harmonic potential.

as described in Sec. II A. We solve the GP equation in a frame
of reference that moves together with the center of mass of
the atomic cloud. The shape and position of the atomic cloud
during this launching process is shown in Fig. 8. After 2 ms
the cloud arrives at the outer turning point of the potential and
starts to accelerate back up towards the atom chip. Another
0.3 ms before the final trap release allows a longer period
of time for the focusing and also increases the free-fall time
before the cloud leaves the field of view of our imaging system.
The simulated currents and magnetic fields are then turned off,
as in the experiment, and the cloud is allowed to start falling
freely in gravity.

After releasing the cloud, we calculate its free expansion
for a time-of-flight of 12 ms. The simulated cloud develops
a diffraction pattern with a central (zero-order) peak and
several diffraction orders (Fig. 9), where each diffraction
order is squeezed into a narrow wave packet in the x

direction due to the focusing effect (described next). Here
we show only the column density of the atoms as predicted by
applying a low-pass filter to simulate the effect of our finite
optical resolution (Appendix A). This far-field image can be
compared to our experimental results, unlike the near-field
simulated images of Fig. 8 which would not be experimentally
resolvable.

B. Focusing effect

Figure 10 illustrates the focusing effect we observe for a
BEC initially held 9 μm from the surface. At this distance, the
5-μm-period modulation potential has no influence [Fig. 1(c)],
and the focusing effect may be understood by considering only
the harmonic trapping potential. Under these circumstances,
we measure a Thomas-Fermi full width of 18 μm, considerably

FIG. 8. Simulated evolution during the launch. The cloud is
ejected from the magnetic lattice by increasing the current in the snake
wire from 5.5 to 18 mA in 100 μs (Sec. II A). (a) Trajectory of the
center of mass of the cloud during the launch. The cloud arrives at the
outer turning point (created by the trapping wire which is still on) and
starts to accelerate back towards the atom chip before all currents are
turned off (see text). Dots along the trajectory depict times at which
the atomic density is shown in (b). Full release occurs after 2.3 ms.
(b) The near-field diffraction pattern is seen to start forming already
during the launching stage, while the atomic cloud starts to expand
rapidly along the radial direction. Our optical resolution is currently
unable to resolve detailed features of the expanding cloud during this
period (see Fig. 9 for the corresponding far-field simulation results.)

narrower than a width of about 35 μm expected in the absence
of focusing.

Next we briefly explain the effect of focusing and its
importance for the observation of diffraction patterns emerging
from a BEC that is density- or phase-modulated. First we
consider the evolution of a general atomic wave packet in
free space, which applies to our BEC after full release,
whereupon the atom-atom interactions are negligible due
to rapid expansion of the atomic cloud in the transverse
directions. In this case, the free-space evolution of the
initial wave function ψ(r,tTOF = 0), in a reference frame
moving with the freely falling center of mass, is given
by

ψ(r,tTOF) =
∫

d3k exp

[
i

(
k · r − �k2tTOF

2m

)]
ψ̃(k), (2)

where

ψ̃(k) = 1

(2π )3

∫
d3r′ e−ik·r′

ψ(r′,0) (3)

is the spatial Fourier transform of the initial wave function.
After a sufficiently long time, the expansion leads to a

separation of the different momentum components; the far-
field limit of the wave function is given by the stationary phase
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FIG. 9. Simulated diffraction pattern after release. (a) The shape
of the atomic cloud after 12 ms of free-fall in the x-z plane, and (b) a
cut through the center of the cloud along the horizontal direction x.
The finite resolution of an imaging system similar to ours is included
(Appendix A). The observed asymmetry between the first-order peaks
can arise from slight asymmetries in the magnetic potential near
the snake wire due to the well-known rotation of the cloud by the
Z-shaped trapping wire (Sec. V C). Since this simulation was done
with the full magnetic potential, the latter rotation is introduced
automatically.

approximation, which yields

ψ(r,tTOF) ∝ eimr2/2�tTOF ψ̃(k = mr/�tTOF), (4)

such that the atomic density represents the Fourier transform
of the initial wave function.

More explicitly, by substituting Eq. (3) into Eq. (2) and
integrating over the momentum k, we obtain

ψ(r,tTOF) =
∫

d3r′G(r − r′,tTOF)ψ(r′,0), (5)

where

G(r − r′,t) =
( m

2πi�t

)3/2
exp

(
im

|r − r′|2
2�t

)
(6)

is the nonrelativistic free-particle Feynman propagator.
By expanding the square term in the exponent, we

FIG. 10. Focusing effect. (a) Single-shot image of a BEC,
launched and released under the same conditions used throughout
this work, and acquired after 12 ms of free fall (time-of-flight). The
BEC is initially held in a trap 9 μm from the surface, where there is
no potential modulation, and hence no fringes are seen in the image.
(b) A cut through the center of (a) with a measured Thomas-Fermi
full width of 18 μm, compared to a width of about 35 μm calculated
with no focusing. The thermal tails are seen to be unfocused.

obtain

ψ(r,tTOF)

=
(

m

2πi�tTOF

)3/2

eimr2/2�tTOF

×
∫

d3r′ exp

(
−i

m

�tTOF
r · r′

)
exp

(
i

mr ′2

2�tTOF

)
ψ(r′,0).

(7)

The second exponent of the integral in Eq. (7) represents
a quadratic phase which decreases with time as 1/tTOF. To
attain the far-field form of a Fourier transform of the initial
wave function as in Eq. (4) would therefore require a time
tTOF 	m�x2/2�, where �x is the spatial extent of the initial
atomic density along the x (longitudinal) direction. In our
case, where �x ≈ ±15 μm, this implies that a fully developed
diffraction pattern would require tTOF > 150 ms. This is much
too long to allow observation in our system.

In order to overcome this limitation, we implement a
launching procedure, in which the atoms are kept in the
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harmonic potential for a time τ = 2.3 ms even while be-
ing pushed away from the atom chip. Whereas before the
launching procedure the atomic density along the x direction
is determined by the equilibrium between the confining
modulated harmonic potential and the repulsive force of the
atom-atom interactions, after the beginning of launching the
BEC expands in the radial direction and the repulsive force
weakens rapidly. At this stage the harmonic force, no longer
compensated by the strong repulsive potential, induces a
velocity gradient along x, such that the atoms start to move
towards the center. For a short time τ this velocity gradient is
not sufficient to change the atomic density significantly and
the main effect is to imprint a quadratic phase φ = −αx2,

ψ(r′,0) → ψ(r′,0)e−iαx2
, (8)

where α = 1
2mω2

xτ/�. When the atoms are finally released, this
quadratic phase partially compensates for the quadratic phase
in the second exponent of the integral in Eq. (7), such that
after a finite time-of-flight tTOF = m/2�α ∼ (ω2

xτ )−1 the total
quadratic phase in the integral vanishes completely, leading
to a density pattern along the x direction that represents the
Fourier transform of the initial density before launching, i.e., a
fully developed diffraction pattern as expected in the far-field
limit.

The effect of the harmonic potential during the launching
stage on matter waves is equivalent to the effect of a focusing
lens on an incident optical beam, namely, focusing an incident
plane wave and Fourier transforming an arbitrary input at the
focal plane. If the initial atomic cloud is a coherent smooth
BEC with a narrow momentum distribution then the process
leads to a focused cloud as in Fig. 10. In the case of an initial
cloud with a modulated density as in the main part of this paper,
we obtain a series of focused diffraction peaks as in Fig. 3.
In contrast, the incoherent thermal part of the initial cloud,
which has a wide initial momentum distribution (emulating an
optical beam with random k vectors impinging on the lens), is
not focused but rather continues to expand after the launch and
release, shown as the ∼ 100-μm-wide background distribution
in Fig. 10.

Finally, the time-of-flight actually required for focusing is
somewhat longer than the value of (ω2

xτ )−1 ≈ 5.4 ms noted
above because repulsive forces do play a limited role during
the initial part of the evolution, i.e., in the launching. During
this time, the mechanism of the focusing process is affected by
interatomic interactions within the BEC and therefore differs
from atomic lensing for noninteracting atoms [45,46]. Our GP
simulation described in Sec. V A predicts that the best focusing
should occur instead at about tTOF = 8 ms. We actually use
a time-of-flight of tTOF = 12 ms in order to allow further
separation of the diffraction fringes; this additional delay does
not significantly affect the sharpness of the diffraction peaks
we observe, which is limited anyway by our finite optical
resolution.

C. Asymmetry due to phase gradients and randomness

We study the effect of phase randomization and phase
gradients over the wave function in the modulated potential
by using a simple numerical model. Quasicondensate phase
fluctuations, characteristic of elongated traps [35], are not

FIG. 11. A simple model for the formation of an asymmetric
diffraction pattern. (a) A symmetric diffraction pattern with two first-
order peaks is formed by a Fourier transform of a wave function with
a periodic amplitude and a constant phase. (b) A noisy diffraction
pattern is obtained by applying a random phase between the sites.
(c) and (d) Asymmetry between the two first-order peaks is obtained
when a linear phase difference is applied between the sites (while
keeping a constant phase within each site). Here (c) and (d) are
obtained from a phase difference of 0.5 rad and 1 rad between adjacent
sites, respectively (see text for possible sources of phase differences
between sites). Note that, in addition to asymmetry, the fringe patterns
in (c) and (d) also shift horizontally relative to (a).

considered since our model greatly exaggerates these effects
for clarity. We start with a one-dimensional density function
ρ(x) composed of a Gaussian function centered at x = 0 and
two side-band Gaussians at x = ±15 μm whose maxima are
one-third that of the main peak, as shown in Fig. 11(a). This
density distribution represents a diffraction pattern that is
produced by a wave function with a periodically modulated
amplitude and a constant phase over all the sites of the
magnetic lattice. We introduce phase changes between the
sites by first Fourier transforming the square root of the triple-
Gaussian function

√
ρ to obtain the periodically modulated

function F{√ρ} and then introducing abrupt phase changes at
the minima of this function, where the density is negligible.
The phase is therefore constant within each site and varies only
between sites. An inverse Fourier transform then re-generates
the density function ρ ′(x) as modified by the phase changes
imposed by our numerical model.

By introducing random phases between sites, we obtain
noisy diffraction patterns like the one presented in Fig. 11(b).
Note that it becomes difficult to identify the zero-order and
first-order peaks unambiguously and that smearing reduces the
OD of the central peak by a factor of ≈ 2 even for individual
patterns. Averaging a given number of similarly noisy patterns,
each with its own distribution of phases between sites, is used
to generate the theoretical line and band shown in Fig. 4(b)
and the data points shown in Fig. 6.

By introducing a linear phase gradient instead, i.e., equal
phase jumps between the sites, we obtain the asymmetric
diffraction patterns shown in Figs. 11(c) and 11(d). This may
explain some of the asymmetry observed in our experimental
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results. Other contributions to the observed asymmetry may
include a slight rotation of the atomic cloud by the trapping
wire (a well-known effect produced by currents in Z-shaped
wires, as seen in Fig. 9), and possible imperfections in the
snake-wire fabrication [47].

VI. DISCUSSION

We now examine in more detail the dephasing taking place
in our system. Figure 5 shows the fringe contrast as a function
of holding time t , after accounting for the observed dependence
between the contrast and the atom number N (Sec. IV A).
This provides a direct estimate of the relative coherence
for the different holding times, assuming that experimental
imperfections reducing the contrast are independent of the
holding time.

The data of Fig. 5(a) are consistent with little or no
dephasing. The apparent slight rise of contrast with time may
have several origins. For example, BEC excitations due to
imperfect loading may be relaxing. In addition, thermal atoms
may be escaping to the surface via evaporation due to the weak
trap depth of only ≈ 2 μK [48], thus increasing the proportion
of the atomic cloud that is coherent. Losing thermal atoms
may also decrease phase fluctuations of the BEC [35]. These
processes are consistent with the fact that the strongest rise in
contrast is observed in the first 100 ms. Further analysis of this
slight rise is given in Appendix B but an exact determination
of its origins is left for future work.

A crucial parameter for understanding dephasing is the
chemical potential relative to the magnetic potential barrier
height in our system. We estimate that Vbarrier ≈ 80 nK at
a distance of 5 μm from the chip, which is very close to
the longitudinal chemical potential (the single-atom effective
energy, excluding the transverse energy), estimated from
mean-field (GP) calculations to be μ‖ = 88 nK for N = 1500
atoms. These estimates presume that the central barrier is
located at the minimum of the harmonic potential; they both
increase by � 5 nK if the central barrier is shifted by up to
half the lattice period. For the atoms sampled in Fig. 5(a),
these estimates suggest that the two or three central wells are
probably classically connected (Fig. 7 shows that the atom
density above the barriers falls by a factor of ≈ 5), while
adjacent wells might be completely classically disconnected.
The GP calculations also show that the central wells have
approximately double the population of the two adjacent wells.

As a contrasting case, in which the chemical potential may
be significantly below the potential barrier, we plot in Fig. 12 an
average of all 29 images having a holding time t = 500 ms with
the smallest number of atoms, N = 400 ± 130. This range of
N corresponds to a chemical potential of μ‖ = 50 ± 5 nK. The
observed high contrast implies either that the chemical poten-
tial exceeds Vbarrier, or that spatial coherence is maintained
even if μ‖ < Vbarrier, as depicted in the inset. We note that
our measurements of the distance to the chip are uncertain by
about ±0.5 μm (Sec. II A), corresponding to an uncertainty
of about ±40 nK in Vbarrier. Theory predicts that even if the
chemical potential is below the barrier height, coherence
should still be maintained. For example, calculations based
on a simple double-well model show that a BEC of 250–300
atoms would be in the Josephson interaction regime for

FIG. 12. Spatial coherence for low chemical potential. Diffrac-
tion pattern observed after a trap holding time of t = 500 ms for an
average of all 29 experimental cycles having N = 400 ± 130 atoms,
corresponding to the smallest number of atoms in Fig. 5(b). Note
that the chemical potential is most likely below the central potential
barrier, as depicted in the inset (dashed line, see text).

Vbarrier ≈ 60 nK (well within the range of our experimental
uncertainty), assuming that the BEC is in the ground state [39].
In this regime the tunneling rate is sufficiently fast to maintain
coherence, even though the chemical potential is significantly
below the barrier. In addition, a higher barrier implying full
BEC separation at t = 500 ms may still allow coherence to
be maintained for a long time due, for example, to number
squeezing [20,22].

It is worth noting that the 1D regime would be reached if
fewer than 500 atoms were spread along the entire length of
the trap, thereby reducing the observed contrast as discussed
in Sec. III. Figure 12 shows no such reduction, suggesting
instead that indeed the chemical potential is below the barrier,
where the tighter confinement within individual lattice sites
prevents quasicondensate phase fluctuations while sufficiently
fast tunneling maintains the observed phase coherence [39].

VII. SUMMARY AND CONCLUSIONS

In conclusion, by loading a BEC into a lattice potential
5 μm from a room-temperature surface, followed by its careful
release, we have demonstrated diffraction, a hallmark of spatial
coherence, for an atom-surface distance reduced by an order
of magnitude from previous experiments exhibiting diffraction
or interference [18–21]. In addition, our data exhibit robust
spatial coherence that persists for a relatively long time,
τcoh � 500 ms, with a coherence length that is a significantly
greater distance than the atom-surface separation. While spin
coherence close to a room-temperature environment has been
demonstrated in dilute gases [23] and even in solid-state
systems [49], maintaining spatial coherence only 5 μm from
the surface constitutes another significant milestone for atom
chip applications and for interferometric probing of surface
effects, including unique features such as correlation lengths
of forces and their fluctuations ([24] and references therein).

These results should motivate further investigations to
elucidate the interplay amongst tunneling, atomic collisions,
and effects due to external noise, and their role in maintaining
robust spatial coherence [39,50–52]. This experiment also
holds promise for the future development of atomic circuits.
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Indeed, as shown quantitatively in previous work [8], good
control over tunneling barriers is possible for distances of 5 μm
and below. In the future it may be beneficial to use nanowires
in order to considerably increase the magnetic field gradients
so that they can overcome the Casimir-Polder potential at
smaller distances, or to utilize molecular conductors such as
carbon nanotubes [53] or graphene sheets [54], both of which
would reduce Johnson noise and potential corrugations due to
electron scattering.
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APPENDIX A: ATOM-SURFACE DISTANCE
CALIBRATION AND IMAGING RESOLUTION

Our imaging resolution of about 7 μm is insufficient to
resolve the in situ atomic density modulation along the x

axis expected from the 5-μm spacing between individual
magnetic lattice sites. The imaging resolution is, however,
sufficient to resolve the atom cloud and its reflection along the
z axis, produced by the grazing incidence of the imaging laser
beam on the reflective atom chip surface. Since the expected
separation of these images (10 μm) is only slightly greater than
our imaging resolution, we must estimate the small systematic
difference between the apparent distance obtained from the in
situ images and the actual distance of the atom cloud from the
surface.

This systematic difference is estimated by using Gross-
Pitaevskii calculations to simulate a BEC of 4000 atoms
centered 4.8 μm from the atom chip reflective surface. We
apply a low-pass filter for the spatial spectrum of the absorption
pattern for direct comparison to the experimentally measured
optical density (OD):

OD(x,z) = −2 ln
[∣∣F−1

{
F{e−n(x,z)σ0/2}

× θ
(
k2

0 − k2
x − k2

z

)}∣∣], (A1)

where σ0 = 0.19 μm2 is the scattering cross section of light
with 87Rb atoms, n(x,z) is the column density of atoms, F
and F−1 represent the Fourier and inverse Fourier transforms,
and θ (k2

0 − k2) is the Heaviside function which allows only
spectral components with wave vector smaller than k0 to pass
through the system due to the finite aperture of the imaging
lens. We estimate that k0 ≈ 2π/11.5 μm. This procedure is
equivalent to a convolution with an Airy function of about
7-μm radius representing the finite aperture of a lens (our
diffraction-limited resolution is about 4 μm but this limit is

FIG. 13. Atom-surface distance measurements: imaging the
atomic cloud in the trap near the chip. (a) This simulated image shows
the cloud and its reflection from the chip surface; a vertical cut through
the center of the cloud is shown in (b). (c) and (d) The corresponding
cloud and vertical cut from experimental measurements after a
holding time of t = 30 ms in the modulated potential. The detection
efficiency for the reflected cloud image is assumed to be reduced by
30% relative to the direct image. The peak positions of the simulation
are chosen to match those of the experimental measurements and
show a systematic difference between the measured atom-surface
distance and the actual distance of about 0.8 μm (see text).

not attained due to optical aberrations and shadowing of the
lens by the atom chip).

The simulated results are shown in Figs. 13(a) and 13(b),
demonstrating partial resolution of the image and its reflection,
as well as optical interference fringes due to a separation
comparable to the cutoff wavelength of the optical system.
The equivalent experimental absorption images are shown in
Figs. 13(c) and 13(d) after a holding time of t = 30 ms in
the modulated potential. The image is smoothed in Fig. 13(d)
with a Gaussian kernel 5 pixels wide in the horizontal (x)
direction in order to reduce the experimental noise level.
Double-Gaussian fits to the curves in Fig. 13 yield a separation
of 11.3 μm for both the simulated and experimental images,
corresponding to an apparent atom-surface distance of 5.6 μm.
We conclude that there is a systematic difference between the
measured and actual atom-surface distance, with the actual
distance being about 0.8 μm less than the measured distance.
Atom-surface distances quoted in this paper are calibrated by
this amount. We note that maintaining this distance within tight
bounds is necessary for accurately determining the modulation
of the magnetic lattice potential [Fig. 1(c)].

APPENDIX B: DEPENDENCE OF CONTRAST
ON ATOM NUMBER

In order to further check the robustness of the results shown
in Fig. 5(a), we recalculate the contrast for groups of exactly
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30 images from each holding time t such that the average
number of atoms N is equal for all groups. The images chosen
for each group were those with N closest to the mean value,
generating the alternative analysis shown in Fig. 14. Here we
observe the same qualitative behavior as in Fig. 5(a), even
though the contrast drops with increasing 〈N〉, thus demon-
strating that the analysis of contrast vs holding time is stable
and credible.

In addition to the atom number N , we attempted to analyze
the temperature of any residual thermal background, which
also appears to depend on t [Fig. 4(a)]. This analysis proved
fruitless, however, because the background could not reliably
be extracted from the individual images due to their low optical
density. Moreover, it may well be that the observed broad
background is due to excited modes of the BEC caused by
imperfect loading and not thermal at all. These uncertainties do
not alter the qualitative observation that the contrast is robust
for τcoh � 500 ms, as demonstrated by both the statistical and
systematic errors shown in Figs. 5(a) and 14. This qualitative
observation is conserved even when the entire data set of
Fig. 4(a) is used (i.e., no restriction on N ).

FIG. 14. Contrast vs time for varying atom numbers N . Here
we use an alternative analysis to that of Fig. 5(a) by analyzing data
samples that are chosen to conform to a certain mean N . Each sample
consists of exactly 30 experimental cycles that are closest to the means
〈N〉 shown. While the dependence of contrast on N [as presented in
Fig. 5(b)] is evident, it is also clear that the qualitative behavior of the
data remains constant. The chosen mean values could not be taken
outside the presented range since there would not be enough images
for some of the holding times.
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[9] R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C.
Henkel, Microscopic atom optics: From wires to an atom chip,
Adv. At. Mol. Opt. Phys. 48, 263 (2002).

[10] J. Reichel, Microchip traps and Bose-Einstein condensation,
Appl. Phys. B 74, 469 (2002).
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