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Producing directed migration with correlated atoms in a tilted ac-driven lattice
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The correlated atoms in a tilted optical lattice driven by an ac field are studied within the Hubbard model. By
making use of both photon-assisted tunneling and coherent destructive tunneling effects, we can move a pair of
strongly correlated atoms in the lattice via manipulating the global amplitude of the driving field. We propose a
scheme for creating entanglement between the particle pair and a single particle through interacting oscillations.
Our model may provide a new building block for investigating quantum computing and quantum information
processing with ultracold atoms in optical lattices.
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I. INTRODUCTION

The high level of controllability and cleanness of ultracold
quantum gases in optical lattices has enabled the simulation
and exploration of fundamental many-body physics [1,2].
In experiments, the progress in detecting techniques has
reached the single-site resolution level with high fidelity [3–5].
Many theoretical models, such as the tight-binding Hubbard
models [6–9] and the Harper Hamiltonian with artificial gauge
fields [10,11], are now experimentally achievable. In these sys-
tems, significant phenomena were demonstrated, including the
basic superfluid-Mott insulator (MI) transition [7], (fractional)
quantum Hall effects [12–15], etc.

The accurate manipulating and engineering schemes
of such systems are the major tasks that require further
investigation. The celebrated Bloch oscillations (BOs) are one
of the direct quantum controls of a wave packet moving in a
tilted lattice [16]. On the other hand, a periodically driving field
can lead to photon-assisted tunneling [17], dynamical localiza-
tion [18,19], and coherent destruction of tunneling (CDT) [20–
23], etc. [24–26]. These effects provide potential applications
for quantum control and give a better understanding of the
solid-state physics. Recently, an induced effective gauge field
based on the Floquet theory was considered for the study
of topological effects [27–29]. The control of single-particle
tunneling was proposed in Ref. [30] where the bipartite su-
perlattices were modulated periodically to induce the directed
CDT. Two-particle entanglement can also be realized in such
systems. The interaction between particles has novel effects
on the dynamics [31–33]. Research on the correlations has led
to some specific phenomena, such as the coherent transport
[25,34,35] and BOs with fractional Bloch periods [36,37].

In a previous paper, we have investigated the directed mi-
gration of a pair of strongly correlated atoms in optical lattices
driven by doubly modulated ac fields [38]. In this paper we
demonstrate the migration of a correlated particle pair in a one-
dimensional (1D) tilted optical lattice driving by a modulated
ac field. This scheme may be more experimentally feasible [17]
in comparison to directly manipulating the on-site interaction
through the Feshbach resonance [39,40]. The relevant fac-
tors in our scheme include renormalization of the hopping
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amplitude, photon-assisted tunneling, as well as CDT. The time
evolutions of the correlated pair are simulated by applying the
Schrödinger equation with the time-dependent Hamiltonian.
We propose a scheme for creating entanglement between the
interacting atoms in the driven lattice which may find potential
applications in quantum computing and engineering.

The paper is organized as follows. In Sec. II we describe
the driving system within the Bose-Hubbard model and derive
the effective hopping. The migration scheme and a bifurcating
quantum motion are presented in Sec. III. In Sec. IV, we
show the mixing and separating of a (2+1)-particle system
via properly modulating the driving field, which creates
entanglement between a single particle and a particle pair.
A summary is included in Sec. V.

II. FORMULISM

We first consider two interacting particles in a 1D tilted
lattice by applying a dc field and an adjustable ac field. Within
the tight-binding approximation, the dynamics of the particles
is described in the framework of the Bose-Hubbard model,

Ĥ = − J
∑

j

(b̂†j b̂j+1 + H.c.) + U

2

∑
j

n̂j (n̂j − 1)

+K(t)
∑

j

j × n̂j , (1)

where b̂
†
j (b̂j ) are the bosonic creation (annihilation) operators

and n̂j = b̂
†
j b̂j are the number operators acting on site j .

Parameters J,U are the nearest-hopping rate and the on-site in-
teraction, respectively. The quantity K(t) = K0 + K1 cos(ωt)
in the last term contains the dc-ac field with K0, K1 as the
amplitudes and ω as the driving frequency. The K0 term can be
acquired by applying a magnetic gradient along the lattice, and
the K1 term can be acquired by periodically shifting the mirror
which is used to form the standing waves. For weak interaction
and small tilting, a high-frequency oscillation can lead to the
standard renormalization of the hopping rates [41]. As the
tilting is increased until K0 = nω with n as an integer, we
will expect the photon-assisted tunneling effects [17,42]. For
strong interaction cases, the two particles occupying the same
site form a bound pair, which undergoes correlated quantum
walks or fractional BO in different situations [33,36].
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We consider two identical bosons in the model and assume
a strong interaction and a large tilting, i.e., U ∼ K0 ∼ ω � J .
The effective dynamics can be derived by applying Floquet
theory in the high-frequency limit. In particular we are
concerned with the specific conditions in the present paper:
U = (N + 1

2 )ω, K0 = (M + 1
2 )ω with N and M integers.

With ω � J ,

U − K0 = (N − M)ω

≡ μω,
(2)

U + K0 = (N + M + 1)ω

≡ νω.

The term ω/2 in K0 is significant since it suppresses the
tunneling of an isolated particle to a neighboring empty site.
The equal form of U ensures (U ± K0)/ω to be integers, which
means that the tunneling processes assisted with other particles
are possible. The dynamical properties of these conditions will
be discussed later. The two-particle state is represented in the
Fock basis as |�(t)〉 = ∑

n,m cn,mb̂
†
nb̂

†
m|0〉, where coefficients

cn,m are the probability amplitudes. This expansion contains
a Bose enhancement factor of

√
2 when n = m. By applying

Schrödinger’s equation of motion i ∂t |�(t)〉 = Ĥ |�(t)〉 (� =
1), one obtains the temporal evolution of cn,m,

i
d

dt
cn,m = −J

∑
σ=±1

(cn+σ,m + cn,m+σ ) + Fn,m(t)cn,m, (3)

where Fn,m(t) = Uδn,m + K(t)(n + m). For two fermions
with distinct spin states, the deduction can be performed in
a similar manner within the Fermi-Hubbard model [43]. To
employ the rotating-wave approximation and drop the trivial
terms in the oscillation, we rewrite the amplitudes cn,m(t) in
terms of an,m(t) as

cn,m(t) = an,m(t) exp

[
−i

∫ t

0
dt ′Fn,m(t ′)

]
. (4)

From Eqs. (3) and (4), we obtain the equation of motion for
an,m(t),

i
d

dt
an,m = −J {an+1,m exp [iU (δn,m − δn+1,m)t − iF (t)]

+an,m+1 exp[iU (δn,m − δn,m+1)t − iF (t)]

+an−1,m exp[iU (δn,m − δn−1,m)t + iF (t)]

+an,m−1 exp[iU (δn,m − δn,m−1)t + iF (t)]}, (5)

where F (t) = K0t + K1/ω sin(ωt). The standard renormal-
ization procedure allows one to replace the fast oscillating
terms with their averages over a period. Taking account of
the conditions (2), the renormalized coupling amplitudes for
|n − m| > 1 vanish

1

T

∫ T

0
dt ′ exp

{
± i

[
K0t

′ + K1

ω
sin(ωt ′)

]}
= 0. (6)

Note that Eq. (6) holds in the high-frequency limit due to the
additional term ω/2 in K0.

In order to put the initial expansion of |�(t)〉 in a more com-
pact form, i.e., |�(t)〉 = ∑

n<m cn,mb̂
†
nb̂

†
m|0〉 + ∑

n cn,n|2〉n,

where |2〉n indicates a double occupation on site n, we perform
a substitution for each an,m:

(1) an,n → 1√
2
an,n,

(2) an,m>n → 1
2an,m>n,

(3) an,m<n → 1
2am<n,n.

Further calculations yield

i
d

dt
an,n = −

√
2J1an,n+1 −

√
2J2an−1,n,

i
d

dt
an,n+1 = −

√
2J1an,n −

√
2J2an+1,n+1, (7)

i
d

dt
an,m = 0 (|n − m| > 1),

where the hopping amplitudes have been renormalized as

J1 = JJμ

(
K1

ω

)
, J2 = (−1)νJJν

(
K1

ω

)
, (8)

with Jμ as the μth Bessel function of the first kind. These
hopping amplitudes result from the restricted forms of U and
K0. We mention that Eqs. (7) can also be derived from a many-
particle system in which one needs to expand the quantum
state in the Fock basis labeled by |k〉 ∈ {|n(k)

1 ,n
(k)
2 , . . . ,n

(k)
N 〉}.

A similar deduction within conditions U, K0 = mω/2 (with
m as an integer), ω � J leads to an effective Hamiltonian with
occupation-dependent hopping terms [44],

Ĥeff = −
∑
〈i,j〉

b̂
†
i Jeff(n̂i ,n̂j )b̂j . (9)

Explicitly, the tunneling channels between sites j and j + 1
with initial occupations nj and nj+1, respectively, have the
effective hopping rates,

J(nj ,nj+1)→(nj +1,nj+1−1) =
{
JJn+

(
K1
ω

)
, n+ ∈ Z;

0, otherwise,

J(nj ,nj+1)→(nj −1,nj+1+1) =
{
JJn−

(
K1
ω

)
, n− ∈ Z;

0, otherwise,
(10)

n± = (nj − nj+1 ± 1)
U

ω
− K0

ω
,

where Z represents the integer set. Applying Eqs. (10) to a
two-particle system and restricting conditions (2), the effective
tunnelings recover the dynamics described by Eq. (7) with the
hopping rates reducing to J1 and J2. A small deviation from
the “resonant” conditions (2) will lead to a residual on-site
Hubbard energy or a small lattice tilting [43]. In the MI regime
with K0 = 0, tuning the driving frequency resonant with the
on-site interaction can lead to the destruction of the MI state
as shown in Ref. [45]. It is notable that the on-site interaction
is not required to be positive. Thus our model is equivalently
applicable to attractive particles.

III. MIGRATION OF A CORRELATED PAIR

For the correlated particle-pair model, Eqs. (7) indicate that
all possible tunneling channels are

|2,0〉j,j+1
A↔ |1,1〉j,j+1

B↔ |0,2〉j,j+1, (11)
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where the channels labeled by A and B have hopping rates J1

and J2, respectively. The tunneling of an isolated particle is
forbidden. Such tunneling properties stem from the conditions
U = (N + 1

2 )ω and K0 = (M + 1
2 )ω. Multiples of the energy

quanta ω (� = 1) which are provided by the periodically
driving can compensate the energy cost from both the on-site
interaction and the lattice tilting. However, the compensation
cannot be distributed independently. The difference in the
leftward and the rightward tunnelings is a consequence of
the broken mirror symmetry that is induced by the tilting field.

We call the double occupation state, such as |2,0〉j,j+1,
the doublon and the state with one-particle occupation on
nearest-neighboring sites, such as |1,1〉j,j+1, the dimer. The
variable amplitudes K1 make the tunneling rates J1 and J2

adjustable. Without losing the generality, we take a specific
case of N = M = 0 hereafter so that U = K0 = ω/2, μ =
0, and ν = 1. By setting the oscillating amplitude K1 to
J0(K1/ω) = 0 or J1(K1/ω) = 0, we arrive at the CDT and
thus obtain an oscillation between the doublon and the dimer
state, namely,

(A) |2,0〉j,j+1 ↔ |1,1〉j,j+1, as J1(KA
1 /ω) = 0,

(B) |1,1〉j,j+1 ↔ |0,2〉j,j+1, as J0(KB
1 /ω) = 0.

The effective hopping rates are determined by JA
res =

JJ0(KA
1 /ω) and JB

res = JJ1(KB
1 /ω). Thus frequencies of the

sinusoidal doublon-dimer oscillations A and B are ωA
osc =√

2JA
res and ωB

osc = √
2JB

res.
To verify the complete doublon-dimer oscillations, we carry

out the numerical simulation of real-time evolution using
the time-dependent Hamiltonian. The density distributions in
Figs. 1(a) and 1(c) show the local oscillation with U = K0 =
ω/2 = 20 (in units of J ). We have set KA

1 /ω = 3.8317 in
Figs. 1(a) and 1(b) and KB

1 /ω = 2.4048 in Figs. 1(c) and 1(d),
which correspond to the oscillations A and B, respectively.
The evolutions of the probability |〈�(t)|doublon(dimer)〉|2 are
shown in Figs. 1(b) and 1(d), which indicate the expected
oscillations with different periods π/ωA

osc and π/ωB
osc. The

analytical results from the effective model shown by squares
in Figs. 1(b) and 1(d) are in good agreement with the direct
simulation results.

By combining the A,B processes, we can arrive at the
directed migration of the correlated particle pair as shown
in Figs. 2(a) and 2(c). The driving amplitude K1 is properly
modulated for the correlated pair to realize the series of
hopping processes,

|2,0〉j,j+1 → |1,1〉j,j+1 → |0,2〉j,j+1,

which fulfill a complete cycle of migrating the doublon from
site j to j + 1. We have set the period TA(B) = π/2ωA(B)

osc

for K1 = K
A(B)
1 as demonstrated in Figs. 2(b) and 2(d). The

direction of motion can be well controlled by the modulation.
We note that the direction of migration also depends

on whether the pair is initially a doublon or a dimer. By
making use of this feature, one can achieve a bifurcating
quantum motion by halving one of the time durations TA

(or TB). As shown in Fig. 3, by shortening the first TB to
its half, the oscillation B is incomplete, and the pair state
becomes a superposition of |doublon〉 and |dimer〉, i.e., |	〉 =
1/

√
2|1,1〉7,8 + 1/

√
2|0,2〉7,8. The state then propagates in

two branches which move oppositely. If we halve the third

FIG. 1. Doublon-dimer oscillations (a) and (b) between states
|0,2〉5,6 and |1,1〉5,6 and (c) and (d) between states |2,0〉5,6 and
|1,1〉5,6. The evolutions of density distribution are shown in (a) and (c),
respectively, with driving amplitudes K1/ω = KA

1 /ω = 3.8317 and
K1/ω = KB

1 /ω = 2.4048. (b) and (d), respectively, are the temporal
evolutions of the probability of the dimer state (black curves) and
the doublon state (blue curves) with the probability labeled by
|c(n1,n2)|2 = |〈�|n1,n2〉j,j+1|2. Analytical results from the effective
model [Eq. (9)] are denoted by the squares.

TA, then the a further bifurcation occurs which results in
four branches. This mechanism can serve as a quantum beam
splitter that divides the correlated particle pair into coherent
parts that propagate oppositely.

The proposed particle-pair migration scheme could be
experimentally observed. The periodically driving Hubbard
model with tilting in our consideration has been realized with
cold atoms in optical lattices [17,46,47]. The parameters are
highly controllable and can vary in a wide range. In these
experiments with ultracold rubidium atoms, the magnitude of
nearest-hopping rate J and on-site interaction U are tuned to

FIG. 2. (a) and (c) Directed migration of the correlated pair
realized by the doublon-dimer oscillations shown in Fig. 1(a) and 1(c).
(b) and (d) are the corresponding amplitude modulations of the
driving field, respectively. We set K1/ω = KA

1 /ω = 3.8317 in the
time-interval TA and K1/ω = KB

1 /ω = 2.4048 in the time-interval
TB .
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FIG. 3. (a) A bifurcating quantum motion realized by properly
setting duration of the amplitude modulation as shown in (b).
The variation of modulation leads to incomplete transition of the
oscillations shown in Fig. 1, which results in the coexistence of the
doublon and dimer.

J/� ∼ 1 kHz, J/U ∼ 0.2 [46], the value of driving amplitude
K1 is tuned up to 4�ω [47], and the lattice tilting can be
arranged as K0 ∼ nω [17]. We will consider the driving
frequency to fit the high-frequency limit with magnitude
ω ∼ 40 kHz. The hopping rate J decreases drastically with
the increase in lattice depth, making it possible to reach the
conditions in this paper.

IV. CREATING ENTANGLEMENT WITH
THREE PARTICLES

One of the advantages of the driving schemes under
conditions (2) is that an isolated particle is forbidden from
tunneling to its adjacent sites whereas the correlated pair can
make directed migration via properly modulating that driving
field. Based on this consideration, we can realize a scattering
process between a single particle and the particle pair. We
first consider three identical particles, one isolated and two in
a pair, which initially stay apart. Under the driving field the
correlated pair moves toward the motionless single particle
and mixes with it as shown in Fig. 4. The isolated particle
can only tunnel to neighbor sites with the assistance of other
particles. The modulation of driving amplitude is the same
as that in Fig. 2(d) before state |102〉4–6 is formed at time
3(TA + TB). The further dynamics of the three particles can be
elusive without restriction. However, while setting K1 = KB

1 ,
all possible tunneling processes reduce to

|102〉〈i,j,k〉 ↔ |111〉〈i,j,k〉 ↔ |021〉〈i,j,k〉, (12)

where 〈i,j,k〉 represents three neighboring sites i,j,k and
|ni,nj ,nk〉 as the state with ni,nj ,nk particles on sites i,j,k,
respectively. All hopping rates are the same J̃ = JJ1(KA

1 /ω).

FIG. 4. A (2+1)-particle migration scheme. The isolated particle
remains motionless whereas the correlated pair moves toward and
mixes with the single particle. After that the particles separate. (a) The
density evolution reveals the approaching, oscillating, and separating
processes. (b) Modulations of the driving field with the amplitude
between KA

1 /ω and KB
1 /ω. (c) The probability of the mixing three

states |102〉〈4,5,6〉 (black), |111〉〈4,5,6〉 (blue), and |021〉〈4,5,6〉 (red) in the
time-interval 3Tc of (b). The green line indicates that the probability
of other states, such as |c(120)|2 and |c(201)|2, are severely damped.

Expanding the three-particle state by

|�(t)〉 = c1(t)|102〉〈i,j,k〉 + c2(t)|111〉〈i,j,k〉 + c3(t)|021〉〈i,j,k〉,

the analytical results while assuming c1(0) = 1 are

c1(t) = 1

2
cos(2J̃ t) + 1

2
,

c2(t) = − i√
2

sin(2J̃ t), (13)

c3(t) = 1

2
cos(2J̃ t) − 1

2
.

These formulas are consistent with the numerical results shown
in Figs. 4(a) and 4(c). The oscillation periods are TC = π/J̃

for both |c1(t)|2 and |c3(t)|2 and TC/2 for |c2(t)|2. We have set
K1 = KB

1 for 3TC as shown in Fig. 4(b). The oscillation will
recover the initial |102〉〈4–6〉 state at time 3(TA + TB + TC).
Thus a reverse modulation can be applied to separate the three
particles into a pair and an isolated one.

Based on this knowledge, we are able to realize quantum
entanglement by considering distinguishable particles. Now
we assume the migrating particle pair to be a-type atoms and
the single-particle b-type atom. a,b atoms can be a neutron
boson of different hyperfine states. We label the particle-pair
system A and the isolated single-particle system B, which are
schematically illustrated in Fig. 5(a), thus |�〉 ∈ HA ⊗ HB .
The migrating (I), mixing (II), and separating (III) processes
are similar to the identical particle case [Fig. 4(a)]. The
modulation of the driving field is the same as that in Fig. 4(b).
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FIG. 5. (a) A schematic of the realization of entanglement with
correlated particles in the driving lattice. The correlated pair of a

atoms (blue double lines) moves toward a single b atom (black line)
in time-interval I. After mixing in time-interval II, the separating
particles are entangled in time-interval III. The dashed (red) lines
indicate either a atom or b atoms. The double lines denote the
correlated particle pair. (b) The evolution of the concurrences of the
system. In II the concurrence is not well defined due to the full mixing
of the three particles (plotted on the dotted curve) except those values
marked by the crosses. In our case, we hold the oscillation for three
periods, resulting in a large concurrence in III. (c) Numerical results in
II starting from state |0〉A ⊗ |1〉B = |aa〉A ⊗ |b〉B , which belongs to
|102〉〈4–6〉. The probability evolution of state |102〉〈4–6〉 (|c(102)|2) and
its internal states |0〉A ⊗ |1〉B = |aa〉A ⊗ |b〉B (|c(102)cα|2), |1〉A ⊗
|0〉B = |ab〉A ⊗ |a〉B (|c(102)cβ |2) are shown by the black solid, blue
dashed, and red dotted curves, respectively.

Regime I indicates the process of incidence of system A

(the correlated a-atom pair) to the motionless system B (the
isolated b atom). We label the initial state |aa〉A ⊗ |b〉B , where
|aa〉 means that two particles in A are of type a. Regime
II indicates the mixing regime with various oscillations. By
setting the time duration in regime II to be multiples of TC ,
we are able to subsequently separate the three particles into a
bipartite system (regime III) of site-resolved A and B.

In general, the states before the incidence and after the
mixing oscillations can be defined by

|�〉AB ∈ {|aa〉 ≡ |0〉, |ab〉 ≡ |1〉}A ⊗ {|a〉 ≡ |0〉,
|b〉 ≡ |1〉}B,

where |ab〉 means finding one particle to be of type b in system
A. The separating process (III) after the three-particle mixing
oscillations starts from state |�〉 = |102〉4–6. To give insight
into the internal states, we perform a decomposition |102〉4–6 =
cα|0〉A ⊗ |1〉B + cβ |1〉A ⊗ |0〉B with normalization condition
|cα|2 + |cβ |2 = 1. A simulation has been carried out for the
oscillation regime II. In Fig. 5(c), we show the probability
of states |102〉4–6 (|c(102)|2, the black real curve), |0〉A ⊗

|1〉B (|c(102)cα|2, the blue dashed curve), and |1〉A ⊗ |0〉B
(|c(102)cβ |2, the red dashed curve). The oscillation of |c(102)|2
(the black curve) in Fig. 5(c) is identical to that in Fig. 4(c).
In regime III the two branches form a entangled state, and the
degree of entanglement for a two-partite system is measured
by the concurrence C(�AB) [48], which is defined by

C(�AB) = 2|c00c11 − c01c10|, (14)

with {c00,c11,c01,c10} as the coefficients of state |�AB〉. A two-
partite system is maximally entangled when C = 1, e.g., the
two-qubit Bell states, such as 1/

√
2 × (|01〉 ± |10〉), whereas

C = 0 indicates the factorizability of the two-partite wave
function. In our case the concurrence can be calculated through
C = 2|cαcβ |. Note that the final state in Fig. 4 depends on
the ending point of the three-particle oscillation with time
duration T̃ = nTC, n = 0–2, . . . . The concurrence of the
system with site-resolved two parts A,B depends on discrete
n. Four possible values of C(n) are marked by the crosses in
Fig. 5(b). At the beginning of the oscillation, we have C = 0
showing no entanglement, which is also true before mixing of
the two parts A and B. After a duration of mixing T̃ = 3TC , we
reach a large entanglement state with C ≈ 0.99. This state is
stable and detectable in the lattice system. With increasing
n, concurrence approaches 2

√
2/3 since |c(102)|2 = 1 and

|cα|2 → 1/3, |cβ |2 → 2/3. In the separating procedure after
oscillating with a large n, the A part of the particle pair
evolves between the doublon and the dimer. When the dimer
is formed from state |1〉A = |ab〉A, the probabilities of finding
states |a,b〉〈i,j〉 and |b,a〉〈i,j〉 are equal. By regarding the three
particles as a site-resolved tripartite system, we can arrive at
the entangled three-qubit states, e.g.,

|�〉 = 1√
3

(|b,a,a〉i,j,j+1 + |a,b,a〉i,j,j+1 + |a,a,b〉i,j,j+1),

(15)
which can be intuitively represented by the specific state
|W 〉 = 1/

√
3 × (|100〉 + |010〉 + |001〉). The |W 〉 state repre-

sents the south pole of a Bloch sphere for the two-dimensional
space, whereas the north pole is represented by the orthogonal
Greenberger-Horne-Zeilinger state [49].

Since the entanglement has been built at the end of the inter-
acting oscillation and subsequent modulations of the particle
pair are available, we arrive at a quantum gate controlled by
global modulations of the lattice. The capabilities of parallel
processing in this model indicate possible applications on the
further research of multiparticle entangled states.

V. SUMMARY

We have investigated correlated atoms in a driving Hubbard
model. We focus on fast driving, strong interaction, and
a large tilting regime under the specific conditions U =
(N + 1

2 )ω, K0 = (M + 1
2 )ω (N,M are integers), and ω � J .

The driving lattice provides the energy quanta ω (� = 1),
which induces the assisted tunneling effect. The effective
hopping rates indicate the CDTs by properly modulating the
amplitude of the field. We proposed a scheme to realize the
directed migration of a strongly correlated particle pair and

063609-5



YI ZHENG AND SHI-JIE YANG PHYSICAL REVIEW A 93, 063609 (2016)

considered a scattering model with the interaction between
the particle pair and an isolated particle. Their oscillations
are utilized to induce a two-partite or even a three-qubit
entanglement and reveal the possibility of quantum control,
transport, and computing with lattice modulation.
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Nature (London) 415, 39 (2002).
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