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First-order superfluid-to-Mott-insulator phase transitions in spinor condensates
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We observe evidence of first-order superfluid-to-Mott-insulator quantum phase transitions in a lattice-confined
antiferromagnetic spinor Bose-Einstein condensate. The observed signatures include the hysteresis effect,
significant heatings across the phase transitions, and changes in spin populations due to the formation of
spin singlets in the Mott-insulator phase. The nature of the phase transitions is found to strongly depend on
the ratio of the quadratic Zeeman energy to the spin-dependent interaction. Our observations are qualitatively
understood by the mean field theory and suggest tuning the quadratic Zeeman energy is a new approach to realize
superfluid-to-Mott-insulator phase transitions.
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I. INTRODUCTION

A quantum phase transition from a superfluid (SF) to a Mott
insulator (MI) was realized in a scalar Bose-Einstein conden-
sate (BEC) trapped by three-dimensional (3D) optical lattices
about a decade ago [1]. Marking an important milestone,
this achievement has stimulated tremendous efforts to apply
highly controllable ultracold bosonic and fermionic systems
in studying condensed matter models [2–6]. The SF-MI
transitions have been confirmed in various scalar BEC systems
via different techniques that can efficiently control the ratio of
interatomic interactions to the mobility of atoms [1,5–7]. One
well-known approach to simultaneously enhance interatomic
interactions and suppress atomic motion is by raising the depth
of an optical lattice [1]. Another convenient method is to
manipulate interactions with a magnetically tuned Feshbach
resonance [7]. A third technique is to control the hopping
energy of bosonic atoms by periodically shaking the lattice
[6]. Spinor BECs, on the other hand, possess an additional
spin degree of freedom, leading to a range of phenomena
absent in scalar BECs [8–14]. One important prediction is
the existence of first-order SF-MI phase transitions in lattice-
trapped antiferromagnetic spinor BECs [2,11,13,15–18]. In
contrast, the phase transitions can only be second order in
scalar BECs and ferromagnetic spinor BECs [2,5,17].

In this paper, SF-MI transitions are studied in sodium
antiferromagnetic spinor BECs confined by cubic optical
lattices. We observe the hysteresis effect, changes in spin
components, and substantial heating across the phase tran-
sitions. These indicate the existence of metastable states,
the formation of spin singlets, and associated first-order
transitions. In the ground state of the spinor BECs, the
nature of SF-MI transitions is found to be determined by
the competition between the quadratic Zeeman energy qB

and the spin-dependent interaction U2. At low magnetic fields
where U2 dominates, signatures of first-order transitions are
observed. In the opposite limit, the transitions appear to be
second order and resemble those occurring in scalar BECs.
These qualitative features are explained by our mean-field
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(MF) calculations. We also study the phase transitions with an
initial metastable state and observe stronger heatings across
all magnetic fields. Furthermore, our data indicate a new
technique to realize SF-MI transitions is by varying qB .

We describe lattice-trapped F = 1 spinor BECs with the
Bose-Hubbard (BH) model [15,19]. In the decoupling MF
approximation, the Hamiltonian can be reduced to a site-
independent form [12,18,20]:

HMF = U0

2
n(n − 1)+U2

2
(�S2 − 2n) + qB

∑
mF

m2
F nmF

− μn

− zJ
∑
mF

(
φ∗

mF
bmF

+ φmF
b†mF

) + zJ | �φ|2. (1)

U0 is the spin-independent interaction, n = ∑
mF

nmF
, and

nmF
= b

†
mF

bmF
is the atom number per site of the mF state.

The vector order parameter is φmF
≡ 〈bmF

〉, μ is the chemical
potential, J is the nearest-neighbor hopping energy, z is the
number of nearest neighbors, and �S is the spin operator
[21]. U2 is positive (negative) in F = 1 antiferromagnetic
(ferromagnetic) spinor BECs, e.g., U2 � 0.04U0 in a 23Na
system [22]. With spatially uniform superfluids in equilibrium,
one can assume φmF

to be real. φmF
= 0 ( �= 0) in the MI (SF)

phase.
An antiferromagnetic F = 1 spinor BEC of zero magne-

tization forms a polar superfluid in equilibrium with 〈�S〉 = 0
[2,22–24]. There are two types of polar superfluids: the lon-
gitudinal polar (LP) state with (φ1,φ0,φ−1) = √

NSF(0,1,0),
and the transverse polar (TP) state with (φ1,φ0,φ−1) =√

NSF/2(1,0,1). Here NSF is the number of condensed atoms
per site. At zero qB and the same NSF, TP and LP states are
degenerate in energy. At qB > 0, the MF ground state is always
the LP state, but a metastable TP phase may exist [2,24].

Our MF calculations show that qB/U2 is a key factor to un-
derstand the nature of SF-MI transitions in antiferromagnetic
spinor BECs [25]. At low magnetic fields (where 0 � qB �
U2), U2 penalizes high-spin configurations and enlarges the
Mott lobes for even number fillings as atoms can form spin
singlets to minimize the energy. Metastable Mott-insulator
(MMI) and metastable superfluid (MSF) phases emerge due to
the spin barrier and lead to first-order SF-MI transitions [see
Figs. 1(a) and 1(c)] [15–18]. When 3D lattices are ramped up
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FIG. 1. (a) MF phase diagrams derived from the BH model for
scalar BECs [19] and the LP and TP sodium spinor BECs in cubic
lattices [see Eq. (1)]. The superfluid order parameter φSF versus uL

at μ/U0 = 1.4 in (b) scalar and LP spinor BECs at qB/h = 360 Hz
and (c) LP spinor BECs at qB/h = 20 Hz. Here |φSF|2 = NSF and h

is the Planck constant. (d) Predicted SF-MI transition point uc versus
qB at μ/U0 = 1.4 [see Eq. (1)].

and down, hysteresis is expected across the phase transitions
(i.e., different transition lattice depth uc). In addition, when the
system changes from a metastable phase to a stable phase (e.g.,
from MSF to MI), there will be a jump in the order parameter
and the system energy, leading to unavoidable heating to
the atoms. Hence, hysteresis, substantial heating, and the
formation of spin singlets may be interpreted as signatures
of first-order transitions. As qB increases, the mF = 0 state
has lower energy than other mF levels and U2 becomes
less relevant. When qB becomes sufficiently larger than U2

(U2/h � 80 Hz in this work), the ground state phase diagram
of antiferromagnetic spinor BECs reverts back to one that is
similar to the scalar BH model with only second-order SF-MI
transitions (see Fig. 1).

II. EXPERIMENTAL SETUP

Three different types of BECs (i.e., scalar BECs, LP and TP
spinor BECs) are studied in this work. A scalar BEC containing
up to 1.2 × 105 sodium atoms in the |F = 1,mF = −1〉 state
is created with an all-optical approach similar to Ref. [26].
A F = 1 spinor BEC of zero magnetization is then produced
by imposing a resonant rf pulse to the scalar BEC at a fixed

(a) (b)
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FIG. 2. (a) Schematic of the reciprocal lattice and a TOF image
taken after lattices are abruptly released. The area in red represents
the imaging beam. (b) Two lattice ramp sequences used in this paper.
(c) Interference patterns observed after we abruptly release LP spinor
BECs at various final uL followed by a 5.5-ms TOF at qB/h =
360 Hz. The left (right) panel is taken after ramp-up (ramp-down)
sequences. The field of view is 400 μm × 400 μm.

qB . Since the LP state (where ρ0 = 1) is the MF ground state,
it can be prepared by simply holding the spinor BEC for a
sufficiently long time at high magnetic fields [24]. Here ρmF

is the fractional population of each mF state. The TP state
(where ρ±1 = 0.5) is generated via a different approach: we
apply a resonant microwave pulse to transfer all mF = 0 atoms
in the F = 1 spinor BEC to the F = 2 state, and then blast
away these F = 2 atoms with a resonant laser pulse. After
quenching qB to a desired value, we adiabatically load the
BEC into a cubic optical lattice within time tramp. This 3D
lattice is constructed by three optical standing waves from a
single-mode laser at 1064 nm, which results in a cubic periodic
potential with a lattice spacing of 532 nm. All lattice beams are
frequency-shifted by at least 20 MHz with respect to each other
for eliminating cross interference among them. The calibration
of optical lattice depth uL is conducted via Kapitza-Dirac
diffraction patterns and has an uncertainty of ∼15%. As shown
in Fig. 2(b), lattices are linearly ramped up to a given uL

in a ramp-up sequence, while lattices are first adiabatically
ramped up to 26ER and then back down to a variable final
uL in a ramp-down sequence. Here ER = �

2k2
L/(2M) is the

recoil energy, M and � are, respectively, the atomic mass
and the reduced Planck constant, and kL is the lattice wave
vector. We find that a ramp speed of 2ER/ms is sufficient to
satisfy the intraband adiabaticity condition and ensure � 80%
of atoms remain in a scalar or a high-field LP spinor BEC
after a ramp-down sequence to 2ER . We measure ρmF with
Stern-Gerlach imaging and microwave imaging after a certain
time of flight (TOF).

III. FIRST-ORDER SUPERFLUID TO MOTT-INSULATOR
PHASE TRANSITIONS

Distinct interference peaks can always be observed during
ballistic expansion, after each BEC is abruptly released from
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FIG. 3. (a) Peak OD of interference peaks versus uL after lattice
ramp-up sequences. Markers are experimental data, and lines are
linear fits. We estimate uc from the intersection of two linear fits to
the data. The inset shows how we extract the peak OD from a TOF
image (left). The dotted line in the right inset is a density profile of
this TOF image through the central and one pair of interference peaks
along the vertical direction, while the solid line is a bimodal fit to one
side peak. (b) Similar to panel (a) except that all data are taken after
lattice ramp-down sequences.

a shallow lattice of uL � 10ER . As shown in the TOF
images in Fig. 2, the six first-order diffracted peaks are
symmetrically set apart from the central peak by a distance
corresponding to a momentum of 2�kL along three orthogonal
axes. These interference peaks may be considered as evidence
for coherence associated with the SF phase. In fact, a larger
visibility of interference patterns, a narrower width of the
central peak, and a higher optical density (OD) of interference
peaks have all been used as trustworthy evidence for improved
phase coherence in atomic systems [1,3,5,27].

TOF images in Fig. 2(c) show the loss and revival of the in-
terference contrast in spinor BECs as cubic lattices are ramped
up and down. A quantitative analysis of these TOF images
demonstrates the interference peaks (i.e., coherence associated
with the SF phase) change in a reversible manner with uL (see
Fig. 3). First, the interference patterns become more visible as
lattices are made deeper and reach their maximum OD around
10ER . This may be due to lattice-enhanced density modulation
[3,5,27]. Second, when uL is further increased and exceeds uc,
the interference peaks steadily smear out to a single broad peak
indicating atoms completely lose phase coherence. We extract
uc in Fig. 3 from the intersection of two linear fits to the data
of a given BEC. To confirm the system has undergone a SF-MI
transition, we monitor lattice ramp-down sequences, because

one characteristic of a MI state has proven to be a loss of phase
coherence in deep lattices and a subsequent rapid revival of
coherence as uL is reduced [1,3,5]. The interference peaks
of scalar and spinor BECs reversibly revive after ramp-down
sequences, indicating atoms quickly recohere and return to SF
states [see Fig. 3(b)].

Observations in Fig. 3 are qualitatively consistent with
our MF calculations and suggest the existence of first-order
SF-MI transitions under some circumstances. First, LP spinor
BECs at high magnetic fields possess many properties (e.g.,
the peak OD) that are similar to those of scalar BECs. Their
ramp-up and ramp-down curves are close to each other, while
both have roughly symmetric transition points uc. Similar
phenomena were observed in 87Rb and 6Li systems and
have been considered as signatures of second-order SF-MI
transitions [1,3,5]. Second, LP states at low magnetic fields
and TP states at high fields apparently have smaller uc for both
ramp-up and ramp-down processes compared to scalar BECs,
suggesting enlarged Mott lobes. In particular, the ramp-down
uc for LP states at low fields is noticeably smaller than their
ramp-up uc, corroborating with the MF picture that hysteresis
occurs across first-order phase transitions. Third, the recovered
interference contrast is visibly different for various BECs after
the ramp-down process (after SF-MI transitions). For scalar
and high-field LP spinor BECs, nearly 75% of peak OD
can be recovered in the interference peaks after ramp-down
sequences. The slightly reduced interference contrast may be
due to unaccounted heatings, which leads a small portion of
atoms (< 20%) to populate the Brillouin zone. In contrast,
after we utilized quite a few techniques and optimized many
parameters, the maximal recovered interference contrast of
low-field LP states is only ∼40% (∼20% for high-field TP
states). We attribute this to unavoidable heatings across the
first-order transitions as there is a jump in system energy
between metastable states and stable states. Both hysteresis
effect and significant heatings strongly suggest that first-
order SF-MI transitions are realized in our experiment. Note,
however, we do not see noticeable jumps in the observables
as is typically associated with first-order transitions. This is
likely due to the presence of even and odd atom fillings
in inhomogeneous systems such as trapped BECs, although
predicted first-order SF-MI transitions only exist for even
occupancy number. Limited experimental resolutions may be
another reason.

Our data in Fig. 3(b) also demonstrate that a new approach
to realize SF-MI transitions is by ramping qB at a fixed uL. For
example, when the final uL in ramp-down sequences is set at a
value between 17ER and 21ER , atoms in LP spinor BECs can
cross SF-MI transitions if qB/h is sufficiently reduced (e.g.,
from 360 to 20 Hz). This agrees with Fig. 1(d): uc depends
on qB .

We then compare scalar and spinor BECs within a wide
range of magnetic fields, 20 Hz � qB/h � 500 Hz, after iden-
tical lattice ramp sequences to uL = 10ER . We choose 10ER

because it is apparently the lattice depth around which we
observe the maximum interference contrast, with negligible
difference in scalar and spinor BECs after ramp-up sequences
at all qB . This is consistent with Fig. 1, which predicts all
BECs studied in this work should be well in the SF phase at
10ER . However, the interference peak ODs show intriguing
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FIG. 4. Peak OD of interference peaks versus qB observed after
lattice ramp-down sequences to 10ER . Markers are experimental data.
Red and blue lines are exponential fits. The black line is a linear fit.

differences after ramp-down sequences to 10ER (see Fig. 4):
deviations from the maximal value appear for LP spinor BECs
at low magnetic fields and the TP state at all positive qB . We
again attribute this to different amount of heatings across SF-
MI transitions. Different extent of heatings may be produced
due to different spin barriers as well as the amount of energy
jump across the transitions. Hence, the maximum recovered
OD is a good indicator for the appearance or disappearance
of first-order SF-MI transitions. Notably, LP spinor BECs are
found to behave very similarly to scalar BECs when qB � U2

(see Fig. 4). This observation is consistent with Fig. 1(d),
in which the two MF curves for the LP state merge indicating
that metastable states disappear and SF-MI transitions become
second order when qB/h > 70 Hz. Furthermore, the difference
between LP and TP spinor BECs appears to exponentially
decrease as qB approaches zero. Exponential fits to the data
verify that LP and TP spinor BECs should show the same
behavior at qB = 0.

Figure 5(a) shows the change in the fractional population
ρ0 as the lattice is ramped up, which provides another evidence
that is consistent with first-order SF-MI transitions. In the MF
picture, the first-order transition is related to the formation
of spin singlets in the even lobe MI phase. For example, in
the n = 2 MI lobe, the MI ground state |ψg〉 at zero qB is
the singlet state where ρ0 = ρ+1 = ρ−1 = 1/3 [11,13,15–18],

i.e., |ψg(qB = 0)〉 = |S = 0,Sz = 0〉 =
√

2
3 |101〉 −

√
1
3 |020〉

in the occupation basis of |n1,n0,n−1〉. For qB > 0, we
diagonalize Eq. (1) in this occupation basis and find |ψg〉 =
U2−2qB+

√
4q2

B−4qBU2+9U 2
2

2
√

2U2
|101〉 − |020〉. This calculation result

is shown in Fig. 5(b). A line at uL = 26ER from Fig. 5(b)
represents the result in the n = 2 Mott lobe, which is also
highlighted as the theoretical n = 2 line in Fig. 5(a) inset.
Two predictions can be derived from this MF calculation: ρ0

drastically decreases as atoms cross the first-order transition
(from SF to MI), and ρ0 rises with qB in the n = 2 Mott lobe.

Our observations shown in Fig. 5(a) may be the first
experimental confirmation of these predictions: an initial LP
state is found to sigmoidally evolve to a state consisting
of all three mF components as uL is ramped up at low
magnetic fields, with the measured ρ0 sigmoidally decreasing
from one in the SF phase to around 0.6 in the MI phase

ρ 0
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FIG. 5. (a) Measured ρ0 versus uL after an initial LP spinor BEC
undergoes ramp-up sequences to various final uL at qB/h = 20 Hz.
The solid line is a sigmoidal fit. Inset: Similar to the main figure
except that we set qB at various values and the final uL at 26 ER

to ensure atoms enter into the MI phase. The dashed (solid) line
represents the MF result for n = 2 (npeak = 5). (b) Predicted ρ0 in the
ground state of antiferromagnetic spinor BECs at various uL and qB

with μ/U0 = 1.4.

(uL � 22ER). In addition, in the MI phase, the measured
ρ0 rises with qB , and approaches one at qB � U2 where
the ground state phase diagram of antiferromagnetic spinor
BECs resembles the scalar BH model with only second-order
SF-MI transitions [see Fig. 5(a) inset]. This observation can
be well understood by the MF calculation [the npeak = 5 line
in Fig. 5(a) inset]. Note that the peak filling factor npeak is five
in our inhomogeneous system, and the data in Fig. 5(a) thus
represent an average of different atom fillings. In other words,
the theoretical npeak = 5 line in Fig. 5(a) inset represents a
weighted average of the MF predictions at five different n

(i.e., n = 1,2,3,4,5) based on the atom density distribution
in a harmonic trap. Good agreements between our data and
the MF theory suggest that the observed substantial change in
ρ0 at very low fields may be mainly due to the formation of
spin singlets in the even lobe MI phase (after atoms cross the
first-order transitions).

IV. CONCLUSION

In conclusion, we have conducted the first experimental
study on SF-MI transitions in lattice-confined sodium spinor
BECs. We have observed hysteresis, significant heatings across
the phase transitions, and the change in ρ0 resulting from the
formation of spin singlets in the MI phase. These observations
strongly suggest first-order SF-MI transitions are realized
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in our system. Our data are understood by the MF theory
and suggest SF-MI transitions can be realized by tuning qB .
Further studies are required to confirm more signatures of
the first-order transitions, e.g., by precisely imaging Mott
shells [4,7].
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