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Dirac and Weyl rings in three-dimensional cold-atom optical lattices
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Recently three-dimensional topological quantum materials with gapless energy spectra have attracted
considerable interest in many branches of physics. Besides the celebrated example, Dirac and Weyl points
which possess gapless point structures in the underlying energy dispersion, the topologically protected gapless
spectrum, can also occur along a ring, named Dirac and Weyl nodal rings. Ultracold atomic gases provide an ideal
platform for exploring new topological materials with designed symmetries and dispersion. However, whether
Dirac and Weyl rings can exist in the single-particle spectrum of cold atoms remains elusive. Here we propose a
realistic model for realizing Dirac and Weyl rings in the single-particle band dispersion of a cold-atom optical
lattice. Our scheme is based on a previously experimentally implemented Raman coupling setup for realizing
spin-orbit coupling. Without the Zeeman field, the model preserves both pseudo-time-reversal and inversion
symmetries, allowing Dirac rings. The Dirac rings split into Weyl rings with a Zeeman field that breaks the
pseudo-time-reversal symmetry. We examine the superfluidity of attractive Fermi gases in this model and also
find Dirac and Weyl rings in the quasiparticle spectrum.
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I. INTRODUCTION

The topology of band structures plays a crucial role in
many important phenomena [1–4] in various physical fields.
Remarkably, apart from gapped topological insulators that
exhibit metallic edge states protected by symmetries [3,4],
materials with gapless band dispersions could also possess
nontrivial topological properties and protected edge states. A
well-known example of two-dimensional gapless materials is
graphene with Dirac points [2]. In recent years, gapless Dirac
and Weyl points in three dimensions (3D) have been theoret-
ically predicted [5–12] and experimentally observed [13–18]
in a variety of Dirac and Weyl semimetals. Besides isolated
topological gapless points, the gaps of energy spectra in
3D could also close along a line, forming Dirac and Weyl
nodal rings in nodal semimetals [19–28]. However, the band
dispersion of such nodal semimetals usually also consists of
trivial bulk spectra at the same energy as the nodal rings,
which dominate the properties of the materials over nodal
rings.

Cold atomic gases provide a clean platform for discovering
new topological quantum materials due to their high control-
lability for engineering Hamiltonians with desired symmetries
and dispersion and are versatile tools for directly probing
topological states. In this context, recent experimental achieve-
ments for realizing cold-atom topological matter, both gapped
and gapless, mainly focus on low-dimensional (2D or 1D)
systems [29–35]. In 3D, although various topological gapless
structures such as traditional and structured Weyl points and
rings have been theoretically predicted in quasiparticle spectra
of superfluids [36–44], their realization requires very low tem-
perature, which is unachievable within current experimental
technology [45,46]. In contrast, the single-particle spectra
of ultracold fermionic gases have been routinely observed
in experiments at degenerate Fermi temperature [45,46].
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However, apart from Weyl points [47,48], a realistic scheme
for realizing Dirac and Weyl rings in single-particle spectra of
cold atoms is still lacking.

In this paper, we propose an experimental scheme for
engineering a Hamiltonian that hosts Dirac or Weyl rings in
its single-particle spectrum of cold atoms without involving
other topological trivial bulk spectra. The scheme is based
on the experimentally implemented Raman coupling setup for
spin-orbit coupling [45,46,49–53], and therefore it should be
experimentally feasible and may pave the way for the ex-
perimental generation and observation of topological gapless
materials. Our main results are the following:

(i) We construct a spin-dependent Hamiltonian in con-
tinuous space and derive its tight-binding form. Such a
Hamiltonian has not been discussed previously in solid-state
materials [19–27]. The Hamiltonian preserves both pseudo-
time-reversal and inversion symmetries without Zeeman fields,
allowing the existence of Dirac rings. The pseudo-time-
reversal symmetry is broken with a Zeeman field, and a
Dirac ring splits into two Weyl rings. The parameter regions
as well as the topological characterization (e.g., topological
invariance, surface states) for these topological gapless rings
are obtained.

(ii) We investigate the superfluidity of attractive Fermi gases
in this Hamiltonian and find two distinct superfluid phases. The
transition between them is the first order. Interestingly, Dirac
and Weyl rings also exist in quasiparticle spectra in certain
superfluid regions.

(iii) The spin-dependent Hamiltonian can be realized using
an experimental setup based on a previous Raman coupling
scheme for spin-orbit coupling [45,46,49–53]. Specifically,
two pairs of Raman laser beams are used to couple two
hyperfine spin states of atoms for generating a specific spin-
dependent optical lattice, which is essential for the creation
of these topological nodal rings. Compared to solid-state
materials, the chemical potential of the cold atomic gases can
be readily tuned to the nodal rings by controlling the atom
number.
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II. MODEL HAMILTONIAN

We start from a spin-dependent Hamiltonian in continuous
space that can support the existence of nodal rings

H = p2

2m
−

∑
ν=x,y,z

Vν cos2(kLνrν) + hzσz − VSOσy, (1)

where p = −i�∇ is the momentum operator, m is the mass
of atoms, Vν and aν = π/kLν are respectively the strength
and period of a periodic lattice along the ν direction, hz

is the Zeeman field, σν are Pauli matrices for spins, and
VSO = �SO sin(kLxrx) cos(kLyry) cos(kLzrz) corresponds to a
spin-dependent optical lattice. For simplicity, we explore the
physics of this Hamiltonian in the tight-binding model (see the
Appendix A) that can be written as

HT B = Hh + HZ + HSO, (2)

where Hh = −∑
j

∑
σ

∑
ν(tν ĉ

†
j,σ ĉjν+1,σ + tNν ĉ

†
j,σ ĉjν+2,σ +

H.c.) includes the nearest-neighbor (NN) and next nearest-
neighbor (NNN) hopping with the tunneling amplitudes tν and
tNν , respectively, HZ = hz

∑
j (ĉ†j,↑ĉj,↑ − ĉ

†
j,↓ĉj,↓) is the Zee-

man field term, and HSO = itSO
∑

j (−1)jx+jy+jz (ĉ†j,↑ĉjx+1,↓ −
ĉ
†
j,↑ĉjx−1,↓) + H.c. is the position-dependent spin-orbit cou-

pling term. Here ĉ
†
j,σ (ĉj,σ ) creates (annihilates) an atom at

site j with spin σ .
The position dependent spin-orbit coupling of the Hamilto-

nian breaks the one-site translation symmetry, leading to a unit
cell consisting of two sites: A and B. These new unit cells form
a rock-salt crystal structure as shown in Fig. 1(a). In the new ba-
sis �(k)T with �(k) = (eikxax Âk↑ eikxax Âk↓ B̂k↑ B̂k↓),
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FIG. 1. (a) Rocksalt lattice structure and (b) corresponding first
Brillouin zone. Dirac (hz = 0) and Weyl rings (hz = 0.5t), denoted
by the red (central) and blue (inner and outer) rings respectively, are
located at the kx = 0 plane [yellow plane] around (kyay =π,kzaz =π ).
(c) Without and (d) with hz, density of states at zero energy without
including NNN hopping when there are edges along x. The dashed
square indicates the first Brillouin zone. (e), (f) Spectra along kyay =
kzaz [the solid gray line in panels (c) and (d)] with edges along x with
NNN hoppings, where the black and red (dark gray) lines denote the
surface states. tx = 1.17t , ty = tz = t , tSO = 0.53t , and tN = −0.07t .
ax = ay = az.

the Hamiltonian in momentum space takes the form

H (k) = hNt − htτx + hzσz + dxτyσy, (3)

where hNt = −2
∑

ν tNν cos(2kνaν), ht = 2
∑

ν tν cos(kνaν),
and dx = 2tSO sin(kxax). τ are Pauli matrices for the A, B
sublattice space. When hz = 0, this Hamiltonian preserves
both the pseudo-time-reversal symmetry T −1HT = H (−k)
with T = iτxσyK [54] and K being the complex conjugate
operator, and the inversion symmetry I−1HI = H (−k) with
I = τx . These two symmetries guarantee that the state at each
k is at least twofold degenerate, which implies that a gapless
touching point, if exists, is fourfold degenerate. Therefore a
ring formed by such gapless points is a Dirac ring. When
one of the symmetries is broken, for instance, hz breaks the
pseudo-time-reversal symmetry, a Dirac ring splits into two
Weyl rings, as visualized in Fig. 1(b).

The emergence of Dirac and Weyl rings can be seen from
the energy spectrum of H (k): Eλ = hNt ± √

(hz + λht )2 + d2
x

with λ = ±. Clearly, two bands (four bands when hz = 0)
touch to form nodal rings in k space as shown in Fig. 1(b), when
dx = 0 (i.e., kx = 0) and hz + λht = 0, requiring −2t1 < hz <

2t2 or −2t2 < hz < 2t1 with t1 = ty + tz + tx and t2 = ty +
tz − tx . Specifically, when hz = 0 and ty + tz > tx , there exists
a fourfold degenerate Dirac ring. With hz, the Dirac ring splits
into Weyl rings, whose number equals the number of the above
conditions satisfied. Around a point on a nodal ring, the energy
dispersion is linear except along the tangent direction to the
ring. At the critical points (i.e., hz = ±2t1, ±2t2), a ring shrinks
to a point around which the dispersion is quadratic.

To discuss the topology of these nodal rings, we transform
the tight-binding Hamiltonian (2) by (−1)jx+jy+jz ĉj,↑ →
ĉj,↑ [55], which transforms Eq. (3) to

H1(k) = hNt + dzσz − dxσx, (4)

with dz =ht +hz. The eigenvalues are E±
k =hNt ± √

d2
x +d2

z ,
where ± refers to the helicity, the eigenvalue of H1(k)/√

d2
x + d2

z .
This transformation simplifies the lattice structure to a

simple cubic and hence enlarges the Brillouin zone so that
one nodal ring in the kx = 0 plane is moved to the kxax = π

plane. In this transformed model that possesses the chiral
symmetry, i.e., σyH (k)σy = −H (k) without NNN hoppings,
we see that the Weyl ring can be characterized by the
winding number nw = ±1 [56] (belongs to AIII class [57]), the
number of rotations that the vector d = dzex − dxey undergoes
when it travels along a closed trajectory enclosing any gap
closing point. Such nonzero nw also amounts to the quantized
Berry phase C1 mod 2π = π , half of the solid angle that d
winds [58]. For a Dirac ring, the Hamiltonian (3) (hz = 0 )
respects a σy symmetry, i.e., σyH (k)σy = H (k) and hence
the classification is Z × Z; i.e., each band in two subspaces
with different eigenvalues σy = ±1 has a quantized Berry
phase [59,60]. We note that although the NNN hopping breaks
the chiral symmetry by changing the eigenvalues, it does not
modify the eigenstates, thereby leaving the quantized Berry
phase unchanged.

In Figs. 1(c) and 1(d), we plot the surface density of states
at zero energy (without NNN hoppings) when the edges are
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imposed along the x direction in the model (2). The density of
states is extremely large between rings in different Brillouin
zones, implying the vanishing dispersion of the surface states
(i.e., the surface spectrum is flat). With NNN hoppings,
the surface spectrum gains a slight dispersion as shown in
Figs. 1(e) and 1(f), where the black and red lines denote the
surface spectra. Without hz, the surface spectra are fourfold
degenerate, whereas with hz, this fourfold degeneracy is lifted
so that the surface states connecting different pairs of gapless
points are separated (black and red lines). This breaking is
also reflected in Fig. 1(d) where the density of states in the red
region is twice as large as that in the green one.

III. SUPERFLUIDS IN NODAL RING LATTICES

The Dirac and Weyl nodal ring lattices can be realized for
both Bose and Fermi atoms. Here we consider fermionic cold
atoms with contact attractive interactions that can be tuned
by Feshbach resonances. With attractive interactions, Fermi
gases form superfluids. Under the mean-field approximation,
we can define the order parameter for both A and B sublattices,
respectively, as 	A = −U 〈Âj↓Âj↑〉 and 	B = −U 〈B̂j↓B̂j↑〉
with the interaction strength U (U > 0). Note that we
only consider the case with spatially uniform 	A and 	B

corresponding to the BCS pairing with zero center-of-mass
momenta [61]. The dynamics of the superfluid is governed by
the Bogliubov–de Gennes (BdG) Hamiltonian

HBdG = −sz(htτx + μ̃) + dxτyσy + hzσz + HBCS, (5)

where μ̃ = μ − hNt with the chemical potential μ, and
Pauli matrices s act on the Nambu particle-hole space. This
Hamiltonian is written in the Nambu basis (�(k) �̃(k))T

with �̃(k) = (eikxax Â
†
−k↓ −eikxax Â

†
−k↑ B̂

†
−k↓ −B̂

†
−k↑).

	A and 	B are obtained by numerically solving the nonlinear
gap equations, ∂�/∂	A = 0 and ∂�/∂	B = 0, where � is
the thermodynamical potential per site [40].

Before we show the numerical results of 	A and 	B , we
first analyze the conditions under which Dirac and Weyl rings
can emerge in quasiparticle spectra. Our numerical results
show that real 	A and 	B with 	A = |	B | are energetically
preferred; therefore we only need to consider two superfluids
phases: 	A = 	B (dubbed SF1) and 	A = −	B (dubbed
SF2), associated with HBCS = 	Asx and HBCS = 	Asxτz,
respectively. When hz = 0, both phases preserve the pseudo-
time-reversal and inversion symmetries [62], guaranteeing
that the quasiparticle spectra are at least twofold degenerate
at each k. Therefore gapless rings, if exist, are fourfold
degenerate Dirac rings because of these two symmetries and
the intrinsic particle-hole symmetry. Finite hz breaks the
pseudo-time-reversal symmetry and splits the Dirac ring into
two twofold degenerate Weyl rings.

Specifically, for the SF1 state, without hz, the eigenvalues of

HBdG are Eλ
k± = ±

√
h2

0 + h2
t + d2

x + 2λ

√
μ̃2h2

t + h2
0d

2
x with

h2
0 = 	2

A + μ̃2 and λ = ±. Each spectrum is twofold de-
generate. From (E+

k+)2(E−
k+)2 = (h2

0 − h2
t − d2

x )2 + 4	2
Ah2

t ,
we see that ht = 0 and d2

x = h2
0 for gapless rings.

The latter condition requires μ2 � 4t2
SO − 	2

A, if NNN
hoppings are neglected. For the SF2 state, Eλν
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FIG. 2. (a) The order parameter 	A as a function of μ and hz

at zero temperature. SF1 and SF2 correspond to the phases with
	A = 	B and 	A = −	B , respectively. A black line divides SF1
phase into gapless (left part) and gapped (right part) regions, while
the whole SF2 phase is gapless. (b) The thermodynamical potential
� of the SF1 (solid red line) and SF2 (dotted-dashed green line)
phases with respect to hz with μ = 1.1t . Note that when hz > 0.7t

the SF1 state is no longer a local energy minimum state, while the
SF2 state is in the whole region. (c) � as a function of 	A for SF1
(solid red and dotted black lines) and SF2 (dotted-dashed green and
dashed blue lines). Solid red and dotted-dashed green lines are for
μ = 1.1t, hz = 0.5t , and dotted black and dashed blue lines are for
μ = 1.1t, hz = 0.6t , respectively. (d), (e) The gap Eg of quasiparticle
spectra in (kyay , kzaz) with kx = 0 for the parameters denoted by the
green (lower) and yellow (upper) squares in panel (a), respectively. (f)
The gap Eg in panel (d) along kz for fixed kyay = π . Here tx = 1.17t ,
ty = tz = t , tSO = 0.53t , tN = −0.07t , and U = −4t . ax = ay = az.

±
√

h2
0 + (hz + νht )2 + d2

x + 2λ

√
h2

0(hz + νht )2 + μ̃2d2
x with

ν = ±. When hz = 0, the spectra are twofold degener-
ate, and this degeneracy is explicitly broken by hz. Still,
by (E+ν

k+)2(E−ν
k+)2 = [−h2

0 + (hz + νht )2 + d2
x ]2 + 4	2

Ad2
x , we

see that nodal rings appear when dx = 0 and (hz + νht )2 = h2
0.

This leads to the existence of rings in the kx = 0 plane when
−2t1 + h0 < hz < 2t2 + h0 or −2t1 − h0 < hz < 2t2 − h0 or
−2t2 + h0 < hz < 2t1 + h0 or −2t2 − h0 < hz < 2t1 − h0, if
NNN hoppings are not involved. For Weyl rings (hz �= 0), their
number equals to the number of the above relations satisfied,
which allow at most two Weyl rings when h0 > 2(ty + tz). We
note that without hz, the rings are Dirac rings, which split
into Weyl rings when hz is turned on. We also note that NNN
hoppings only slightly modify the shape of nodal rings.

In Fig. 2(a), we plot the order parameter 	A in the (μ,hz)
plane and there exist two superfluid phases: SF1 and SF2. Such
two phases can be understood in two limits. In the first limit, we
assume tSO = 0 and clearly 	A = 	B as A and B sublattices
can now be connected by a translational transformation. In the
second limit, we assume tν = tNν = 0, and in the transformed
model, the momenta of Cooper pairs are zero, meaning that
	B = −	A in the original model. Although these two states
can be simultaneously the local energy minimum states as
shown in Fig. 2(c), the ground state should be the global energy
minimum state (i.e., the one with the lower energy). Therefore
with the change of parameters, these two phases can transition
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from one to another as shown in Fig. 2(b), where the ground
state changes from SF1 to SF2 with increasing hz. Clearly, this
phase transition is the first order.

By examining the quasiparticle spectrum, we find that the
SF1 phase is gapless only in a small region (the left part
of the black line), whereas the SF2 phase is gapless in the
whole region. In Figs. 2(d) and 2(e), we plot the gap (i.e.,
Eg = min(|Ekγ |)) of the quasiparticle spectrum in the kx = 0
plane for the parameters associated with the green and yellow
squares in Fig. 2(a), displaying four and three Weyl rings,
respectively. The gap along kz for fixed kyay = π for the
former is plotted in Fig. 2(f). Similar to the nodal rings in
single-particle spectra, the number of rings can be tuned by
Zeeman fields or chemical potential. Such Weyl rings can
also be characterized by the winding number nw = ±1 (see
the Appendix B). For Dirac rings in the SF1 phase when
hz = 0, they can be characterized by the winding number in
two subspaces with different eigenvalues σy = ±1.

IV. REALIZATION OF NODAL RING LATTICES

We propose an experimental setup (shown in Fig. 3)
based on Raman coupling scheme for generating spin-orbit
coupling [35,45,46,49–53] to engineer the Hamiltonian (1).

Two independent pairs of red-detuned Raman lasers are
used to couple two hyperfine states (see the Appendix A
for experimental parameters). One pair corresponds to
the lasers �1 and �2 with the Rabi frequencies �1 =
�10 cos(kRyry)e−ikRzrz/2 and �2 = i�20 sin(kRxrx)eikRzrz/2,
each of which can be generated by two plane wave lasers. The
other pair of Raman lasers have the Rabi frequencies �′

1 =
�′

10 cos(kRyry)eikRzrz/2 and �′
2 = i�′

20 sin(kRxrx)e−ikRzrz/2, re-
spectively. Such two sets of Raman lasers give rise to the
spin-dependent lattice with �SO = 2� and kLν = kRν in
Eq. (1) when � = �′, achieved when the two sets of Raman
lasers come from the same resource. These lasers also lead
to the optical lattices along the x and y directions via the
Stark effects: −δVx sin2(kRxrx) and −Vy cos2(kRyry) with
δVx = (|�20|2 + |�′

20|2)/	e and Vy = (|�10|2 + |�′
10|2)/	e.

Moreover, one needs another stronger optical lattices along
the x direction: −V ′

x cos2(kRxrx) with V ′
x > 0 so that the

total x direction optical lattice is −Vx cos2(kRxrx) with
Vx = V ′

x − δVx > 0. Similarly, the optical lattices along z,

FIG. 3. Schematics of a laser configuration to realize the Hamil-
tonian (1). �1 and �2, �′

1 and �′
2 are two sets of Raman laser

beams coupling two hyperfine states |↑〉 and |↓〉. 	e and 	′
e are the

detunings, and δ is the two-photon detuning. Each Raman laser beam
consists of two plane wave laser beams as shown in panel (b). These
Raman laser beams also generate optical lattices via the Stark effects.
Additional laser beams are also employed to create optical lattices
along x and z.

−Vz cos2(kRzrz) with Vz > 0, can be generated. We note that
the Raman lasers can also create the Zeeman field hz = δ/2
with δ being the two-photon detuning.

To detect the Dirac and Weyl rings in the single-particle and
quasiparticle spectrum [37,44] of Fermi atoms, one can con-
sider the momentum-resolved radio-frequency spectroscopy,
similar to that in spin-orbit-coupled atomic gases [35,45,46]
and conventional superfluids [63]. In terms of a BEC loaded in
nodal ring lattices, one can measure Landau-Zener tunneling
probability to detect the rings [34,48] and the interference
between two BECs traveling across a Weyl ring to extract the
Berry phase [64].

V. DIRAC CONES IN TWO DIMENSIONS

Not only nodal rings in 3D can be realized in the proposed
experimental setup, but also Dirac cones in 2D can be
engineered in a much simpler setup as shown in Figs. 4(a)
and 4(b), where only a pair of Raman laser beams with
Rabi frequencies �1 = �10 cos(kRy) and �2 = i�20 sin(kRx)
is required, and an additional standing laser beam is used to
engineer an optical lattice along x. This laser setup leads to
the following Hamiltonian:

H2D = p2

2m
−

∑
ν=x,y

Vν cos2(kRrν) + hzσz − VSOσy, (6)

where VSO = �SO sin(kLR
rx) cos(kLR

ry). The tight-binding
model of this Hamiltonian is a simplified version of Eq. (2)
when the hopping terms along x and y are kept and

HSO = itSO

∑
j

(−1)jx+jy (ĉ†j,↑ĉjx+1,↓ − ĉ
†
j,↑ĉjx−1,↓) + H.c.

(7)

Clearly, the Hamiltonian in momentum space is also a
simplified version of the Hamiltonian (3) in the main text
when only the hopping terms along x and y are kept.
In contrast to 2D Dirac cones in honeycomb lattices in
previous experiments [34], there are two types of Dirac
cones appearing when hz + λht = 0 on the kx = 0 line: one
with fourfold degeneracies (each with Berry phase being π

or −π in the subspaces with σy = ±1 similar to the 3D
case) and one with twofold degeneracies (each with Berry
phase being π or −π ). Without Zeeman fields, the former
can exist [as displayed in Fig. 4(c)] only when ty > tx ,
which can be realized by choosing a stronger optical lattice
along the x direction than that along the y direction. At
the critical point ty = tx , the spectrum becomes quadratic
along y and keeps linear along x. In the presence of hz,
each Dirac cone with fourfold degeneracies splits into two
Dirac cones with twofold degeneracies in separated positions
in momentum space as shown in Fig. 4(d). They can exist
as long as 2(tx − ty) < hz < 2(ty + tx) and −(tx + ty) < hz <

2(ty − tx). When hz = ±2(tx + ty) and hz = ±2(ty − tx), two
Dirac cones with twofold degeneracies merge—with spectra
being quadratic along y and linear along x—at (kx =0,ky =0)
and (kx = 0,ky = π ), respectively. Evidently, such Dirac
cones can be readily created, moved, and merged by tuning
the lattice strength and Zeeman fields. Note that in previous
experiments [34], the Dirac cones are formed due to the
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FIG. 4. (a), (b) Schematics of a laser configuration to realize the
2D Hamiltonian with Dirac cones and the single-particle spectra of
such optical lattice systems. �1 and �2 are two Raman laser beams
coupling two hyperfine states |↑〉 and |↓〉. 	e is the detuning, and δ is
the two-photon detuning. Each Raman laser beam is a standing wave
formed by a plane wave laser beam reflected by a mirror as shown in
panel (b). These Raman laser beams also generate optical lattices via
the Stark effects. An additional laser beam (red line) with different
frequency from the Raman lasers (shifted by ∼100 MHz using an
acoustic-optical modulator, AOM) is also employed to create optical
lattices along x. PBS denotes polarizing beam splitter. Double arrows
and circle dots denote the polarization direction of laser beams. The
PBS separates the Raman beam and the optical lattice beams so that
their phases can be controlled individually by different mirrors. (c),
(d) Single-particle spectra of the tight-binding Hamiltonian without
and with Zeeman fields, respectively. (e), (f) The gap distribution
between particle and hole branches in momentum space. The white
points indicate the Dirac cones and the Berry phase calculated along
the red (top left) circle [black (bottom right) one] is π (−π ). Note in
panel (e) the Berry phase is calculated in the subspace of σy . Here
tx = t , ty = 1.3t , tN = 0.07t , and tSO = 0.64t . The lattice constants
are ax = ay = a and the crystal momenta are ak = π (k1 + k2)ex +
π (−k1 + k2)ey .

honeycomb lattice structure and the spin Zeeman field only
shifts the relative energy between two Dirac cones for different
spins, not their positions in momentum space. In our model,
the Zeeman field can split a fourfold degenerate Dirac cone
into two located at different positions in momentum space.
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APPENDIX A: DERIVATION OF TIGHT-BINDING MODEL

In this appendix, we derive the tight-binding model from the
continuous model (1) in the main text and compare the single-
particle spectra of the tight-binding and continuous models for
typical parameters in experiments.

In the second quantization representation, the Hamiltonian
takes the form

HII =
∫

drψ̂†(r)Hψ̂(r), (A1)

where H is the single-particle Hamiltonian in Eq. (1) in
the main text, ψ̂(r) = (ψ̂↑(r) ψ̂↓(r))T , where ψ̂σ (r) [ψ̂†

σ (r)]
annihilates (creates) an atom with spin σ (σ =↑ , ↓) located at
r. They satisfy the anticommutation or commutation relation
[ψ̂σ (r),ψ̂†

σ ′(r′)]± = δσσ ′δ(r − r′) for fermionic atoms (+) or
bosonic atoms (−), respectively. The field operator can be
expanded by local Wannier functions

ψ̂σ (r) =
∑
njσ

Wnjσ ĉn,j,σ , (A2)

where Wnjσ is the Wannier function located at the j th site
for the nth band for spin σ , and ĉn,j,σ annihilates an atom
at the j th site in the nth band with spin σ . As we only
consider the physics in the lowest band, let us assume n = 1
and further assume that the Wannier function W1jσ can be
approximated by the lowest band Wannier function Wj of
the Hamiltonian with pure spin-independent optical lattices.
Hence

ψ̂σ (r) ≈
∑

j

Wj ĉj,σ , (A3)

where Wj = Wx
jx

(rx)Wy

jy
(ry)Wz

jz
(rz) with Wν

jν
(rν) = Wν(rν −

jνaν) being the Wannier function along ν. Based on this
expansion, the tight-binding model without HSO reads

H1 = −
∑

j

∑
σ

∑
ν

(
tν ĉ

†
j,σ ĉjν+1,σ + tNν ĉ

†
j,σ ĉjν+2,σ + H.c.

)

+hz

∑
j

(ĉ†j,↑ĉj,↑ − ĉ
†
j,↓ĉj,↓) (A4)

with the inclusion of the nearest and next nearest neighbor
hopping with the corresponding hopping amplitudes being

tν = −
∫

drνWj

[
p2

ν

2m
− Vν cos2(kLνrν)

]
Wjν+1, (A5)

tNν = −
∫

drνWj

[
p2

ν

2m
− Vν cos2(kLνrν)

]
Wjν+2. (A6)
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FIG. 5. Single-particle spectra obtained by the tight-binding model [dashed blue (upper) and black (lower) lines] and the continuous model
[solid red (upper) and green (lower) lines]. Each row panel from top to bottom is associated with hz = 0, hz = 0.032ER , and hz = 0.24ER ,
respectively. The first and second column panels (from left to right) correspond to (kx = 0,kzaz = π ) and (kx = 0), respectively. The third
and fourth column panels plot the spectra along kx around touching points [yellow squares] corresponding to the first and second column
panels, respectively. The parameters for the continuous model are kLx = kLy = kLz = √

4/5kR , Vx = Vy = Vz = 3.2ER , and �SO = 0.8ER;
the parameters for the tight-binding model are t = ty = tz = 0.068ER and tN = −0.07t and tSO = 0.53t . The recoil energy along x is
ERx = �

2k2
Lx/2m = 0.8ER .

The tight-binding term contributed by the spin-dependent
lattices can be derived as follows:

HSO = i�SO

∫
drψ̂†

↑(r)VSOψ̂↓(r) + H.c. (A7)

≈ i�SO

∑
j,j ′

ĉ
†
j,↑ĉj ′,↓t

jj ′
SO + H.c., (A8)

where

t
jj ′
SO =

∫
drWjVSOWj ′ =

∏
ν=x,y,z

t
jνj

′
ν

SO , (A9)

with

t
jxj

′
x

SO = t
j ′
xjx

SO =
∫

drxW
x
jx

(rx) sin(kLxrx)Wx
j ′
x
(rx), (A10)

t
jyj

′
y

SO = t
j ′
yjy

SO =
∫

dryW
y

jy
(ry) cos(kLyry)Wy

j ′
y
(ry), (A11)

t
jzj

′
z

SO = t
j ′
zjz

SO =
∫

drzW
z
jz

(rz) cos(kLzrz)W
z
j ′
z
(rz). (A12)

Because one of the optical wells is located at r = (0,0,0),
Wν

0 (rν) = Wν
0 (−rν) and

t
jxjx

SO = t
jxjx+2
SO = t

jyjy+1
SO = t

jzjz+1
SO = 0, (A13)

t
jνjν+1
SO = −t

jν+1jν+2
SO , (A14)

t
jνjν

SO = −t
jν+1jν+1
SO , (A15)

where the last two relations are obtained because the period
of the spin-independent optical lattices is a half of that of the

spin-dependent ones along each direction. Therefore, with the
nearest-neighbor hopping (no next nearest-neighbor hopping
exists), the position-dependent spin-orbit coupling term of the
tight-binding model reads

HSO = i�SO

∑
j

[
ĉ
†
j,↑ĉjx+1,↓t

jxjx+1
SO t

jyjy

SO t
jzjz

SO

+ ĉ
†
j,↑ĉjx−1,↓t

jxjx−1
SO t

jyjy

SO t
jzjz

SO

] + H.c. (A16)

= i�SO

∑
j

[
ĉ
†
j,↑ĉjx+1,↓ − ĉ

†
j,↑ĉjx−1,↓

]

× t
jxjx+1
SO t

jyjy

SO t
jzjz

SO + H.c. (A17)

= itSO

∑
j

(−1)jx+jy+jz
[
ĉ
†
j,↑ĉjx+1,↓−ĉ

†
j,↑ĉjx−1,↓

]+H.c.,

(A18)

where

tSO = �SOt01
SOt00

SOt00
SO. (A19)

Therefore, we obtain the tight-binding model in Eq. (2) in the
main text (H1 = Hh + HZ).

In experiments, we consider 40K atoms and choose 	e =
2π×1.46 THz that can be realized by a red-detuned laser beam
with wavelength 773 nm [45], which gives the recoil energy
ER/� = 2π×8.3 kHz. A simple geometry of laser beams gives
rise to kRx = kRy = kRz = √

4/5kR . The two pairs of Raman
laser beams are independent as |	e − 	′

e| ∼ 2π×(10 − 100)
MHz � ER . For �10 = �′

10 = 2π×0.14 GHz and �20 =
�′

20 = 2π×0.035 GHz, we have �SO = 0.8ER , Vy = 3.2ER ,
and δVx = Vy/16. For �3x = �3z = 2π×0.21 GHz, we have
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V ′
x = Vz = Vy . δ can be readily tuned from zero. With these

experimental parameters, the tight-binding parameters are
calculated from Eqs. (A5), (A6), and (A19), yielding t = ty =
tz = 0.068ER , tNν = tN = −0.07t , and tSO = 0.53t . We note
that we choose tx = 1.17t , which is slightly different from ty
and tz given the distinct correction of Wannier functions by
VSO along x. We also note that we neglect the next-to-next-
nearest-neighbor hoppings such as ĉ

†
j,↑ĉjx+1,jy+2,↓ because of

their very small effects (about 0.0034t). Although we choose
the Wannier functions for VSO = hz = 0 [so that Wν

0 (rν) =
Wν

0 (−rν)] as the basis to obtain the tight-binding model, we
have verified its reliability by comparing its single-particle
spectra with that obtained by the continuous model in Fig. 5,
which shows their good agreement with each other. However,
when �SO > 1.9ER (much larger than �SO = 0.8ER used
in the paper), the spectra obtained by the continuous model
fail to show the nodal rings, suggesting that the tight-binding
model cannot faithfully characterize the original continuous
model.

APPENDIX B: WINDING NUMBER CHARACTERIZING
DIRAC AND WEYL RINGS IN SUPERFLUIDS

In this section, we define the winding number for superflu-
ids. Both SF1 and SF2 phases have the chiral symmetry (i.e.,
C−1HBdGC = −HBdG with C = σxsy), and we can define a
winding number nw along any 1D closed path enclosing a
Weyl ring [56] belonging to the AIII class [57],

nw = 1

2πi

∫ θ=π

θ=−π

dθ
d

dθ
log det A(θ ), (B1)

where A(θ ) = H0 + i	Aσy for the SF1 phase and A(θ ) =
H0 − i	Aτyσy for the SF2 phase, with H0 = −(htτx + μ̃) +
dxτzσx + hzσz and kν = kν(θ ) referring to a 1D closed path.
We find nw = ±1 for Weyl rings and the associated Berry
phase is ±π . In the SF1 phase, when hz = 0, there exist Dirac
rings and the classification isZ×Z, which can be characterized
by the winding number in the two subspaces with different
eigenvalues σy = ±1.
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