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Excitations of one-dimensional supersolids with optical lattices
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Based on mean-field Gross-Pitaevskii and Bogoliubov–de Gennes approaches, we investigate excitations of a
one-dimensional soft-core interacting ultracold Bose gas under the effect of an optical lattice. It is found that no
matter how deep the lattice is, at q → 0 the lowest mode corresponds to a gapless phonon, ω2

1 = v2
1q

2, whereas the
second lowest mode corresponds to a gapped optical phonon, ω2

2 = �2 ± v2
2q

2. Determination of the velocities
v1,v2, the gap �, and the possible sign change in ω2 upon the change of lattice depth can give decisive measures
to the transitions across various supersolid and solid states. The power law v1 ∼ (fs)1/2 with fs the superfluid
fraction is identified in the present system at the tight-binding regime.
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I. INTRODUCTION

Ultracold bosonic atoms with relatively short range or
contact interaction in optical lattices can exhibit a super-
fluid (SF)–Mott insulator (MI) quantum phase transition by
increasing the depth of the lattice potential [1,2]. In such a
system, the lowest excitation at q → 0 may shift from a gapless
phonon mode in the SF state to a gapped mode in the MI
state [3]. On the other hand, ultracold atoms with sufficiently
strong soft-core or laser-induced dipole-dipole interaction may
exhibit a SF–supersolid (SS) transition in which crystalline
and SF properties are simultaneously possessed in the SS
state [4–10]. Excitations of such a system can change from
having one gapless mode in the SF state to two gapless modes
in the SS state for a given propagation direction [11–13]. The
additional gapless (phonon) mode in the SS state manifests
the breaking of the translational symmetry associated with the
formation of the crystalline structure. Supersolidity was first
predicted and discussed in the context of solid He4 by Andreev
and Lifshitz [14], Chester [15], and Leggett [16].

Recently Macrı̀ and Pohl [17] have proven the stability
of a Rydberg-dressed atomic system—one of the leading
candidates to display the supersolidity, confined in an optical
lattice. More recently, Hsueh et al. [18] have shown that
by loading the preformed Rydberg-dressed SS system into
an optical lattice, upon increasing the depth of the lattice
potential the system can undergo an intrinsic-to-extrinsic SS
transition. In the intrinsic (or incommensurate) SS phase with
relatively weaker lattice potential, atom droplets per lattice
constant is a fraction ν [18] and the periodicity is governed
by the effective range of the internal soft-core interaction.
Whereas in the extrinsic (or commensurate) SS phase with
relatively stronger lattice potential, the periodicity is governed
by the lattice constant of the lattice potential. In addition, upon
increasing the lattice depth, there could exist more than one
incommensurate SS states before entering the commensurate
SS state. It is worth noting that the case of loading preformed
SS into an optical lattice is somewhat different from that of
lattice supersolids [19–31].

This paper aims to study the excitations of a SS system
under the effect of an optical lattice. In literature, based
on a quantum Monte Carlo (QMC) calculation, Saccani
et al. [11] have shown that for a given propagation direction the
excitations of a supersolid without optical lattices can exhibit

an additional gapless mode in addition to the one responsible
for the superfluid phase. Based on a Bogoliubov–de Gennes
(BdG) approach, Macrı̀ et al. [13] have further verified that
in a SS system with two-dimensional hexagonal lattice, there
are three gapless modes—one associated with the superfluid
phase and two associated with the crystalline formation. Thus
the change in the excitation spectrum from one to two gapless
modes can be viewed as a general feature of the SF-SS
transition if the crystal is robustly formed. Some exceptions
include when there is an external potential that breaks the
underlying lattice translation symmetry or when the system
has an additional three-body interaction that results in the
crystal being fragile. While Refs. [11–13] considered only
the soft-core interacting systems, this feature should also
hold for other long-range systems if the SF-SS transition is
sustained [10]. A soft-core interaction potential with a finite
flat range seems to be the most natural candidate for the SF-SS
transition, however.

We will show that once lattice potential is in effect on the
preformed SS, the lowest excitation mode remains gapless
(ω2

1 = v2
1q

2) at q → 0 when the system is first in an incom-
mensurate SS state. However, for any propagation direction,
the second lowest mode opens up a gap with the dispersion
ω2

2 = �2 + v2
2q

2. When the lattice depth V0 is increased such
that the ground state changes from an incommensurate SS to a
commensurate SS, a characteristic roton appears in the lowest
gapless mode which is accompanied by a downward dispersion
in the second lowest mode (ω2

2 = �2 − v2
2q

2). When lattice
depth V0 is further increased such that the system is away from
the incommensurate-to-commensurate SS phase boundary, the
roton disappears in the lowest mode and the second lowest
mode turns upwards again (ω2

2 = �2 + v2
2q

2). Once lattice
depth V0 is greatly increased, phonon velocity v1 of the lowest
mode becomes vanishingly small, indicating that the system
enters the solid state with the superfluid completely depleted,
and a large gap � opens in the second lowest mode.

It has been deduced that in a superfluid with optical lattices,
phonon velocity v1 satisfies the following relationship v2

1 =
1/m∗κ , with m∗ the effective band mass and κ = (n∂μ/∂n)−1

the compressibility. (n is the mean atom density per lattice site
and μ is the chemical potential [32,33].) In addition, superfluid
fraction fs of a lattice superfluid system was shown to be
equal to m/m∗, with m the bare atom mass [34]. Thus, if
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the compressibility κ remains constant upon the lattice depth
change, there would be a power law between v2

1 and fs . This
power law is indeed identified in the present soft-core system
at the tight-binding regime.

II. FORMALISM

The following mean-field Gross-Pitaevskii energy func-
tional of a one-dimensional (1D) soft-core interacting ultracold
Bose gas in an optical lattice is considered:

E =
∫

ψ∗(x,t)ĥ0ψ(x,t)dx

+ 1

2

∫ ∫
U (x̄)|ψ(x ′,t)|2|ψ(x,t)|2dx ′dx, (1)

where ĥ0 = −∂2
x /2 + V0 sin2(πx/d), with d the lattice con-

stant and V0 the depth of the lattice potential that corresponds
to the single-particle part. Natural units m = � = 1 are used.
For the two-body interaction,

U (x̄) = γ δ(x̄) + αθ (rc − |x̄|), (2)

which can involve both contact and finite-range soft-core
interactions (x̄ ≡ x − x ′). For simplicity, a step-function-like
soft-core interaction is employed with α and rc, the strength
and effective range (or blockade radius), respectively. This
simplified interaction gives a good approximation for the
effective soft-core interaction, U (x̄) ∼ α/[1 + (x̄/rc)6], of
the ultracold Rydberg-dressed Bose gas [35–38]. As we are
focusing on the effect of the soft-core interaction, the contact
interaction will be set to zero (γ = 0).

Elementary excitation out of a particular ground state can
be studied via the Bogoliubov–de Gennes (BdG) equation.
The fluctuations can be decomposed into different plane-wave
modes labeled by q:

δϕk,q(x,t) = uk,qe
iqxe−iωk,q t + v∗

k,qe
−iqxeiω∗

k,q t . (3)

Consequently, the BdG equation of the present system is given
by

σ̂3Mk,q

(
uk,q

vk,q

)
= ωk,q

(
uk,q

vk,q

)
, (4)

where σ̂3 = (1 0
0 −1) and

Mk,q =
[
Lq+k(x) + Uk(x) 0

0 Lq−k(x) + Uk(x)

]

+
[
Ck,q(x)ϕk(x) Xk,q(x)ϕk(x)
Ck,q(x)ϕ∗

k (x) Xk,q(x)ϕ∗
k (x)

]
(5)

is an (8N + 2) × (8N + 2) matrix, with N being
the number of modes expanded in the corresponding
ground-state wave function. Here Lq±k(x) ≡ (q ± k)2/2 +
V0 sin2(πx/d) − μk , Ck,q(x) ≡ n̄0

∫
U (x̄)ϕ∗

k (x ′)eiqx̄dx ′, and
Xk,q(x) ≡ n̄0

∫
U (x̄)ϕk(x ′)eiqx̄dx ′, with n̄0 being the mean

atom number per lattice constant.

III. GROUND STATES AND EXCITATIONS

Based on the Gross-Pitaevskii equation (GPE) and BdG
formalism, we investigate the possible ground-state wave

functions and the corresponding excitation spectra of the
system. By varying the lattice depth V0, Fig. 1 shows the
ground-state density distributions vs space (top row) and in
a reduced zone scheme the lowest two excitation spectra vs
wave vector (bottom row) for representatives in various SS
and solid states. All the lengths (energies) are in units of d

(�2/md2). In all cases, we have fixed n̄0 ∼ 103, n̄0α → α =
30, and rc = 4R∗/3. R∗ is defined such that when rc = R∗,
the intrinsic SS has spacing between neighboring droplets
equal to d. In the current set of parameters, R∗ = 0.648d.
From the second left column to the right column correspond
respectively to ν = 3/4 incommensurate SS (V0 = 2.7), ν =
4/5 incommensurate SS (V0 = 11.7), commensurate SS with
V0 = 12, commensurate SS with V0 = 30, and the solid state
(V0 = 192). For comparison, the left column shows the cases
for the intrinsic SS (V0 = 0). ν is defined as the number of
atom droplets per lattice constant. There exist two fractional
(ν = 3/4 and ν = 4/5) incommensurate SS states in the
present case.

As shown in the bottom row of Fig. 1, characteristics and
dispersions of the lowest two excitation modes for various
SS and solid states are summarized as follows. Two gapless
modes occur for the intrinsic SS state, one associated with
the superfluid phase and another associated with the formation
of crystalline. When V0 is finite but relatively weak such that
the system is in the ν = 3/4 incommensurate SS state, the
lowest mode remains gapless (ω2

1 = v2
1q

2) at q → 0 while
the second lowest mode causes a small gap to open up with
the dispersion ω2

2 = �2 + v2
2q

2—signaling an out-of-phase
density fluctuation for the current complex superfluid. When
V0 is increased with the system entering another (ν = 4/5)
incommensurate SS state, the main features of the lowest
two modes are analogous to those for the ν = 3/4 ones.
When V0 is further increased such that the ground state
changes from an incommensurate SS to a commensurate
SS (ν = 1, atom peaks match lattice potential minima), a
characteristic roton appears in the lowest mode which is
accompanied by a downward dispersion in the second lowest
mode (ω2

2 = �2 − v2
2q

2). The rotons, occurring at two wave
vectors q1 and q2, satisfy q1 + q2 = 2π/d. The onset of
the roton signals the incommensurate-to-commensurate SS
transition at V0 = Vc � 11.9 [18]. When V0 is increased
further such that the system is away from the incommensurate-
to-commensurate SS phase boundary, the roton disappears in
the lowest mode and the second lowest mode turns upwards
again (ω2

2 = �2 + v2
2q

2). Once V0 is greatly increased, phonon
velocity v1 of the lowest mode vanishes, indicating that the
system is entering the solid state with superfluid completely
depleted.

It is a general belief that mean-field treatment is applicable
only when the order parameter is large and quantum fluctuation
is small. In this regard, when the superfluid fraction is very
small, the applicability of the mean-field GPE and BdG
approaches could be questionable. At present, there is no
justification on how good our results are when the superfluid
fraction is very small. It will be seen when a non-mean-field
calculation such as QMC is performed and the results are
compared. It is hoped that our results at a very small superfluid
fraction can at least give a good qualitative picture of the
system.
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FIG. 1. Representatives of the ground-state density distributions n(x) vs space x (top row) and lowest two excitation modes ω(q) vs wave
vector q in a reduced zone scheme (bottom row) for various supersolid and solid states of a 1D soft-core interacting ultracold Bose gas in a
lattice potential V (x) = V0 sin2(πx/d). d is the lattice constant, and see text for other parameters. From the second left column to the right
column correspond, respectively, to ν = 3/4 incommensurate SS (V0 = 2.7), ν = 4/5 incommensurate SS (V0 = 11.7), commensurate SS
(V0 = 12), commensurate SS (V0 = 30), and the solid (V0 = 192). For comparison, the left column shows the intrinsic SS (V0 = 0). n(x), ω(q),
and V0 are respectively in units of 1/d , �/md2, and �

2/md2 with m the atom mass.

In a log - log scale, we show the velocities v1,v2 and the gap
� as a function of lattice depth V0 in Fig. 2. In Fig. 2(a) of v1 vs
V0, there appears a jump of v1 at V0 = Vc responsible for the
incommensurate-to-commensurate SS transition. The drastic
drop of v1 at V0 = V ′ = 191.5 corresponds to where the SS-
to-solid transition is. Superfluidity is completely suppressed at
this point. In Fig. 2(b) of v2 vs V0, the peak down from v2 → 0
is where ω2 with a downward feature (ω2

2 = �2 − v2
2q

2) shifts
to the one with an upward feature (ω2

2 = �2 + v2
2q

2). For
onset at Vc, the downward ω2 occurs as a companion of a roton
emerging in the lowest mode. In Fig. 2(c) of � vs V0, a large
� jump is seen at Vc that again signals the incommensurate-
to-commensurate SS transition. It is interesting to note that
in the commensurate SS regime (Vc � V0 � V ′), a power
law � = �0V

β

0 seems to occur with β ≈ 1/2 and �0 � 4.
Similarly, in the ν = 3/4 incommensurate SS regime, a power
law � = �′

0V
β ′

0 occurs with β ′ ≈ 3/2 and �′
0 � 1/20. The

extrapolation implies that � → 0 when V0 → 0.

IV. A VARIATIONAL STUDY

To shed more light on the excitation physics of a soft-
core interacting SS system, we also perform a variational
computation on ω1 in the tight-binding (commensurate) regime
(Vc � V0 � V ′). One important constraint for choosing the
trial wave function is to generate a good match for the
superfluid fraction fs . For a lattice system in the tight-binding
regime, fs is mainly determined by the tunneling energy
in the potential barrier region. It was shown that fs =
m/m∗ = −2d2[ψ(x)dψ(x)/dx]x=d/2, with ψ(x) the corre-

sponding wave function [32]. It turns out that a Gaussian

ansatz |ψ(x)|2 = A exp(−Cx2) with A = Ṽ
1
4

0 /4d and C =
(Ṽ0π

2)
1
2 /d2 (Ṽ0 ≡ md2V0/�

2 is a dimensionless quantity)
which reproduces well the density distribution in the potential
barrier region can lead to a good fit for fs . Consequently, one
obtains

fs = πṼ
3
4

0

4
exp

⎛
⎝−πṼ

1
2

0

4

⎞
⎠. (6)

As shown in Fig. 3(a), the analytic fs in (6) is com-
pared to the one from the exact numerical calculation.
The latter is obtained by first solving the lowest Bloch
band E1(k) of the system and then taking fs = m/m∗ =
limk→0 m/�

2[∂2E1(k)/∂k2] [18,34]. A good match is seen
between the two fs’s. It should be noted that the superfluid
fraction being exactly equal to the inverse effective mass
holds only within the mean-field Gross-Pitaevskii approach.
For strong interacting systems, the relation is not necessarily
correct.

We next derive the corresponding hydrodynamic equa-
tions based on the time-dependent GPE. With ψ(x,t) =√

n(x,t)eiφ(x,t) and considering the density and phase fluctua-
tions: n(x,t) ≡ n0(x) + δn(x,t) and φ(x,t) ≡ φ0(x) + δφ(x,t)
with φ0(x) ≡ 0, we obtain, after some algebra,

∂2
t δn = −∂x

{
�

2

4mm∗ n0∂x

[
∂2
x δn

n0
− ∂2

xn0δn

n2
0

− ∂xn0∂xδn

n2
0

+ (∂xn0)2δn

n3
0

]
− n0

m∗ ∂x

∫
U (x̄)δn(x ′,t)dx ′

}
. (7)
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FIG. 2. In log - log scales, sound velocity v1 in ω1 and sound
velocity v2 and gap � in ω2 are shown, respectively, as a function of
lattice depth V0. In (b), the peak down separates ω2 with a downward
(-) or an upward (+) feature (see text). v1 and v2 are in units of �/md

and � and V0 are in units of �
2/md2.

By Fourier expansions δn(x,t) = (1/2π )
∫

dqδnq exp(iqx −
iω1t) and ∂

η
x δn(x,t) = (1/2π )

∫
dq(iq)ηδnq exp(iqx − iω1t)

and using the Gaussian ansatz to construct the periodic n0(x) =
n̄0

∑
j |2ψ(x − jd)|2, we obtain at low q

ω2
1 = q2

2m∗

[
�

2q2

2m
+ 2n̄0Ũ (q) − π

√
Ṽ0

md2
− πṼ0

12md2

]
, (8)

where Ũ (q) is Fourier component of U (x). To obtain the
analytic dispersion in (8), the tails of each Gaussian wave
packet that extend to neighboring sites have been neglected
in n0(x). Substituting the result in (6) into (8), one obtains at
q → 0

v2
1 = πṼ

3
4

0

4m
e− π

√
Ṽ0

4

[
n̄0Ũ (0) − π

√
Ṽ0

2md2
− πṼ0

24md2

]
. (9)

Equation (9) is valid for v2
1 � 0. Figure 3(b) shows a good

agreement between the analytic v1 in (9) and the exact
numerical v1 already shown in Fig. 2(a).

Elementary excitation of a uniform short- or long-range
SF system can be described as ω2 = (q2/2m)[(q2/2m) +
2n̄0U (q)], with U (q) the Fourier transform of the interaction.
Comparing it with the result in (8), one sees explicitly
how the lattice potential affects the lowest excitation of the
lattice SF/SS system at the tight-binding regime. In fact, the

FIG. 3. Comparisons of superfluid fraction fs vs V0 [(a)] and
phonon velocity v1 vs V0 [(b)] obtained by variational (dashed red
line) and exact numerical (solid blue line) calculations. Frame (c)
shows the power law v1 ∼ √

fs for a large span of V0. The inset
shows that the compressibility κ remains constant for a large span of
V0 and diverges at the SS-to-solid transition. v1 is in units of �/md ,
V0 is in units of �

2/md2, and κ is in units of md2/�
2.

additional two terms associated with V0 in (8) can be ascribed
to the quantum-pressure effect induced by the structure of the
ground state.

Finally, in Fig. 3(c) we compare v1 with fs for both
variational and exact numerical results. In both curves, the
power law v1 ∼ √

fs remains valid for a large range of V0

for the present soft-core system. The lines deviate and drop
significantly at some high V0, indicating that the system is
entering the solid state. At this point the compressibility
κ = fs/mv2

1 → ∞ (see the inset).

V. CONCLUSION

In conclusion, excitations of a 1D ultracold soft-core
interacting Bose gas with optical lattices are theoretically
investigated. Characteristics and dispersions of the lowest two
modes are shown for various supersolid and solid states. The
power law v1 ∼ √

fs with v1 the velocity of the lowest phonon
mode and fs the superfluid fraction is identified in the current
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system at the tight-binding regime. A final remark is that under
the effect of a lattice potential, a strong soft-core interacting
SF/SS system can sustain the superfluidity for a large range of
V0. In contrast, superfluidity could be more easily depleted by
lattice in a short-range system.
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