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Reservoir interactions of a vortex in a trapped three-dimensional Bose-Einstein condensate
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We simulate the dissipative evolution of a vortex in a trapped finite-temperature dilute-gas Bose-Einstein
condensate using first-principles open-systems theory. Simulations of the complete stochastic projected Gross-
Pitaevskii equation for a partially condensed Bose gas containing a single quantum vortex show that the transfer
of condensate energy to the incoherent thermal component without population transfer provides an important
channel for vortex decay. For the lower temperatures considered, this effect is significantly larger that the
population transfer process underpinning the standard theory of vortex decay, and is the dominant determinant of
the vortex lifetime. A comparison with the Zaremba-Nikuni-Griffin kinetic (two-fluid) theory further elucidates
the role of the particle transfer interaction, and suggests the need for experimental testing of reservoir interaction
theory. The dominance of this particular energetic decay mechanism for this open quantum system should be
testable with current experimental setups, and its observation would have broad implications for the dynamics of
atomic matter waves and experimental studies of dissipative phenomena.
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I. INTRODUCTION

The dynamics of a quantum vortex in a Bose-Einstein
condensate (BEC) provides an observable and topologically
stable probe of superfluid fluctuations [1–7], and thus a test
of dynamical theories of finite-temperature Bose-Einstein
condensates [8,9]. The precise nature of vortex dynamics
underpins emergent behavior in quantum turbulence [7,10–
13], and is of increasing relevance in theories of spin-
orbit coupled [14] and spinor [15,16] condensates. While
Hamiltonian vortex motion is well understood at the mean
field level, dissipation plays a central role in the creation of
spontaneous vortices [17] and solitons [18] during the BEC
phase transition, in the formation of negative temperature
states [11,19–22], in the formation [7] and breakdown [23] of
persistent currents, and the frustrated equilibration of spinor
condensates [24,25]. A variety of theoretical techniques have
been used to study finite-temperature vortex dynamics [26,27],
including phenomenological damping of the Gross-Pitaevskii
equation [28–30], two-fluid models [31–33], the projected
Gross-Pitaevskii equation [34–36] and related classical field
theories [37,38], and the stochastic Gross-Pitaevskii equation
[5,6,39,40]. However, the dissipative motion due to reservoir
interactions of a quantum vortex have yet to be tested against
experimental observations [41–45].

In this work we perform first-principles, ab initio sim-
ulations of a realistic experimental system, as a test of
high-temperature open systems theory for Bose gases. We use
the stochastic projected Gross-Pitaevskii equation (SPGPE)
[46,47] to model the decay of a lone quantum vortex in
an oblately confined Bose-Einstein condensate at appreciable
temperature. As a central vortex is only metastable, dissipative
processes cause the vortex to exit the condensate, thus
removing its angular momentum. Typically, the dominant
reservoir interaction involves the transfer of particles between
the reservoir and the condensate, with this process essential

for modeling condensate growth from a quenched vapor
[17,40,48]. An additional reservoir interaction included in the
full SPGPE theory [46,47] involves number-conserving trans-
fer of energy between the reservoir and the condensate. While
the first process plays a central role in most dissipative BEC
theory [28,49], and often provides a reasonable qualitative
picture of the important damping processes, the latter process
appears to be increasingly important for quantitive modeling
of dissipative phenomena; indeed, there may be systems
where such a damping mechanism becomes the dominant
reservoir interaction. In this work we find that vortex decay
provides an example of such a system. Of the two reservoir
interaction processes contained within the full SPGPE, we
find that energy damping without population transfer between
system and reservoir provides the dominant contribution to
the vortex decay rate; quantitatively, such terms reduce the
lifetime by up to a factor of 4 compared to the predictions
of the “simple growth” SPGPE [40]. Comparison of single
trajectories of our lowest-temperature SPGPE simulations with
the two-fluid Zaremba-Nikuni-Griffin (ZNG) theory [32,49]
shows qualitative agreement with the simple growth SPGPE,
emphasizing the significance of vortex decay as a test of the
dominant damping process in finite-temperature BEC theory.
Furthermore, the full SPGPE results for vortex lifetimes are
quantitatively accounted for by simulating the reduced SPGPE
containing only energy-damping reservoir interactions.

II. SYSTEM AND THEORY

A. System

We consider a dilute gas of bosonic atoms (with mass
m) interacting via s-wave collisions (scattering length a),
described by the Hamiltonian

H =
∫

dr �̂†(r)

[
H(r) + �

2
�̂†(r)�̂(r)

]
�̂(r), (1)
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FIG. 1. (a) Schematic of a quantum vortex in an oblate BEC,
undergoing precession around the trap symmetry axis (z). The trap
anisotropy causes vortices to align with the z axis and partially
suppresses vortex bending modes. (b) Reservoir interaction processes
in the SPGPE high-temperature reservoir theory of the trapped Bose
gas. We distinguish two different processes between coherent (C) and
incoherent (I ) regions: collisional particle-transfer processes, labeled
by γ , and energy-damping processes which involve energy transfer
without particle transfer, labeled here by ε.

where

H(r) = −�
2∇2

2m
+ V0(r), (2)

and the confining potential

V0(r) = m

2

[
ω2

⊥(x2 + y2) + ω2
zz

2
]

(3)

is parabolic with cylindrical symmetry. In the cold-collision
regime, the interaction parameter is given by � = 4π�

2a/m.
The field operators obey the standard commutation relations
for bosons, with nonvanishing commutator

[�̂(r),�̂†(r′)] = δ(r − r′). (4)

We consider a fixed total particle number N , and a range of
temperatures T � Tc(N ), appreciable compared to the ideal
gas transition temperature

Tc(N ) = �ω̄

kB

(
N

ζ (3)

)1/3

(5)

for geometric mean frequency ω̄3 = ωzω
2
⊥. The condensate is

assumed to initially contain a single quantum vortex coincident
with the z axis, and due to the temperature, is immersed
in a thermal cloud. The noncondensate fraction is assumed
nonrotating (as will typically be the case unless the trap is
made extremely symmetric), so that the initial central vortex,
contributing angular momentum of � per condensate particle,
is out of equilibrium with the thermal cloud. However, a
central vortex is a thermodynamic metastable state [2], and
due to the trap symmetry the instability must be initiated
by a symmetry-breaking perturbation. An off-center vortex is
thermodynamically unstable, and thermal fluctuations perturb
the vortex away from the otherwise Hamiltonian precession of

the vortex on closed (angular momentum conserving) circular
paths around the z axis [50] shown schematically in Fig. 1(a).

B. SPGPE theory

The SPGPE is the equation of motion of a classical field
describing the low-energy coherent (C) region of matter
waves, in contact with a reservoir consisting of a high-energy
incoherent (I ) region. The two regions are identified by
introducing an energy cutoff εcut and an associated orthog-
onal projection operator that enforces the cutoff rigorously.
Carrying out the derivation leads to a Gross-Pitaevskii–type
equation, with additional damping and noise terms [25,46].
The dissipative interactions described by the SPGPE are
(i) processes involving Bose-enhanced collisions between
I -region and C-region particles, which result in population
and energy transfer between the two subsystems, as well as
(ii) processes transferring energy between the I and C regions,
without associated particle transfer; the two processes are
shown schematically in Fig. 1(b). Despite extensive use of the
damped GPE obtained as the low-temperature limit of (i) to
model dissipative phenomenology [11,20,28,29,51], rigorous
experimental tests of dissipative dynamics that can distinguish
between (i) and (ii) are currently lacking.

In SPGPE theory, the system is represented in terms of a
set of single-particle eigenfunctions φn(r), that satisfy

H(r)φn(r) = εnφn(r), (6)

where n denotes all quantum numbers required to specify a
unique eigenstate. In terms of these eigenfunctions, the field
operator is

�̂(r) =
∑

n

ânφn(r) (7)

for single-mode operators ân satisfying [ân,â
†
m] = δnm. Our

first task is to consistently separate the system into a C region,
where populations are appreciable and the atoms are at least
partially coherent, and an I region where populations are
low and atoms are incoherent. We then seek an equation of
motion for the C region, treating the I region as an incoherent
reservoir. A significant advantage of effecting the separation
in the single-particle basis is that at sufficiently high energy it
diagonalizes the many-body problem, thus providing a good
basis for separating the system. We define the C region as
C = {εn � εcut}, where εcut will be significantly larger than
the system chemical potential μ (of order 2μ to 3μ). In this
basis, we introduce the orthogonal projection operators

P̂ ≡
∑

εn�εcut

|n〉〈n|, (8)

Q̂ ≡ 1 − P̂, (9)

satisfying P̂P̂ = P̂, Q̂Q̂ = Q̂, Q̂P̂ = 0. In the position repre-
sentation, the field operator decomposes into C-region and
I -region operators as

�̂(r) = P�̂(r) + Q�̂(r) ≡ ψ̂(r) + η̂(r), (10)
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respectively, where

ψ̂(r) = P�̂(r) ≡
∑

εn�εcut

φn(r)
∫

d3r φ∗
n(r)�̂(r) (11)

=
∑

εn�εcut

ânφn(r) (12)

defines the spatial representation of P̂ and the projected field
operator with commutator

[ψ̂(r),ψ̂†(r′)] = δ(r,r′) ≡
∑

εn�εcut

φn(r)φ∗
n(r′). (13)

This formal separation of the system provides a natural
approach to deriving an equation of motion describing the
evolution of the C region, the details of which can be found
elsewhere [25,46]. The derivation proceeds by mapping the
master equation for the C-region density operator to an
equation of motion for the Wigner distribution of the system.
Truncating the third-order (superdiffusive) terms that appear
in this generalized Fokker-Planck equation (FPE) leads to an
FPE containing only drift and diffusion terms. This equation
of motion for the Wigner distribution may then be mapped to
a stochastic differential equation for a classical field ψ(r) (the
C field), the moments of which correspond to symmetrically
ordered averages of the field operator at equal times [8,52].

For our purposes, we take as our starting point the three-
dimensional Stratonovich SPGPE for the C field [47]. Taking
our energy reference as μ, the SPGPE takes the form

(S)dψ(r,t) = dψ |H + dψ |γ + (S)dψ |ε, (14)

with

i�dψ |H = P{Lψdt}, (15a)

i�dψ |γ = P{−iγLψdt + i�dW (r,t)}, (15b)

(S)i�dψ |ε = P{Uε(r,t)ψdt − �ψdU (r,t)}. (15c)

The Hamiltonian evolution described by (15a) is generated by
the nonlinear operator

Lψ(r,t) ≡ [H(r) + �|ψ(r,t)|2 − μ]ψ(r,t), (16)

thus recovering the PGPE [53]

i�
∂ψ(r,t)

∂t

∣∣∣∣
H

= P{Lψ(r,t)}, (17)

describing the evolution of a low-energy fraction of atoms
with partial coherence, including the condensate and a band
of low-energy excitations [53–55]. The I -region reservoir
coupled to the PGPE resides at energies above εcut, and is
described by a semiclassical Bose-Einstein distribution with
chemical potential μ, temperature T . The variables μ,T ,εcut

play a central role in setting the strength of reservoir interaction
processes [25,40,47].

Equation (15b) contains the coupling between the two
subsystems associated with transfer of particles between them,
as illustrated in Fig. 1(b) (left plot). In previous literature, the
addition of this term to (15a) is often called the simple growth
SPGPE [40]. Here, we adopt the convention of [56] and refer
to the equation of motion as the γ -SPGPE. Without formal
projection, the γ -SPGPE becomes an equation that is referred

to as the SGPE, and is very similar in spirit and detail to that
derived by Stoof [9,57,58].

Equation (15c) represents an important additional term,
originally referred to as the scattering term (and called the
ε-SPGPE in [40]), which leads to energy transfer between the
two subsystems, without any associated population transfer.
We will refer to the two processes arising from Eqs. (15b) and
(15c) as number damping and energy damping (although the
latter term is not the only mechanism which damps energy
from the C region). The equations of motion shall henceforth
be termed the full SPGPE (14), the γ -SPGPE [(15a)+(15b)],
and the ε-SPGPE [(15a)+(15c)].

Within the SPGPE theory, the interaction with the C region
can be cast in terms of the functions [40,46,47]

γ (μ,T ,εcut) = 8a2

λ2
dB

∞∑
j=1

eβμ(j+1)

e2βεcutj
�

[
eβμ

e2βεcut
,1,j

]2

, (18a)

Uε(r,t) = −�

∫
d3r′ε(r − r′)∇′ · j(r′,t), (18b)

j(r,t) = i�

2m
[ψ∇ψ∗ − ψ∗∇ψ], (18c)

ε(r) = M
(2π )3

∫
d3k

eik·r

|k| , (18d)

M(μ,T ,εcut) = 16πa2

eβ(εcut−μ) − 1
, (18e)

where β = 1/kBT , λdB =
√

2π�2/mkBT is the thermal de
Broglie wavelength, and �[z,x,a] = ∑∞

k=0 zk/(a + k)x is the
Lerch transcendent, and where the reservoir coupling rates γ

and ε(r) are both dimensionless. The rates (18a) and (18e) are
found by analytically evaluating the relevant collision integrals
over all I -region particles that contribute to the interactions
shown in Fig. 1(b); rigorous restriction of the integrals to the
phase space of the I region generates the cutoff dependence
of these rates, and is crucial for setting consistent damping
parameters in SPGPE simulations [40,47]. We emphasize that
in this formulation μ is also a function of T ,εcut, and N ,
being found self-consistently for a given system temperature
and atom number [5]. Furthermore, the position-independent
form of γ in Eq. (18a) is a consequence of evaluating the
collision integrals analytically when μ 
 εcut (neglecting the
weak position dependence near the C-region boundary) [40].

The noise terms are Gaussian, with nonvanishing correla-
tions

〈dW ∗(r,t)dW (r′,t)〉 = 2kBT

�
γ δ(r′,r)dt, (19a)

〈dU (r,t)dU (r′,t)〉 = 2kBT

�
ε(r − r′)dt. (19b)

The form of (19) constrains the equilibrium solutions of (15) to
automatically satisfy the fluctuation-dissipation theorem. We
emphasize that the noise in (15b) is complex, while the noise
in (15c) is real; the former thus provides a source of particles,
while the latter may be interpreted as a stochastic potential.

In deriving the equation of motion (14), there are some
approximations that should be noted. First, the complete gen-
eralized FPE for the Wigner distribution contains third-order
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TABLE I. Parameters used for the SPGPE simulations, for a
range of T values. At fixed N = 8 × 104 atoms of 87Rb, the
critical temperature is Tc(N ) = 463 nK. Z is the total number of
single-particle modes in the C region. The final row gives the spatial
boundary of the region in which the vortex is detected, with cutoff
radius rf = 0.65RTF depending on the system temperature (see text).

T/Tc(N ) 0.6 0.65 0.7 0.75 0.8

T (nK) 278 301 324 347 370
μ/�ω̄ 15.54 14.65 13.61 12.37 10.09
εcut/�ω̄ 26.35 27.80 29.07 30.13 30.93
Z 2970 3663 4180 4456 5044
γ × 103 2.1 1.8 1.7 1.6 1.6

M kBT x2
0

�
× 103 5.1 4.5 4.0 3.6 3.4

rf (μm) 4.02 3.90 3.76 3.59 3.36

derivatives with respect to the fields, arising from the two-body
interaction term. Assuming significant population per mode,
these terms may be safely neglected [59], and this truncated
Wigner approximation (TWA) has been used extensively in
treatments of ultracold Bose gases [8,52,60]. Second, an
energy cutoff has been imposed in terms of single-particle
modes [61]. While numerically and formally convenient, the
basis is not strictly an exact one for implementing an energy
cutoff for the many-body system. However, at sufficiently high
energies, the interacting many-body system is diagonal in
the basis of single-particle states, a property well known in
Bogoliubov theory. The satisfaction of both constraints is the
reason for choosing εcut ∼ 2μ − 3μ in C-field theory. At low
temperatures, the requirement that the mode population is of
order 1 at the cutoff energy conflicts with the requirement that
the cutoff is large. The two conditions introduce competing
constraints, and validity of the approximations becomes
questionable. For the lowest temperature considered in this
work, T = 0.6Tc, we are working at the edge of the validity
regime, with cutoff εcut = 1.7μ (see Table I).

III. SPGPE SIMULATIONS

A. System parameters, modeling, and observables

The specific system we model contains a total of N =
8 × 10487Rb atoms, with trap frequencies (ω⊥,ωz) = 2π ×
(150,600), producing an oblate system with ωz/ω⊥ = 4. The
s-wave scattering length is as = 100a0, where a0 is the Bohr
radius. We consider the dynamics of the distance of the vortex
from the z axis, rv(t), as a function of system temperature
for 0.6 � T/Tc(N ) � 0.8, where Tc(N ) = 463 nK. The oblate
geometry has two functions. First, it causes axial alignment
of the vortex (assisting optical imaging in experiments [11]),
and second, it suppresses bending (Kelvin) modes [62]
caused by thermal fluctuations [6], giving approximately two-
dimensional (2D) vortex dynamics. Our choice of relatively
weak oblateness means that the condensate is far from the
quasicondensate regime and retains global phase coherence.
This choice also allows significant bending of the vortex line,
thus increasing coupling to reservoir modes and accelerating
vortex decay [6].

Finding consistent SPGPE parameters forms an essential
part of the ab initio modeling process [7]. For a given T/Tc,

we find SPGPE parameters so that the total number of atoms
(contained in both I and C regions) is N � 8 × 104, and
so that the chosen cutoff εcut is consistent with the validity
condition for classical field theory, namely, that the mean
thermal occupation of the I -region modes is at most of order
unity. We then use the Penrose-Onsager criterion to determine
the condensate number N0 of our equilibrium ensembles,
checking that the condensate fraction is consistent with T/Tc.

Our SPGPE simulations use a cutoff that includes a total
of Z single-particle modes in the C-field region where Z is of
order 103, as shown in Table I. We calculate ensembles of 100
trajectories for each temperature and subtheory, integrating
using either the Runge-Kutta method for γ -SPGPE or the
semi-implicit method for ε-SPGPE and full SPGPE. Details
of the numerical integration algorithms are given in Ref. [63].
The main observable calculated in this work is the distance of
the vortex from the z axis at z = 0, rv(t) ≡

√
xv(t)2 + yv(t)2.

We extract this quantity from each trajectory, and compute the
ensemble average 〈rv(t)〉.

B. Temperature dependence of SPGPE vortex lifetimes

We initialize the vortex at rv(0) ≡ r0 = 0, and carry out a
systematic study of vortex lifetimes as a function of T/Tc,
over a regime where the SPGPE is valid, and where the
vortex should be clearly visible in column density imaging
[64]. Initializing the vortex in the C field for a thermal
equilibrium nonrotating BEC proceeds as in Ref. [5]. First,
a vortex-free state is obtained by integrating the SPGPE from
a Thomas-Fermi initial state, until all transients have decayed
and the C field reaches equilibrium at the required T ,μ(N,T ).
Then, a central vortex is phase imprinted onto the complete
C field. As this procedure is phase coherent, the net effect is
that only the condensate fraction is set into rotation, while the
imprinted phase has very little effect on the noncondensate part
of the C field. This creates a consistent C field for a nonrotating
finite-temperature BEC containing a central, axially aligned
vortex [65]. The ensemble of central vortex states is then
used to initialize an ensemble of SPGPE trajectories computed
as distinct numerical solutions of the stochastic differential
equation (14), and its variants.

In Fig. 2, we plot the mean vortex lifetime t̄ computed as
the ensemble average of the vortex lifetime found for each
trajectory of the ensemble, comparing the full SPGPE with
γ -SPGPE. The trajectory lifetime is extracted numerically as
the time tl for the vortex to decay from rv(0) = 0 to rv(tl) =
rf ≡ 0.65RTF. We estimate the TF radius for the condensate

as RTF =
√

2μ(T ,N,εcut)/mω2
⊥, and so rf decreases with

increasing temperature as shown in Table I. The choice of
vortex detection cutoff rf is one often used in experimental
column density imaging of vortices [7,11], as it provides
a clear vortex signal for rv < rf . Near the trap center the
vortex core size increases slowly with increasing rv , scaling
as ∼1/

√
n(r). We can estimate the increase in core size by

computing the healing length in the Thomas-Fermi approx-
imation ξ (r) = �/

√
�nTF(r); for our chosen rf , the vortex

core scale expands to ξ (rf ) = 1.32ξ (0). For the temperature
range considered, the vortex is underdamped, executing a
minimum of five precessional orbits (and up to ∼20 at the
lowest temperature) during decay in each trajectory. As may be
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FIG. 2. Vortex lifetime as a function of relative temperature, for
the full SPGPE (blue) and the γ -SPGPE (red). The markers show
the ensemble-averaged lifetime t̄ . The spread of observable lifetimes
is indicated by the shaded region showing one standard deviation
of the ensemble of single trajectory lifetimes; the mean lifetime has
converged for our ensemble of 100 trajectories at each temperature.
The effect of consistently varying the cutoff εcut on the vortex lifetime
is shown for the temperatures T = 0.6Tc and 0.8Tc (see Sec. III C).

clearly seen in Fig. 2, the full SPGPE causes the vortex to decay
significantly faster than the γ -SPGPE, with the difference
becoming increasingly important at lower temperatures. This
large difference between γ -SPGPE and full SPGPE (up to a
factor of 4 in t̄) is the main result of our work, and should
be testable in experiments. The full SPGPE simulations give
a mean lifetime that depends rather weakly on temperature,
decreasing by approximately a factor of 2 over the temperature
range considered. We emphasize that the data in Fig. 2 are
obtained from first-principles C-field theory and require no
fitted parameters.

The convergence of γ -SPGPE and full SPGPE as T → Tc,
evident in Fig. 2, is broadly consistent with earlier work on
vortex decay using the γ -SPGPE [5,7]. The limiting behavior
seen in Ref. [5] as T → Tc involved the vortex lifetime in γ -
SPGPE converging to a value comparable to that predicted by
the projected Gross-Pitaevskii equation, i.e., the Hamiltonian
equation of motion for the C field obtained by neglecting
coupling to I . This limiting behavior is expected as low-energy
thermal fluctuations in the C field are dominant near the critical
point [66]. In Ref. [7] the dynamics of persistent current
formation at high temperature (T ∼ 0.9Tc) was described very
accurately by the γ -SPGPE, also consistent with this work.
The increasing departure of the full SPGPE from γ -SPGPE at
low temperatures is also consistent with the energy and number
characteristics of vortex decay: the loss of a single vortex from
a large BEC does not greatly alter the condensate population,
but causes an appreciable change to the energy per particle [2].

C. Cutoff independence

An essential part of SPGPE calculations involves checking
for cutoff independence by performing a consistent variation
of the energy cutoff. The cutoff independence of the theory
has previously been established for γ -SPGPE, and it must be
reassessed for the ε-SPGPE terms. For the lowest and highest
temperatures considered in this work, we vary the cutoff and
consistently change all parameters to maintain the same total
atom number at the temperature of interest. This results in a set

TABLE II. System parameters for testing the energy cutoff
dependence, for the highest and lowest temperatures used in the
SPGPE simulations of quantum vortex decay. The upper and lower
cutoffs are ε

↑
cut = 1.1εcut, ε

↓
cut = 0.9εcut, for the values of εcut given in

Table I.

Parameters ε
↓
cut ε

↑
cut ε

↓
cut ε

↑
cut

T/Tc 0.6 0.6 0.8 0.8
γ /γ0 1.52 0.66 1.31 0.75
M/M0 1.41 0.76 1.24 0.82
ncut 1.21 0.89 1.16 0.94
εcut/μ 1.53 1.87 2.55 3.12

of parameters for testing cutoff dependence shown in Table II.
The values of t̄ resulting from increasing and decreasing εcut,
at constant T , N are given in Fig. 2. The ensemble-average
lifetime is little changed by consistent variation of εcut; indeed,
the values of t̄ resulting from our cutoff variation are generally
within the ensemble standard deviation of the mean.

IV. COMPARISON OF THEORIES AT T = 0.6Tc

The marriage of the Beliaev symmetry-breaking approach
with kinetic theory in the context of finite-temperature BEC
[49] was a significant development both for fundamental
understanding [67–69] and for modeling of trapped gas
experiments [9,70]. The resulting ZNG theory has proven
an accurate description of the essential finite-temperature
physics far from the region of critical fluctuations. A prime
example is offered by the decay of collective modes [71–74]
where ZNG gives a reliable account of the experimental
observations. Further examples of successful modeling of
experiments include dark soliton damping [75], and surface
evaporative cooling (initiated from a condensate seed) [76,77];
recent work of relevance in our present context has focused
on vortex dynamics [32,33]. For the purpose of the current
discussion, the ZNG approach contains a fully dynamical
description of the condensate, the noncondensate, and their
particle-exchanging interactions. This property underpins the
accuracy of ZNG for low temperatures, and near-equilibrium
dynamics, but also suggests the need for new tests of finite-
temperature theory.

In this work, our main focus is the vortex escape dynamics
in the full SPGPE theory. However, an interesting comparison
can be made between the full SPGPE and ZNG in a regime
where both theories satisfy their respective validity criteria.
For SPGPE theory, the criteria are (i) that for characteristic
single-particle energy �ω, �ω/kBT 
 1, i.e., that the system
may be considered high temperature, (ii) that the cutoff
εcut is chosen to give a definition of the I and C regions
that is consistent with the truncated Wigner approximation
[46], and finally (iii) that μ/kBT 
 1. For the ZNG theory,
as implemented in Refs. [32,33], the system must be cold
enough to give a highly occupied condensate mode, justifying
a spontaneous symmetry-breaking approach to defining the
mean-field order parameter [49]. For our chosen parameters,
the characteristic trap frequency is ω̄ = 2π × 238 s−1. At
temperature T/Tc = 0.6, we then have �ω̄/kBT = 0.041,
while the ideal gas condensate fraction is N0/N = 0.78. The
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FIG. 3. Distance of the vortex from the trap axis rv(t) for ensemble averages (thick lines) and single trajectories. Ensemble averages are
only computed up to the time of the first vortex exiting the detection region rv(t) � rf = 0.65RTF = 4.02 μm (see Table I). Also shown are
the vortex dynamics for damped equations of motion corresponding to each stochastic theory (see text), starting from rv(0) = r0 ≡ 1.3 μm.
The shaded regions show the range of lifetimes corresponding to one standard deviation of the ensemble.

final criteria for our system read as μ/kBT = 0.63. However,
the approximation underlying this criterion is not fundamental
to the SPGPE derivation [46]; we accept that some small error
may arise as a result of only weakly satisfying the inequality,
and use this parameter choice for comparison of several
theoretical approaches to finite-temperature BEC dynamics.

A fundamental difference in the initial conditions occurs in
setting up the comparison. As a central vortex is a metastable
excited state of the BEC, there must be a source of noise
to induce symmetry breaking and initiate the dissipative
decay. The SPGPE contains thermal noise allowing the
study of the previous section to start from rv(0) = 0. In
this section, we compare a range of approaches, including
several that have no source of initial symmetry breaking.
Thus, for numerical convenience we initialize the vortex at
an appreciable radius rv(0) = r0. Figure 3 shows the radial
position of the vortex as a function of time, comparing
several theoretical approaches to modeling the vortex decay.
The ensemble-averaged radius found from the full SPGPE
simulations grows much more rapidly than the γ -SPGPE. The
latter result also coincides closely with that computed from
our ZNG simulation. The ε-SPGPE result is not shown as
the ensemble average is indistinguishable from that of the full
SPGPE. Single trajectories from the full SPGPE and γ -SPGPE
are also shown, choosing representative trajectories for which
rv(t) remains fairly close to 〈rv(t)〉. To clarify the effect
of noise, we compare the stochastic evolution of ε-SPGPE
and γ -SPGPE with corresponding noise-free (deterministic)
simulations, referred to as the energy-damped GPE (edGPE),
and number-damped GPE (dGPE), respectively. Both deter-
ministic equations generate slower vortex decay than the
ensemble average of the associated stochastic differential
equations, as should be expected on physical grounds. Note
that we start the deterministic simulations with the vortex at
rv(0) = r0 = 1.3 μm, and for ease of comparison we delay
the results for each data set by t0 such that 〈rv(t0)〉 = r0 in
the corresponding stochastic ensemble average. To construct
a ZNG simulation suitable for comparison to the SPGPE,
we first find N0 from the SPGPE equilibrium ensemble at

T = 0.6Tc, for our total atom number N . Then, we use a
combination of N0, N , and T as inputs to the ZNG theory
to find an initial state on which to phase imprint a vortex. We
have found our results to be practically independent of whether
we match the total number of atoms, or the condensate atom
number within ZNG to the total number or Penrose-Onsager
condensate number of the C-field method, respectively; this
provides a significant additional test of our numerics and the
close correspondence between the two methods. In the ZNG
simulation, the vortex begins its escape from rv(0) = r0 =
1.33 μm, and a time delay is again used in the plot to aid
comparison with the γ -SPGPE ensemble average. The ZNG
vortex dynamics agrees qualitatively with γ -SPGPE ensemble
average, in the interval where both may be computed. The
ensemble average 〈rv(t)〉 is not well defined for the γ -SPGPE
once the vortex leaves the detection region [rv(t) > rf ] for any
trajectory in the ensemble. However, comparing ZNG with a
representative trajectory from γ -SPGPE, we observe that the
two agree semiquantitatively.

The close agreement between γ -SPGPE and ZNG is
noteworthy, and requires further comment. The ZNG de-
scription is based on a symmetry-breaking decomposition,
which ultimately gives rise to an equation for the condensate
self-consistently coupled to a quantum Boltzmann equation
for the noncondensate. Although the noncondensate treat-
ment involves stochastic sampling of a test particle ensem-
ble to model noncondensate-noncondensate and condensate-
noncondensate collisions [73], it does not have an explicit
noise term associated with these processes, in contrast to the
SPGPE. All interactions modeled within ZNG involve particle
transfer (either to the condensate, or to different regions of
the noncondensate). This is similar to the γ -SPGPE term,
for which the C field contains the condensate and many
low-energy noncondensate modes, thus including all of the
inherent collisions and particle transfer between condensate
and noncondensate (within the classical field approximation,
and up to a cutoff). Both the simple growth SPGPE, and the
ZNG theory explicitly account for thermal-thermal collisions,
although their representations of these processes differ in
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important details; specifically, the simple growth SPGPE
neglects thermal-thermal collisions for the population above
the cutoff, whereas ZNG includes these processes. However,
the contribution of such terms on vortex dynamics has been
found to be relatively weak [70], partly justifying the evident
similarity of γ -SPGPE and ZNG found here. We also note that
while the ZNG model gives the condensate density directly,
in γ -SPGPE, a single run of which can be thought of as
qualitatively describing a single experimental realization, the
condensate must be found via an ensemble average. Finally, we
should note that while we have focused on a particular energy-
transfer process within the full SPGPE, which is evidently not
contained within ZNG, there are other cases where the ZNG
method does contain the dominant energy-damping process,
thus fully describing the resulting damping: a typical example
of this is Landau damping [74]. Further discussion of the
relation between the two theoretical approaches can be found
in Refs. [68,69].

V. CONCLUSIONS

Dissipative theories of Bose-Einstein condensates play a
central role in descriptions of phase transition dynamics and
decay of excitations such as vortices and solitons, yet their
detailed predictions are largely untested experimentally, and
thus far have almost universally focused on the process of
particle exchange with the reservoir as the mechanism of dis-
sipation [28,49,57,78,79]; indeed, this interaction is sufficient
to account for processes that are fundamentally associated
with condensate growth via evaporative cooling [17,58] (even
under the assumption of an initial condensate seed, within ZNG
[76,77]). Within SPGPE theory, early works argued for the
neglect of all the energy-damping (“scattering”) processes on
the grounds that the terms should be small for quasiequilibrium
systems [5,8,40], and more recently this approach was shown

to give a quantitative account of experimentally observed
persistent current formation [7]. In applying the full SPGPE
to the decay of a quantum vortex, we find a regime where
the damping process associated only with energy exchange
dominates over collisional particle transfer, hastening the
escape of the vortex, and providing a clear experimental test
of high-temperature theories of superfluid dynamics.

The most surprising result of our work is that the difference
between the full SPGPE and γ -SPGPE (and also ZNG)
increases as the temperature decreases, reaching its most
pronounced departure at T = 0.6Tc, where we are confident
in comparing the three theories. One may be tempted to expect
a smoother crossover between predictions of the theories, and
indeed this may be evident at lower temperatures not treated
in this work. However, for sufficiently low temperatures, the
SPGPE cutoff cannot be chosen consistently for truncated
Wigner validity; furthermore, the linearization of the reservoir
interaction eventually becomes invalid [46]. We believe our
predictions suggest an interesting regime for experimental test-
ing. The need for rigorous testing [80] of dissipative quantum
field theories describing open systems is further motivated
by interest in superfluid internal convection [81,82], far-from
equilibrium dynamics [25,83], thermalization [84,85], and
critical phenomena [48,86–89].
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V. S. Bagnato, Phys. Rev. Lett. 103, 045301 (2009).
[20] M. T. Reeves, T. P. Billam, B. P. Anderson, and A. S. Bradley,

Phys. Rev. Lett. 110, 104501 (2013).
[21] T. P. Billam, M. T. Reeves, B. P. Anderson, and A. S. Bradley,

Phys. Rev. Lett. 112, 145301 (2014).
[22] T. Simula, M. J. Davis, and K. Helmerson, Phys. Rev. Lett. 113,

165302 (2014).

063603-7

http://dx.doi.org/10.1088/0953-8984/13/12/201
http://dx.doi.org/10.1088/0953-8984/13/12/201
http://dx.doi.org/10.1088/0953-8984/13/12/201
http://dx.doi.org/10.1088/0953-8984/13/12/201
http://dx.doi.org/10.1103/PhysRevLett.99.105301
http://dx.doi.org/10.1103/PhysRevLett.99.105301
http://dx.doi.org/10.1103/PhysRevLett.99.105301
http://dx.doi.org/10.1103/PhysRevLett.99.105301
http://dx.doi.org/10.1103/RevModPhys.81.647
http://dx.doi.org/10.1103/RevModPhys.81.647
http://dx.doi.org/10.1103/RevModPhys.81.647
http://dx.doi.org/10.1103/RevModPhys.81.647
http://dx.doi.org/10.1103/PhysRevA.81.023630
http://dx.doi.org/10.1103/PhysRevA.81.023630
http://dx.doi.org/10.1103/PhysRevA.81.023630
http://dx.doi.org/10.1103/PhysRevA.81.023630
http://dx.doi.org/10.1103/PhysRevA.84.023637
http://dx.doi.org/10.1103/PhysRevA.84.023637
http://dx.doi.org/10.1103/PhysRevA.84.023637
http://dx.doi.org/10.1103/PhysRevA.84.023637
http://dx.doi.org/10.1103/PhysRevA.88.063620
http://dx.doi.org/10.1103/PhysRevA.88.063620
http://dx.doi.org/10.1103/PhysRevA.88.063620
http://dx.doi.org/10.1103/PhysRevA.88.063620
http://dx.doi.org/10.1080/00018730802564254
http://dx.doi.org/10.1080/00018730802564254
http://dx.doi.org/10.1080/00018730802564254
http://dx.doi.org/10.1080/00018730802564254
http://dx.doi.org/10.1088/0953-4075/41/20/203002
http://dx.doi.org/10.1088/0953-4075/41/20/203002
http://dx.doi.org/10.1088/0953-4075/41/20/203002
http://dx.doi.org/10.1088/0953-4075/41/20/203002
http://dx.doi.org/10.1073/pnas.1400033111
http://dx.doi.org/10.1073/pnas.1400033111
http://dx.doi.org/10.1073/pnas.1400033111
http://dx.doi.org/10.1073/pnas.1400033111
http://dx.doi.org/10.1103/PhysRevLett.111.235301
http://dx.doi.org/10.1103/PhysRevLett.111.235301
http://dx.doi.org/10.1103/PhysRevLett.111.235301
http://dx.doi.org/10.1103/PhysRevLett.111.235301
http://dx.doi.org/10.1103/PhysRevA.90.063627
http://dx.doi.org/10.1103/PhysRevA.90.063627
http://dx.doi.org/10.1103/PhysRevA.90.063627
http://dx.doi.org/10.1103/PhysRevA.90.063627
http://dx.doi.org/10.1103/PhysRevA.91.053615
http://dx.doi.org/10.1103/PhysRevA.91.053615
http://dx.doi.org/10.1103/PhysRevA.91.053615
http://dx.doi.org/10.1103/PhysRevA.91.053615
http://dx.doi.org/10.1103/PhysRevA.89.023629
http://dx.doi.org/10.1103/PhysRevA.89.023629
http://dx.doi.org/10.1103/PhysRevA.89.023629
http://dx.doi.org/10.1103/PhysRevA.89.023629
http://dx.doi.org/10.1016/j.physrep.2012.07.005
http://dx.doi.org/10.1016/j.physrep.2012.07.005
http://dx.doi.org/10.1016/j.physrep.2012.07.005
http://dx.doi.org/10.1016/j.physrep.2012.07.005
http://dx.doi.org/10.1103/PhysRevLett.115.015301
http://dx.doi.org/10.1103/PhysRevLett.115.015301
http://dx.doi.org/10.1103/PhysRevLett.115.015301
http://dx.doi.org/10.1103/PhysRevLett.115.015301
http://dx.doi.org/10.1038/nature07334
http://dx.doi.org/10.1038/nature07334
http://dx.doi.org/10.1038/nature07334
http://dx.doi.org/10.1038/nature07334
http://dx.doi.org/10.1038/nphys2734
http://dx.doi.org/10.1038/nphys2734
http://dx.doi.org/10.1038/nphys2734
http://dx.doi.org/10.1038/nphys2734
http://dx.doi.org/10.1103/PhysRevLett.103.045301
http://dx.doi.org/10.1103/PhysRevLett.103.045301
http://dx.doi.org/10.1103/PhysRevLett.103.045301
http://dx.doi.org/10.1103/PhysRevLett.103.045301
http://dx.doi.org/10.1103/PhysRevLett.110.104501
http://dx.doi.org/10.1103/PhysRevLett.110.104501
http://dx.doi.org/10.1103/PhysRevLett.110.104501
http://dx.doi.org/10.1103/PhysRevLett.110.104501
http://dx.doi.org/10.1103/PhysRevLett.112.145301
http://dx.doi.org/10.1103/PhysRevLett.112.145301
http://dx.doi.org/10.1103/PhysRevLett.112.145301
http://dx.doi.org/10.1103/PhysRevLett.112.145301
http://dx.doi.org/10.1103/PhysRevLett.113.165302
http://dx.doi.org/10.1103/PhysRevLett.113.165302
http://dx.doi.org/10.1103/PhysRevLett.113.165302
http://dx.doi.org/10.1103/PhysRevLett.113.165302
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