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Dipole-forbidden atomic transitions induced by superintense x-ray laser fields
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A hydrogen atom, initially prepared in the 2s and/or 2p(m = ±1) states, is assumed irradiated by 0.8 keV
(1.5 nm) photons in pulses of 1–250 fs duration and intensities in the range 1020 to 1023 W/cm2. Solving
the corresponding time-dependent Schrödinger equation from first principles, we show that the ionization and
excitation dynamics of the laser-atom system is strongly influenced by interactions beyond the electric dipole
approximation. A beyond-dipole two-photon Raman-like transition between the 2s and 2p(m = ±1) states is
found to completely dominate the underlying laser-matter interaction. It turns out that the large difference in the
ionization rates of the 2s and 2p(m = ±1) states is important in this context, effectively leading to a symmetry
breaking in the corresponding (beyond-dipole) bound-bound dynamics with the result that a net population
transfer between the states occurs throughout the laser-matter interaction period. Varying the x-ray exposure time
as well as the laser intensity, we probe the phenomenon as the bound wave packet oscillates between having 2s

and 2p(m = ±1) character, eventually giving rise to a Rabi-like oscillation pattern in the populations.

DOI: 10.1103/PhysRevA.93.063425

I. INTRODUCTION

The question of how atoms and molecules interact with
laser light has received wide interest since the invention of
the laser in 1960. Due to the ever increasing number of both
temporally and spatially focused coherent photons that can be
delivered by such light sources, lasers have become the ideal
tool for controlling, observing, and manipulating systems at the
quantum level. With the development of exceedingly powerful
pulses of femto- and attosecond duration and wavelengths
entering the x-ray regime, laser imaging techniques have
approached the level of temporal and spatial resolution needed
to resolve the motion of bound electrons in atomic and
molecular systems [1].

The peak brilliance of xuv [2,3] and x-ray [4–6] lasers
has increased by several orders of magnitude due to ongoing
development of state-of-the-art facilities based on the free-
electron laser (FEL) technology. With the launch of new
machines penetrating deep into the x-ray regime, like, e.g.,
the hard-x-ray free-electron laser (XFEL), the Linac Coherent
Light Source (LCLS) at SLAC (Stanford), and the European
XFEL that is under construction at DESY in Hamburg, the
electronic response of single atoms and molecules exposed to
ultraintense x rays of unprecedented high intensity and short
wavelength is open for exploration [7,8]. X-ray lasers represent
powerful tools for probing dynamics and structure down to
atomic scales [9]. At laser intensities beyond 1017 W/cm2 and
with keV photons, nonlinear behavior is expected to become
prominent which in turn poses significant challenges to
theoretical modeling, numerical simulation, and interpretation
of experimental results, thus calling for accurate theoretical
descriptions of the light-matter interaction at the fundamental
level [10–12]. In this context, nonlinear ionization of neon
exposed to intense x rays at photon energies exceeding 1 keV
has been studied experimentally [13]. Furthermore, the deep
inner-shell multiphoton multiple ionization dynamics of xenon
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by 5.5 keV photons [14], as well as the process of direct
two-photon absorption in germanium with 5.6 keV XFEL
radiation [15], were observed with laser pulses from the
SACLA facility in Japan [6].

The European XFEL will provide ultraintense x-ray pulses
at 0.05–4.7 nm wavelength. With such short wavelengths
and high intensities, the validity of the frequently applied
dipole approximation becomes questionable [12]. In the dipole
approximation, it is assumed that the laser field can be
described by a homogeneous time-varying electric field, i.e.,
any dependence on spatial coordinates as well as the entire
magnetic field have been neglected. This approximation is
usually justified for systems being exposed to electromagnetic
radiation of wavelengths much larger than the length scale
of the target in question [16], and when the laser intensity is
weak enough so that magnetic-field-induced effects can safely
be neglected. Hence the dipole formulation of the light-matter
interaction is likely to break down in the limit of extremely
intense [17–22] and ultrahigh-frequency fields [12,23,24].

Using a recently developed Hamiltonian for the light-matter
interaction beyond the dipole approximation [11], we solve
the three-dimensional time-dependent Schrödinger equation
for a hydrogen atom interacting with an ultraintense and
z-polarized 0.8 keV (1.5 nm) x-ray laser beam of varying
duration (1–250 fs) and intensity. It is found that, for laser
intensities beyond 1020 W/cm2 and for targets prepared in
excited states prior to illumination, the laser-matter interaction
is strongly influenced by magnetic-field-induced nondipole
dynamics. Starting out in, for example, the hydrogenic 2s,
2p(m = 1), and/or 2p(m = −1) states, clear evidence of
transitions between these degenerate states are exhibited in the
final state. Moreover, the mixing of the states follows a periodic
pattern with respect to the x-ray exposure time, giving rise
to Rabi-like oscillations characterized by periodic population
inversions and revivals of the initial state. Note that for the
z-polarized laser field considered here 2s ↔ 2p(m = ±1)
transitions are strictly forbidden in the dipole approximation,
and as such the dynamics is of beyond-dipole nature and
highly nonperturbative. To this end, the underlying (nondipole)
process is of nonlinear character and is mainly governed by the
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direct absorption and emission of two photons in a Raman-type
transition.

II. THEORY

In the nonrelativistic limit, the temporal evolution of a
hydrogenic wave packet � in a laser field is governed by the
time-dependent Schrödinger equation (TDSE), i�∂t� = H�,
where H is the light-atom interaction Hamiltonian. Assuming
propagating (transverse) fields, the laser pulse is conveniently
defined in terms of the vector potential A(η) and the scalar
potential φ(η) with η = ωt − k · r , ω and k = ω

c
k̂ being the

angular frequency and wave vector of the electromagnetic
radiation, respectively. Performing a gauge transformation on
the potentials, i.e., letting the potentials transform according to
the rules A → A′ = A + ∇ξ and φ → φ′ = φ − ∂t ξ , where ξ

is an arbitrary differentiable function depending on the Lorentz
scalar η [25,26], the corresponding electric (E = −∇φ −
∂t A = −∇φ′ − ∂t A′) and magnetic (B = ∇ × A = ∇ × A′)
fields are left unchanged. Following our recent work [11], we
let the potentials transform according to

ξ (r,t) = ξ (η) =
∞∑

j=1

aj

mc2

qω

∫ η

−∞

[
q A(η′)

mc

]2j

dη′, (1)

where m = me and q = −e are the mass and charge of
the electron, and the coefficient aj = (2j )!/[4j (2j − 1)(j !)2].
Assuming the potentials A and φ fulfill the Coulomb (or
radiation) gauge condition (∇ · A = 0, φ = 0), then the
minimal-coupling Hamiltonian, H = 1

2m
( p − q A′)2 + qφ′ +

V , transforms into [11]

H = p2

2m
+ V − q

m
A · p + c

2

∞∑
j=1

aj

{(
q A
mc

)2j

,k̂ · p
}

+ lim
n→∞

mc2

2

n∑
j=1

(
q A
mc

)2(n+j ) n−j+1∑
i=1

aj+i−1an−i+1, (2)

where V = V (r) is the Coulomb potential, and curly brackets
denote the anticommutator {a,b} = ab + ba. Provided that
the condition |q A|/m < c holds, i.e., the velocity of the
corresponding classical (free) particle in the field is never
allowed to exceed the speed of light, the last (double) sum
in Eq. (2) vanishes identically and the Hamiltonian is cast into
the final propagation gauge form [11],

H = p2

2m
+ V − q

m
A · p + c

2

∞∑
j=1

aj

{(
q A
mc

)2j

,k̂ · p
}
. (3)

Note that the transformed potentials A′ = A + ∇ξ and φ′ =
φ − ∂t ξ both become nonzero and that A′ contains a longitudi-
nal component. Still, the four-vector A

′μ = (φ′/c,A′) satisfies
the Lorentz gauge condition, ∂μA

′μ = 0.
Any beyond-dipole (nondipole) response of the hydrogenic

system is manifested due to either the spatial variations in
the vector potential A and/or the homogeneous component of
A through the last term in Eq. (3). This latter term is also
responsible for the radiation pressure force acting upon the
electron throughout the laser pulse. The force is due to the
intimate interplay between the electric- and magnetic-field

components of the laser, effectively giving rise to a push of
the electronic wave packet in the laser propagation direction
[17–19,27,28]. Assuming |q A|/m � c, i.e., the electron is
not allowed to attain relativistic velocities in the laser field,
then all the higher-order terms but the first one in the series
expansion in Eq. (3) may be neglected. Furthermore, assuming
the long-wavelength approximation (LWA) [16] on the laser
field, i.e., taking A to be a purely time-dependent function,
then the Hamiltonian (3) simplifies to

H � p2

2m
+ V − q

m
A0 · p + c

2

(
q A0

mc

)2

k̂ · p, (4)

with A0 ≡ A(t).
The Hamiltonian (4) has the same form as the one used in

[11,28–32]. In the more standard approach, the beyond-dipole
Hamiltonian is obtained by expanding the vector potential
in powers of 1/c k̂ · r around η = ωt . Substituting A(η) =
A0(t) − 1/c d A0

dt
k̂ · r + · · · into the usual minimal coupling

Hamiltonian, imposing the Coulomb gauge restriction on A,
and omitting terms proportional to 1/c2 or higher, yield the
following standard laser-matter interaction Hamiltonian:

H ′ = 1

2m
( p − q A)2 + V (5)

= p2

2m
+ V − q

m
A0 · p + q2

2m
A2

0

+ q

mc

(
− q A0 · d A0

dt
+ d A0

dt
· p

)
k̂ · r + O(1/c2).

(6)

It has been found that the last (nondipole) term in the Hamilto-
nian, which is proportional to ∂t A0 · p, can be neglected in the
high-intensity regime [12,28,33–36], and Eq. (6) is effectively
cast into the approximate form

H ′ � p2

2m
+ V − q

m
A0 · p + q2

2m
A2

0 − q2

mc
A0 · d A0

dt
k̂ · r.

(7)

Although derived by different means, Eq. (4) is mathematically
equivalent to Eq. (7), and the former can be derived from the
latter by applying the unitary (gauge) transformation

� = U� ′, (8)

H = UH ′U † + i�U̇U †, (9)

with [11,28–32]

U = exp

[
− i

q2

2mc�
A2

0(t)k̂ · r

+ i
q2

2m�

∫ t

−∞
A2

0(t ′)dt ′ + i
q4

8m3c2�

∫ t

−∞
A4

0(t ′)dt ′
]
. (10)

When comparing the two forms of the beyond-dipole
laser-atom formulations as represented by the Hamiltonians
(4) and (7), respectively, it is found that the former repre-
sents a powerful tool for investigating nondipole ionization
dynamics induced by intense laser fields [11]. Although they
are mathematically equivalent, independent simulations with
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the respective Hamiltonians yield identical results only if the
problem is handled within an exact treatment—and since
any numerical discretization involves at least some level of
approximation (truncation), one formulation may be the better
choice. The comparison is similar to the choice between the
length-gauge and the velocity-gauge forms of the dipole inter-
action Hamiltonian. It is found that with the Hamiltonian (4), a
converged solution to the TDSE is usually achieved at a com-
paratively smaller truncation limit in the wave-function expan-
sion, in particular in terms of angular basis functions [11].

III. RESULTS AND DISCUSSION

We will now make use of the Hamiltonians (4) and (7) in a
study of nondipole-assisted multiphoton ionization of excited
hydrogen atoms exposed to superintense x-ray fs laser fields. In
the following work, we have applied both the Hamiltonians (4)
and (7) in order to ensure convergence and gauge invariance of
the results. The z-polarized laser pulse is modeled as A0(t) =
E0
ω

f (t) sin(ωt) ẑ, where E0 is the electric-field strength at peak
intensity, and f (t) defines the pulse profile which is assumed
to be of sine-square shape. The time-dependent Schrödinger
equation is solved by expanding the corresponding state vector
in a set of both bound and continuum hydrogenic states. For
details about our numerical representation of the problem,
readers are referred to Ref. [33]. The combination of very high
continuum electron energies and laser pulses of relatively long
duration makes this a particularly challenging computational
problem. Therefore, an absorbing boundary was imposed on
the edges of the numerical grid in order to avoid unphysical
reflections. The convergence of the results was checked by
varying the grid sizes in the simulations.

The top panel in Fig. 1 shows the ionization probability of
the hydrogenic 2s state as a function of the duration of the
laser field. The x-ray radiation is taken to have a wavelength
of 1.5 nm corresponding to the photon energy 0.8 keV, and the
peak laser intensity is set to I0 = 5.6 × 1021 W/cm2. Results
obtained with the nondipole Hamiltonian (4) are compared
with the corresponding dipole approximation results, as
obtained by neglecting the last (nondipole) term in Eq. (4).
Within the dipole approximation, the ionization yield can
easily be fitted with an exponential function, and as such a
well-defined ionization rate may be ascribed to the process.
The beyond-dipole result, on the other hand, follows a much
more complex pathway. First, the ionization yield exhibits
a narrow peak (maximum) in the short-pulse limit where
the laser-matter interaction is predominantly characterized by
nonadiabatic excitation and ionization processes [37]. Second,
in the long-pulse regime the ionization probability features a
rather nontrivial dependency on the pulse duration.

The explanation for the odd behavior of the nondipole
ionization yield in the limit of long pulses can be found by
inspecting the bound-state population dynamics. The survival
probability of the initial state is depicted in the middle panel
of Fig. 1. Noteworthy is that the population of the 2s state
exhibits an oscillatory behavior—in clear contrast to the dipole
signal which instead follows a simple exponential decay
law. Furthermore, the collapse and revival of the initial state
follows a periodic cycle with respect to the x-ray exposure
time, with an oscillation period of about 100 fs. In order to

FIG. 1. Hydrogen initially prepared in the 2s state and exposed to
a 0.8 keV x-ray pulse of peak intensity I0 = 5.6 × 1021 W/cm2. Top
and middle panel: probability of ionization (top panel) and initial-
state survival probability (middle panel) vs laser-pulse duration, as
obtained in the dipole (thick blue line) and nondipole (red line)
limits, respectively. Bottom panel: the populations in the 2s (red
line) and 2p(m = ±1) (thick black line) states. In all panels, results
obtained with the simple model (11) are depicted in dashed (green)
lines.

reveal the mechanism behind this peculiar observation, we
consider the population distribution among the other bound
states. Due to the narrow spectral width associated with the
nearly monochromatic light source, the 2p(m = ±1) states
represent the only two candidates which might support a
significant population. Note, however, that the 2s → 2p(m =
±1) transition is strictly forbidden in the dipole approximation,
and, as such, it can only take place in the presence of the
nondipole field.

The bottom panel in Fig. 1 shows the total population
in the 2p(m = ±1) states as a function of the laser-pulse
duration. For symmetry reasons the population is evenly
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FIG. 2. As Fig. 1 (bottom panel), but a 2D map of the final-state
probability in the 2p(m = ±1) states as a function of both the laser-
pulse duration and intensity.

distributed among the m = ±1 channels. The population in
the 2s is also depicted for comparison. As it turns out, the
periodic pattern of the 2s state probability is followed by
corresponding oscillations in the 2p(m = ±1) population, as is
clearly manifested in the bottom panel of Fig. 1. As seen in the
figure, the respective oscillation amplitudes are successively
damped with increasing irradiation time simply due to the
increasing ionization yield.

Because of the centrifugal barrier, the 2p(m = ±1) states
are significantly more resistant to ionization than the 2s state,
making them effectively transparent to the x-ray radiation.
Hence once the radiation pressure associated with the beyond-
dipole dynamics causes the bound electron to be pushed into
a mixed 2s-2p configuration, the atom becomes temporarily
more resistant to ionization. This is consistent with the
nondipole ionization yield (Fig. 1, top panel) exhibiting fringes
in its incline, thus obstructing the existence of a well-defined
ionization rate.

Figure 2 shows a 2D map of the variation of the 2p(m =
±1) population with respect to both the laser illumination
time and intensity. As apparent from the figure, the Rabi-like
oscillations in the 2p(m = ±1) probability are expressed over
a wide range of intensities beyond 1020 W/cm2. Obviously,
the corresponding Rabi oscillation period varies with the laser
intensity, i.e., it shortens with increasing brilliance. In the
low-intensity limit, nondipole effects are of less importance
and the 2s ↔ 2p(m = ±1) transition dynamics eventually
loses its significance. As a matter of fact, the mechanism
responsible for the coherent population dynamics among
excited (degenerate) states is manifested throughout the x-ray
regime, as well as for other choices of initial states. In
order to demonstrate this, the corresponding results obtained
with the 2p(m = −1) initial state are shown in Fig. 3. The
pulse characteristics are the same as in Fig. 1, and indeed a
similar dependency on the laser-pulse duration is exhibited,
in that the evolution is characterized by Rabi oscillations.

FIG. 3. Hydrogenic 2p(m = −1) state interacting with 0.8 keV
fs x-ray pulses of intensity I0 = 5.6 × 1021 W/cm2. Populations in
the 2p(m = −1) (red line), 2s (thick blue line), 2p(m = +1) (yellow
line), and the ionization yield (thin black line) vs laser-pulse duration.
Results obtained with the simple model (11) are depicted in dashed
(green) lines.

Nevertheless, here the picture is somewhat more complex in
that a secondary transition to the 2p(m = +1) state is allowed,
thus partially prohibiting population inversions and revivals in
the system.

The underlying physics behind the 2s-2p population
dynamics can be explained by means of a simple model as
formulated by the model Hamiltonian

Hmodel = p2

2m
+ V − q

m
A0 · p − q2

2mc

(
E0

ω

)2

f (t)ḟ (t)

×[|2s〉〈2s|k̂ · r|2p,m = 1〉〈2p,m = 1| + H.a.

×|2s〉〈2s|k̂ · r|2p,m = −1〉〈2p,m = −1| + H.a.].

(11)

Here H.a. stands for the Hermitian adjoint operator. In the
simple model, only two nondipole couplings are retained,
i.e., the couplings between the 2s and 2p(m = ±1) states, as
represented by the projection operators in Eq. (11). Note that
all other nondipole interaction terms are neglected entirely. The
dipole interaction, on the other hand, is still fully accounted for
within the model framework. Note further that the nondipole
interaction operator is here formulated within the so-called
envelope approximation as was developed in a recent work
[32]. Solving the time-dependent Schrödinger equation with
the Hamiltonian (11), it is found that in the limit of long
pulses, the laser-atom dynamics is accurately captured by
this comparably simple model, as is clearly illustrated by the
comparisons made between (approximate) model and ab initio
results in Figs. 1 and 3, respectively.

The model (11) effectively serves as a means for exploring
the underlying mechanism responsible for the observed bound-
bound state population dynamics. Within the envelope approx-
imation [32] the beyond-dipole component of the laser field
varies so slowly with respect to time that it may be considered
quasistatic. As such, the 2s and 2p(m = ±1) states become
temporarily mixed in the nondipole field. Now, without the
additional dipole component of the field, this population
mixing is only transient and would vanish at the end of the laser
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interaction. The large difference in the (dipole) ionization rates
of the 2s and 2p(m = ±1) states is, however, important in this
context, effectively leading to an asymmetry in the respective
2s and 2p(m = ±1) populations. It is this symmetry-breaking
mechanism that is responsible for the net population transfer
between the states throughout the illumination period. As such,
the 2s ↔ 2p transitions are governed by the intimate interplay
between the magnetic-field-induced dressing of the bound
states and dipole-driven (nonlinear) multiphoton absorption
and emission processes.

IV. CONCLUSION AND SUMMARY

To summarize, we have investigated x-ray-induced pho-
toionization of excited hydrogen atoms by ultrahigh-intensity
fs laser pulses. Our findings indicate that the beyond-dipole
component of the laser-matter interaction plays a decisive role
in the underlying dynamics. Starting out in, for example, the 2s

and/or 2p(m = ±1) excited states initially, clear evidence of
population mixing between these bound states is exhibited
in the final state. Since this 2s ↔ 2p transition is strictly

forbidden in the dipole approximation per se, it can only
occur due to the mutual interplay between the electric- (dipole)
and magnetic- (nondipole) field components of the laser, in a
Raman-type two-photon transition. One consequence of this is
that the ionization yield of the total system reveals a nontrivial
dependence on the laser exposure time, simply due to the
asymmetry in the corresponding ionization yields of the 2s

and 2p states, effectively making the system temporarily more
transparent or opaque to the x rays. As a final remark, we
point out that the nondipole phenomenon discovered here is
of general validity and applies to almost any quantum system
prepared in degenerate (excited) states exposed to x rays of
unprecedented intensity, and that from an experimental point of
view, the relative population of the 2s and 2p(m = ±1) states
can be readily measured by exploiting the large difference in
their respective fluorescence lifetimes.
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