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Magnetic-sublevel-independent magic wavelengths: Application to Rb and Cs atoms
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A generic scheme to trap atoms at the magic wavelengths λmagic that are independent of vector and tensor
components of the interactions of the atoms with the external electric field is presented. The λmagic for the laser
cooling D2 lines in the Rb and Cs atoms are demonstrated and their corresponding polarizability values without
vector and tensor contributions are given. Consequently, these λmagic are independent of magnetic sublevels and
hyperfine levels of the atomic states involved in the transition, thus, they can offer unique approaches to carrying
out many high-precision measurements with minimal systematics. Inevitably, the proposed technique can also
be used for electronic or hyperfine transitions in other atomic systems.
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I. INTRODUCTION

Techniques to cool and trap atoms using laser light have
revolutionized modern experimental procedures. They are
applied not only to carry out very high precision spectroscopy
measurements, but also to probe many subtle signatures like
parity violation [1], Lorentz symmetry invariance [2], and
quantum phase transitions [3]. Vogl and Weitz demonstrated
the cooling of Rb atoms by resonating the trap laser light
with their D lines [4], while Monroe et al. observed the clock
transition in Cs by cooling the atom using the D2 line [5].
As demonstrated in Ref. [6], trapping atoms at λmagic is the
foremost process today in a number of applications such as
constructing optical lattice clocks. Following this, a number of
experimental and theoretical studies have been reported λmagic

in the neutral atoms [7–14], and recently in the singly charged
alkaline-earth-metal ions [15,16]. In a remarkable work, Katori
et al. [17] demonstrated the use of magic wavelengths λmagic for
Sr atoms to reduce the systematics in the measurements. Using
λmagic for trapping and controlling atoms inside high-Q cavities
in the strong coupling regime with minimum decoherence for
the D2 line of Cs atom has been demonstrated by McKeever
et al. [18]. Liu and co-workers experimentally demonstrated
the existence of λmagic for the 40Ca+ clock transitions [19].

A linearly polarized light is predominantly used to trap
atoms, which is free from the contribution of the vector com-
ponent of the interaction between atomic states and electric
fields. A substantial drawback of these λmagic is that they
are magnetic-sublevel dependent for the transitions involving
states with angular momenta greater than 1/2. It has also been
argued that considering circularly polarized light for trapping
could be advantageous due to the dominant role played by
the vector polarizability in the ac-Stark shift [9,20]. This may
help in augmenting the number of λmagic in some cases but at
the same time requires magnetic-sublevel selective trapping.
The dependence of magic wavelengths on magnetic sublevels
demands the need for state selective traps. To circumvent this
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problem, it is imperative to find λmagic that are independent of
magnetic sublevels.

In this paper, we propose a scheme to trap atoms and ions
at the λmagic that are independent of the atomic magnetic
and hyperfine levels. They can be used in a number of the
applications discussed above. Just for demonstration purposes,
we present here λmagic of the widely used D2 transitions of the
Rb and Cs atoms. They are useful for optical communications
where lasers are tuned to their D lines to trap and repump
the atoms in order to prevent them from accumulating in the
ground state [21]. Moreover, D2 lines of Rb and Cs are used
for studying their microwave spectroscopy [4,5,22,23] and
quantum logic gates [24], and to assert the accuracy of the fine
structure constant [25]. In this proposal, we only presume that
the atomic systems are trapped in sufficiently strong magnetic
fields.

II. THEORY

The ac-Stark shift for any state with angular momentum
K of an atom placed in an oscillating electric field �E =
1
2E ε̂e−ιωt + c.c. with polarization vector ε̂ is given as [26]

�EK = − 1
2αK (ω)E2, (1)

where αK (ω) is the total dynamic polarizability for the state
K with its magnetic projection M as

αK (ω) = α
(0)
K (ω) + β(ε)

M

2K
α

(1)
K (ω)

+γ (ε)
3M2 − K(K + 1)

K(2K − 1)
α

(2)
K (ω), (2)

where α
(i)
K (ω) with i = 0,1,2 are the scalar, vector, and

tensor components of the frequency-dependent polarizability
respectively. In the above expression K and M can be replaced
suitably by either the atomic angular momentum J or hyperfine
angular momentum F with their corresponding magnetic
projection MJ or MF , depending upon the consideration of
atomic or hyperfine states, respectively. The β(ε) and γ (ε) are
defined as [27]

β(ε) = ι(ε̂ × ε̂∗) · êB, (3)
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and

γ (ε) = 1
2 [3(ε̂∗ · êB)(ε̂ · êB) − 1], (4)

with the quantization axis unit vector êB . The differential Stark
shift of a transition between states K to K ′ is, hence, given
by

δEKK ′ = �EK − �EK ′ = −1

2

[{
α

(0)
K (ω) − α

(0)
K ′ (ω)

}

+β(ε)

{
M

2K
α

(1)
K (ω) − M ′

2K ′ α
(1)
K ′ (ω)

}

+γ (ε)

{
3M2 − K(K + 1)

K(2K − 1)
α

(2)
K (ω)

−3M ′2 − K ′(K ′ + 1)

K ′(2K ′ − 1)
α

(2)
K ′ (ω)

}]
E2, (5)

It is obvious from the above expression that for obtaining null
differential Stark shift, it is necessary that either independent
components cancel out each other or the net contribution
nullifies, which prominently depends on the choices of M ,
β(ε), and γ (ε) values. By adequately selecting the exper-
imental configuration such that the β(ε) and γ (ε) values
are zero, it is possible to remove the vector and tensor
components. As implied from the above considerations and
Eq. (5), the differential ac-Stark shift depends only on the
scalar polarizabilities of the associated states. Thus, it is
independent of the magnetic sublevels. Moreover, the scalar
polarizabilities are the same for the atomic and hyperfine
levels; i.e., α

(0)
J = α

(0)
F (for all the allowed F values). Hence,

these λmagic are also independent of the hyperfine splittings
of the participating atomic states. Therefore, λmagic obtained
by applying the above conditions will be independent of the
choice of MJ , F , and MF quantum numbers. On account of
the above, we elucidate a laboratory frame in which null values
for β(ε) and γ (ε) can be accomplished.

III. DISCUSSION

We start our analysis by defining a coordinate system with
the components ε̂maj, ε̂min, and k̂, where ε̂maj and ε̂min are the
real components of the complex unit polarization vector ε̂ and
describe the system such that

ε̂ = eισ (cos φε̂maj + ι sin φε̂min). (6)

Here parameter φ is analogous to the degree of polarization
A, and σ is a real quantity representing an arbitrary phase.
Conveniently this can be represented by Fig. 1, where the
electric field vector sweeps out an ellipse in a unit period
about the axis of wave vector k̂ with semimajor and semiminor
axes of the ellipse aligned along ε̂maj and ε̂min, respectively.
The ratio of the semiminor width to semimajor width of
the ellipse needs to be tan φ. Furthermore using Eqs. (3)
and (6), one can express ι(ε̂ × ε̂∗) = Ak̂, where A = sin 2φ.
The biased magnetic field is along the quantization axis êB and
can technically be aligned in any direction. Without loss of
generality, it can be assumed to lie in the ε̂maj ∼ ε̂min plane for
the present requirement. Parameters θmaj, θmin, and θk are the
angles between the respective unit vectors and êB , respectively,
as shown in Fig. 1. In terms of these geometrical parameters,

FIG. 1. Schematic representation of elliptically polarized light
swept out by the polarization vector in one period. Unit vector ε̂maj

(ε̂min) aligns along the semimajor (semiminor) axis. The vectors
ε̂maj, ε̂min, and k̂ are mutually perpendicular to each other, while
êB is the quantization axis lying in the plane of ε̂maj and ε̂min and is
perpendicular to k̂.

one can conveniently express β(ε) = Ak̂ · êB = A cos θk and
γ (ε) = 1

2 (3 cos2 θp − 1), satisfying the relations

cos2 θp = cos2 φ cos2 θmaj + sin2 φ cos2 θmin (7)

and

θmin + θmaj = 90◦. (8)

Substituting the explicit form of β(ε) and γ (ε) in Eq. (2), the
expression for the polarizability is given by

αK (ω) = α
(0)
K (ω) + (A cos θk)

M

2K
α

(1)
K (ω)

+
(

3 cos2 θp − 1

2

)
3M2 − K(K + 1)

K(2K − 1)
α

(2)
K (ω). (9)

In this description, it reduces to β(ε) = 0 and γ (ε) =
1
2 (3 cos2 ψ − 1) for the linearly polarized light with φ = 0,
where ψ is the angle between the quantization axis and
direction of polarization vector. Similarly, one can simplify
the above expression for the circularly polarized light by using
either φ = 45◦ or φ = 135◦.

To eliminate the dependence of λmagic on M values in
Eq. (5), one can choose a suitable combination of the above
parameters so that null values for both β(ε) = A cos θk and
γ (ε) = 1

2 (3 cos2 θp − 1) can be achieved. This obviously cor-
responds to cos θk = 0 and cos2 θp = 1

3 , which can be brought
about by suitably setting up the φ, θk , and θmaj parameters.
One can achieve cos θk = 0 by fixing the quantization axis
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FIG. 2. Combinations of θmaj and φ values, marked with red
curves, for which cos2 θp = 1

3 .

êB at right angles to the wave vector; i.e. one can assume eB

to repose in the ε̂maj ∼ ε̂min plane. On the other hand, many
possible freedoms exist to achieve cos2 θp = 1

3 . For example,
we plot θmaj values (note that θmaj and θmin are related) versus φ

in Fig. 2, where each point on the graph represents a set of θmaj

and φ that can yield cos2 θp = 1
3 . As mentioned previously,

φ is a measure of the polarization and can be adjusted by
setting the eccentricity e of the ellipse (|A| = 2

√
1−e2

2−e2 ). It is
evident from Fig. 2 that for the values φ = 45◦ and 135◦,
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FIG. 3. MJ independent dynamic polarizabilities (in a.u.) of the
5S and 5P3/2 states in Rb against wavelengths (in nm) for the proposed
elliptically polarized light with cos θk = 0 and cos2 θp = 1

3 .

none of the pairs of angles φ and θmaj can offer cos2 θp = 1
3 .

This means that the above criterion cannot be attained by
applying the circularly polarized light. However, as has been
reported in [28], this condition can be attained with φ = 0◦
and ψ = 54.74◦ for a linearly polarized light. This critical
condition seems to be too demanding and could be hard to
achieve in an experimental set-up. On the other hand, one
could get a more relaxed experimental conditions by using an
elliptical polarized light as it offers more freedom to choose

TABLE I. Magic wavelengths λmagic (in nm) with the corresponding polarizability αv(ω) (in atomic units) for the 5S − 5P3/2 and 6S − 6P3/2

transitions in the Rb and Cs atoms, respectively, with the proposed elliptically polarized light with cos θk = 0 and cos2 θp = 1
3 . In between

resonant wavelengths λres (in nm) are also mentioned.

Rb Cs

Resonant transition λres λmagic αv(ω) Resonant transition λres λmagic αv(ω)

5P3/2 − 8D3/2 543.33 6P3/2 − 9D5/2 584.68
615.2 −478 602.9 −340

5P3/2 − 8S1/2 616.13 6P3/2 − 10S1/2 603.58
627.2 −532 614.8 −368

5P3/2 − 6D5/2 630.01 6P3/2 − 8D5/2 621.48
5P3/2 − 6D3/2 630.10 621.9 −384

740.4 −2515 6P3/2 − 8D3/2 621.93
5P3/2 − 7S1/2 741.02 657.7 −502

775.8 −20048 6P3/2 − 9S1/2 658.83
5P3/2 − 5D5/2 775.98 685.9 −628
5P3/2 − 5D3/2 776.16 6P3/2 − 7D5/2 697.52
5P3/2 − 5S1/2 780.24 698.5 −697

791.3 −3681 6P3/2 − 7D3/2 698.54
5P3/2 − 6S1/2 1366.87 793.6 −2094

1397.1 461 6P3/2 − 8S1/2 794.61
5P3/2 − 4D5/2 1529.26 6S1/2 − 6P3/2 852.35

886.4 −3736
6S1/2 − 6P1/2 894.59
6P3/2 − 6D5/2 917.48

920.6 4131
6P3/2 − 6D3/2 921.11

936.2 2994
6P3/2 − 7S1/2 1469.89
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from a number of φ and θmaj combinations as shown in Fig. 2.
In fact, we observe that these estimated values of λmagic will
change maximum up to 1% for the variation of θmaj by one
degree when φ is constant and vice versa. Therefore, it seems
feasible to prepare a trap geometry using our proposed criteria
for the elliptically polarized light aptly.

IV. RESULTS

It looks straightforward to achieve λmagic for any atomic or
hyperfine transition in a given atomic system by maintaining
the above geometry for trapping atoms provided that the
differential polarizabilities of the considered transition nulli-
fies within the resonance lines. We subsequently demonstrate
below these λmagic, specifically for the D2 lines of the Rb and
Cs atoms.

Rb atom. In Fig. 3, we have plotted scalar dipole polarizabil-
ities of the 5S and 5P3/2 states of Rb with respect to wavelength
of the external electric field. These values were obtained in our
previous work where we presented λmagic for the D lines of Rb
using the linearly and circularly polarized light [9]. As can be
seen from the figure, a number of λmagic represented by the
crossings of 5S and 5P3/2 polarizabilities have been predicted
for this transition and are presented in Table I along with the
resonance lines to highlight their locations. Two λmagic are
found at 615.2 and 627.2 nm, which belong to the visible
region, while the other five λmagic are located at 740.4, 775.8,
791.3, and 1397.1 nm. One more probable λmagic in between
the 5P3/2 − 6D5/2 and 5P3/2 − 6D3/2 resonance lines seems
to exist, but we have not listed it in the table due to inability
to identify it distinctly. All the λmagic mentioned in Table I,
except the one at 1397.1 nm, support the blue-detuned trapping
scheme. We, however, recommend the use of λmagic at 791.3 nm
for a blue-detuned and 1397.1 nm for a red-detuned trap for
experimental purposes, since these wavelengths are far from
the resonant transitions.

Cs atom. Adopting a similar procedure as in Ref. [10], we
have evaluated dynamic polarizabilities of the ground and 6P

states of Cs. We have also plotted the frequency-dependent
scalar polarizabilities of the ground and 6P3/2 states of this
atom in Fig. 4 to find out λmagic that are independent of
the magnetic sublevels and hyperfine levels of the atomic
states of the D2 line. Table I lists the λmagic for this transition
which lie within the wavelength range of 600–1500 nm. As
demonstrated in Ref. [10], λmagic exist between every two
resonances for the linearly polarized light. We correspondingly
locate six wavelengths at 602.9, 614.8, 621.9, 657.7, 685.9, and
698.5 nm in the visible region using the proposed geometry
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FIG. 4. MJ independent dynamic polarizabilities (in a.u.) of the
6S and 6P3/2 states in Cs against wavelengths (in nm) for the proposed
elliptically polarized light with cos θk = 0 and cos2 θp = 1

3 .

for an elliptically polarized light. We also found two λmagic

at 793.6 and 886.4 nm, which belong to infrared region.
They all support dark or blue-detuned traps. Two more λmagic

in the infrared region are located at 920.6 and 936.2 nm
that can support red-detuned traps. In this case, we intend
to recommend the use of λmagic at 920.6 and 936.2 nm for
the red-detuned trapping and 685.9 nm for the blue-detuned
trapping due to the availability of lasers at these wavelengths.

V. CONCLUSION

A trap geometry has been proposed using an elliptically
polarized light in a sufficiently large magnetic field that can
produce null differential ac-Stark shifts among the transitions
and can be exclusively applicable among any magnetic
sublevels and hyperfine levels. Their applications in the D2

lines of Rb and Cs atoms have been highlighted and the
corresponding magic wavelengths are reported. Furthermore,
we have also recommended the magic wavelengths that are
suitable for both the blue- and red-detuned traps of Rb and Cs
atoms. These magic wavelengths will be immensely useful in
a number of high-precision measurements.
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