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A theory of above-threshold ionization of atoms by a strong laser field is formulated. Two versions of the
strong-field approximation (SFA) are considered, the direct SFA and the improved SFA, which do not and do,
respectively, take into account rescattering of the freed electron off the parent ion. The atomic bound state is
included in two different ways: as an expansion in terms of Slater-type orbitals or as an asymptotic wave function.
Even though we are using the single-active-electron approximation, multielectron effects are taken into account in
two ways: by a proper choice of the ground state and by an adequate definition of the ionization rate. For the case of
the asymptotic bound-state wave functions, using the saddle-point method, a simple expression for the T -matrix
element is derived for both the direct and the improved SFA. The theory is applied to ionization by a bicircular
field, which consists of two coplanar counterrotating circularly polarized components with frequencies that are
integer multiples of a fundamental frequency ω. Special emphasis is on the ω-2ω case. In this case, the threefold
rotational symmetry of the field carries over to the velocity map of the liberated electrons, for both the direct
and the improved SFA. The results obtained are analyzed in detail using the quantum-orbit formalism, which
gives good physical insight into the above-threshold ionization process. For this purpose, a specific classification
of the saddle-point solutions is introduced for both the backward-scattered and the forward-scattered electrons.
The high-energy backward-scattering quantum orbits are similar to those discovered for high-order harmonic
generation. The short forward-scattering quantum orbits for a bicircular field are similar to those of a linearly
polarized field. The conclusion is that these orbits are universal, i.e., they do not depend much on the shape of
the laser field.
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I. INTRODUCTION

Strong-field physics explores the interaction of intense
electromagnetic fields with matter. The advances of ultrafast
laser science and strong-field physics have led to the possibility
of tracking the electronic and structural dynamics on the
subfemtosecond time scale, which has opened up a new
area of science: attoscience (see, for example, the review
articles in [1–13] and references therein). In this context, two
laser-induced processes are particularly important: high-order
harmonic generation (HHG) and above-threshold ionization
(ATI). In the ATI process the atom or molecule is ionized by the
strong laser field. During ATI more photons are absorbed from
the laser field than is necessary for ionization and the emitted
electron spectrum consists of peaks separated by the photon
energy �ω. If the oscillating laser field is linearly polarized, the
ionized electron can be driven back by the laser field exactly to
the position of its parent ion. If this electron recombines with
the ion, its entire energy is emitted as one high-energy photon
in this so-called HHG process. The returning electron can also
elastically rescatter off the parent ion, move away from it,
and reach the detector with a higher energy: This is the high-
order ATI (HATI) process. As described above, the so-called
three-step model (ionization, propagation, and rescattering or
recombination with high-harmonic emission) [14] was crucial
for the development of strong-field physics and attoscience.

Atomic and molecular processes in a strong field are
quantum-mechanical processes. Having in mind wave-particle
duality, the classical trajectories described above should be

replaced by electronic wave packets. Feynman’s path integral
is very suitable for the description of HHG and HATI pro-
cesses [15–18]. A realization of this approach is the so-called
quantum-orbit theory [19–22]. In this formalism, the electron
does not have to start with zero velocity and then follow only
one classical trajectory and return to the parent ion. In the
Feynman path-integral approach and quantum-orbit theory,
the transition amplitude is the coherent sum of many different
paths, expressed as

∑
s As exp(iSs), with Ss the action along

the sth path. In laser-induced processes the times (ionization
and rescattering times for HATI) that enter the formalism
are complex and so are the corresponding trajectories. A
visualization of such processes can be accomplished by
projecting these trajectories onto the real plane.

The quantum-orbit formalism described above is not
restricted to linearly polarized fields. In Refs. [15,20,23]
elliptically polarized laser fields were extensively considered.
If the polarization is not linear, an electron released with
zero velocity will not normally be driven into an exact
recollision. However, HHG and ATI still occur, though with
decreasing yield for increasing ellipticity. This is possible since
the electronic wave packet has a distribution of transverse
momenta and with the appropriate magnitude of the latter the
electron does recollide. However, the larger this transverse
momentum has to be the more the HHG or ATI yield will be
suppressed.

One such nonlinearly polarized field, the bicircular field,
has recently generated much interest. In fact, in [24] it was
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observed that strong high-harmonic emission can be achieved
using a field that consists of two coplanar counterrotating
circularly polarized fields having the frequencies ω and 2ω.
Calculations based on the zero-range potential model have
confirmed this [25]. The HHG process in a bicircular field
and a static magnetic field was considered in [26]. The
HHG process with the bicircular field was explained using
a semiclassical three-step model based on the quantum-orbit
formalism [27]. The two-dimensional electron trajectories
responsible for this process were clearly identified. It was
found that the harmonic-emission efficiency is very high [28],
that the harmonics are circularly polarized with alternating
helicities, and that the polarization of an attosecond pulse train
generated by the superposition of several such harmonics is
unusual [29]. High-order harmonic generation by a bicircular
field with frequencies rω and sω, with r and s integers, was
considered in detail in [30]. However, only in [31] was it
shown experimentally that the high-order harmonics are really
circularly polarized. Since circularly polarized radiation in
this frequency range thus far has only been available at large
facilities, this scheme is attracting a great deal of attention [32–
38] and is becoming a very active area of research [39,40].

The (H)ATI process by a bicircular field was considered
in Ref. [41], where a superposition of two counterrotating
circularly polarized pulses, having the same frequency, was
considered. One of these pulses was long while the other one
was a few-cycle pulse. It was shown that high-energy electrons,
generated in ionization by such a combination of pulses, are
emitted in a direction correlated with the carrier-envelope
phase. Angle-resolved electron energy spectra in strong-field
ionization by a bicircular field of arbitrary frequencies rω

and sω were analyzed in [42]. For the case where r = 1
and s = 2, the predicted three-lobed shape of these spectra
was recently confirmed experimentally [43]. In addition,
in [43] low-energy features of the electron spectra due
to Coulomb-field-enhanced rescattering were observed and
confirmed in numerical calculations. However, high-energy
features, also visible in the observed spectra presented in [43],
were not explained. High-energy spectra have recently been
considered theoretically in [44] and experimentally in [45].
The low-energy features of the observed spectra can be
related to the so-called low-energy structures (LESs) in ATI
by a linearly polarized laser field. These were discovered
in [46,47] and have attracted much attention because they
cannot be explained by the standard strong-field approximation
(SFA). However, the improved SFA (ISFA), which includes
rescattering, successfully describes both the LES [48] and
its subsequently observed off-axis extension [49] as well
as an off-axis V structure [50] (see also the more recent
papers [12,51–53] and references therein).

The main body of this paper is divided into four sections.
Section II consists of six subsections in which we define
the transition matrix element, introduce the ISFA and the
saddle-point method (SPM), define our bicircular field, present
the classical cutoff law, and consider symmetries of the matrix
elements. Compared with earlier work, the SPM is modified so
that it can be applied to the asymptotic states of the inert-gas
atoms. In Sec. III we separately present the results obtained
using the direct SFA and using the ISFA, which takes into ac-
count rescattering. Section IV is devoted to the quantum orbits

and their visualization in the form of two-dimensional electron
trajectories. Finally, Sec. V contains our concluding remarks
and some discussion. The atomic system of units is used.

II. THEORY

A. Transition matrix element

We denote the total Hamiltonian of an atom (or a negative
ion) interacting with the laser field by

H (t) = H0 + Vle(t) + V (r), (1)

where (in atomic units) H0 = −∇2/2, ∇ ≡ ∂/∂r, Vle(t) is the
laser-field–electron interaction, and V (r) = VC(r) + Vsh(r),
with VC(r) = −Z/r (Z = 1 for atoms and Z = 0 for negative
ions) the Coulomb interaction and Vsh(r) a short-range inter-
action. The total time-evolution operator U (t,t ′) corresponds
to the Hamiltonian H (t), while the evolution operators Ule

and UV correspond to the Hamiltonians Hle = H0 + Vle and
HV = H0 + V , respectively. They satisfy the Dyson equations

U (t,τ ) = Ule(t,τ ) − i

∫ t

τ

dτ ′U (t,τ ′)V (r)Ule(τ ′,τ ), (2)

U (t,t ′) = UV (t,t ′) − i

∫ t

t ′
dτ U (t,τ )Vle(τ )UV (τ,t ′). (3)

In length gauge and dipole approximation we have

Vle(t) = r · E(t), (4)

Ule(t,t ′) =
∫

dk|χk(t)〉〈χk(t ′)|, (5)

|χk(t)〉 = |k + A(t)〉 exp[−iSk(t)], (6)

where E(t) = −dA(t)/dt is the electric-field vector, Ule(t,t ′)
is the Volkov time-evolution operator, |χk(t)〉 are the Volkov
states, dSk(t)/dt = [k + A(t)]2/2, and |q〉 is a plane-wave ket
such that 〈r|q〉 = (2π )−3/2 exp(iq · r).

We consider an ionization (detachment) process in which
the interaction with the laser field is turned off at times t

and t ′ so that the states |ψp(t)〉 = |ψp〉e−iEpt and |ψi(t ′)〉 =
|ψi〉e−iEi t

′
are mutually orthogonal eigenstates of the Hamil-

tonian HV with the eigenenergies Ep = p2/2 and Ei = −Ip <

0, respectively. The quantity Ei denotes the atomic or negative-
ion binding energy, while Ip is the atomic ionization potential
or the negative-ion electron affinity. The transition matrix
element from the initial bound state |ψi(t ′)〉 to the final state
|ψp(t)〉 of the electron having the asymptotic momentum p
and energy Ep is

Mpi(t,t
′) = 〈ψp(t)|U (t,t ′)|ψi(t

′)〉. (7)

Introducing Eq. (3) into (7) and replacing in the resulting
equation the operator U (t,τ ) with (2), we obtain

Mpi(t,t
′) = MD

pi (t,t
′) + MR

pi(t,t
′), (8)

MD
pi (t,t

′) = −i

∫ t

t ′
dτ 〈ψp(t)|Ule(t,τ )Vle(τ )|ψi(τ )〉, (9)

MR
pi(t,t

′) = (−i)2
∫ t

t ′
dτ

∫ t

τ

dτ ′〈ψp(t)|U (t,τ ′)

×V (r)Ule(τ ′,τ )Vle(τ )|ψi(τ )〉. (10)
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The superscripts D and R stand, respectively, for the direct
and the rescattered (on the potential V ) parts of the transition
amplitude.

The differential ionization probability for emission of an
electron with the energy Ep into the solid-angle element d�p̂
for a laser pulse having duration Tp is given by [3]

Wpi(Tp) =
∣∣∣∣Mpi

(
Tp

2
, − Tp

2

)∣∣∣∣
2

dp
d�p̂dEp

. (11)

For an infinitely long (Tp → ∞) periodic laser field
with the period T = 2π/ω, using relations

∫ ∞
−∞ dtf (t) =∑∞

n=−∞
∫ T

0 dtf (t + nT ),
∑∞

n=−∞ einET = ω
∑∞

n=−∞ δ(E −
nω), and Sp(t + T ) = Sp(t) + (Ep + Up)T , where f (t) is an

arbitrary function and Up = ∫ T

0 A2(τ )dτ/(2T ) is the pon-
deromotive energy, the transition amplitude can be expressed
via the T -matrix element by the formula (see, for example,
Sec. III C in [54])

Mpi = −2πi
∑

n

δ(Ep − Ei + Up − nω)Tpi(n). (12)

Here we have introduced the notation that omitting the argu-
ments t and t ′ in Mpi(t,t ′) means that they take their asymptotic
values so that Mpi ≡ Mpi(∞, − ∞). The argument of the δ

function displays energy conservation. Explicit expressions
for the T -matrix element in the form of the integral over one
optical cycle are given in the next subsection. Using the relation
2πδ(0) = Tp (for Tp → ∞), from Eqs. (11) and (12) for the
differential ionization (detachment) rate we obtain

lim
Tp→∞

Wpi(Tp)

Tp

=
∑

n

wpi(n)δ(Ep − Ei + Up − nω), (13)

where

wpi(n) = 2πp|Tpi(n)|2 (14)

is the differential ionization (detachment) rate with absorption
of n photons.

Our ground-state wave functions are given in the form of the
ith atomic orbitals, obtained by solving the Roothan-Hartree-
Fock equations [55]. In spherical coordinates, with the z axis
as the quantization axis, they are given by

ψilm(r) = 〈rθφ|ψilm〉 = Ril(r)Ylm(θ,φ), (15)

where Ylm(θ,φ) = 〈θφ|lm〉 are the normalized spherical har-
monics in complex form, while the radial wave functions
Ril(r) are expanded in terms of basis functions (for example,
Slater-type orbitals [55,56]) or represented by the asymptotic
wave functions [56–58]. In the case of the expansion in
Slater-type orbitals, the radial wave function is

Ril(r) =
∑

a

Ca

(2ζa)na+1/2

√
(2na)!

rna−1e−ζar , (16)

where na and l are the quantum numbers of the electron and
the parameters Ca and ζa characterize the radial distribution
of the electron density and can be found tabulated in [55,56].
For the inert gases considered in the present paper we will use
the orbitals given in Table I. Since we are using the length
gauge, the interaction (4) emphasizes large distances where

TABLE I. Ground-state configurations of valence electrons (the
number of the used Slater-type orbitals is given in parentheses),
ionization potentials, and asymptotic expansion coefficients A for
inert atomic gases [56,59,60].

Atom Configuration Ip (eV) A (a.u.)

He 1s(5) 24.59 2.87
Ne 2p(4) 21.56 2.1
Ar 2p(2) + 3p(2) 15.76 2.51
Kr 3p(2)+ 4p(2) 14.00 2.59
Xe 3p(1) + 4p(2) + 5p(2) 12.13 2.72

the bound-state wave functions have well-defined asymptotic
behavior and the approximation

Ril(r) ≈ Arν−1 exp(−κr), r � 1 (17)

is well justified [57]. The constant A is tabulated in [56,59,60],
ν = Z/κ , and κ = √

2Ip. For the inert gases the corresponding
values of Ip and A are given in Table I.

We are using the single-active-electron approximation.
However, different electrons from the ground-state configu-
ration of the atom (negative ion) can play the role of this active
electron. Denoting by Ne the number of equivalent electrons in
the ionizing shell of the target and averaging over the possible
values of m (there are 2l + 1 values of m, m = −l, . . . ,l), we
obtain that Eq. (14) should be replaced by

w̄pi(n) = Ne

2l + 1

l∑
m=−l

wpilm(n). (18)

We neglect the effect of the fine-structure splitting [61] and
the appearance of spin-orbit sublevels (see [62] and references
therein for a more general definition). We usually consider
the case of closed subshells specified by the orbital quantum
number l. This subshell has 2l + 1 orbitals specified by m.
Each orbital can be occupied by two electrons having different
values of the spin projections. Therefore, in this case we have
Ne = 2(2l + 1) in Eq. (18). For He we have l = m = 0, while
for other inert gases we have l = 1, so three terms (m = 0, ± 1)
have to be taken into account in Eq. (18).

B. Improved strong-field approximation

We will first analyze the term MD
pi , which corresponds to

direct ATI or direct above-threshold detachment (ATD). If in
Eq. (9) we approximate 〈ψp(t)|Ule(t,τ ) with 〈χp(τ )|, i.e., with
the Volkov state that corresponds to the electron having the
asymptotic momentum p outside the laser field, we obtain the
standard SFA for direct ATI (Keldysh-Faisal-Reiss [63] theory
or the direct SFA):

MSFA
pi (t,t ′) = −i

∫ t

t ′
dτ 〈χp(τ )|Vle(τ )|ψi(τ )〉. (19)

In this case, for a T -periodic laser field and in the limits t → ∞
and t ′ → −∞, we obtain the result (14), where the T -matrix
element for the direct ATI (ATD) is given by [64]

T SFA
pi (n) =

∫ T

0

dt0

T
〈p + A(t0)|Vle(t0)|ψi〉ei[Sp(t0)+Ipt0]. (20)
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Using the energy-conservation condition nω = Ep + Ip + Up

we can rewrite the exponent in Eq. (20) as Sp(t0) + Ipt0 =
p · α(t0) + U1(t0) + nωt0, where A(t) = dα(t)/dt andU1(t) =∫ t

dt ′A(t ′)2/2 − Upt . This one-dimensional integral over the
ionization time t0 can be calculated numerically.

The improved SFA can be obtained by approximating in the
rescattering matrix element (10) the bra vector 〈ψp(t)|U (t,τ ′)
by the Volkov vector 〈χp(τ ′)|. Then, using Eq. (5), the
rescattering matrix element (10) can be approximated by

MR
pi(t,t

′) ≈ (−i)2
∫ t

t ′
dτ

∫
dk

∫ t

τ

dτ ′〈χp(τ ′)|V (r)|χk(τ ′)〉
× 〈χk(τ )|Vle(τ )|ψi(τ )〉. (21)

For a T -periodic laser field, in the limits t → ∞ and t ′ →
−∞, for the corresponding T -matrix element we get

T R
pi (n) ≈ −i

∫ T

0

dt

T

∫
dk〈χp(t)|V (r)|χk(t)〉

×
∫ t

−∞
dt0〈χk(t0)|Vle(τ )|ψi(t0)〉. (22)

Using the SPM, the integral over the intermediate electron
momenta k can be (approximately [65]) solved and we obtain
the ISFA T -matrix element

T ISFA
pi (n) = −i

∫ T

0

dt

T

∫ t

−∞
dt0

[
2π

i(t − t0)

]3/2

×〈p|V (r)|kst〉〈kst + A(t0)|Vle(t0)|ψi〉
× ei[Sp(t)−Skst (t)+Skst (t0)+Ipt0], (23)

where

kst = − 1

t − t0

∫ t

t0

dt ′A(t ′) (24)

is the stationary momentum. Introducing the travel time
τ = t − t0, the integral over t0 can be replaced by the integral
over τ from τ = 0 to ∞. Similarly to Eq. (20), the term
Sp(t) + Ipt0 can be replaced by p · α(t) + U1(t) + nωt − Ipτ .
The result obtained is analogous to that of Refs. [58,64]. The
double integral over t and τ can be calculated numerically.
The corresponding rescattering potential and matrix elements
are given in [66].

C. Saddle-point method

The integral over the direct ionization time t0 in the
T -matrix element (20) can be calculated numerically or
approximately solved using the SPM. In the case of ATD by a
bicircular field this has been done in Ref. [42]. In the present
paper we will apply the SPM to ATI of inert atomic gases with
the bound-state wave function given by Eqs. (15) and (17).
The saddle-point equation is the same for ATD and ATI and is
determined by the condition d[Sp(t0) + Ipt0]/dt0 = 0, which
gives the energy-conservation condition at the ionization time
t0,

1
2 [p + A(t0)]2 = −Ip. (25)

The solutions of Eq. (25) for the complex time t0 for the bicircu-
lar field were analyzed in detail in [42]. Application of the SPM
in the case of the asymptotic functions (17) with ν = Z/κ =

1/κ �= 0 is more complicated [57,67]. In short, after a partial
integration over the time t0 the matrix element 〈q|Vle(t0)|ψi〉,
with q = p + A(t0), is replaced by the function −(Ip +
q2/2)ψ̃i(q), where ψ̃i(q) = (2π )−3/2

∫
dr ψi(r) exp(−iq · r)

is the momentum-space asymptotic wave function, which can
be expressed as a product of the Gauss hypergeometric series
2F1(a,b; c; −q2/κ2) and the solid harmonics Ylm(q̂)(q/κ)l .
The saddle-point equation implies that q2 = −κ2, so, with a
proper choice of the integration contour in the complex plain,
one obtains [3,57,67,68]

T
SFA,SP

pi (n) = i2−3/2T −1Aκνν�(ν/2)

×
∑

s

(
qs

iκ

)l

Ylm(q̂s)

(
2i

S ′′
s

)(ν+1)/2

eiSs , (26)

where qs = p + A(t0s), Ss = Sp(t0s) + Ipt0s , and S ′′
s =

d2Ss/dt2
0 = −E(t0s) · [p + A(t0s)]. The summation in Eq. (26)

is over those complex saddle-point solutions of Eq. (25) for
the ionization time t0 that are located in the upper half of the
complex t0 plane.

The subintegral function in the five-dimensional integral
that appears in the T -matrix element (22) can be presented in
the form Api exp(iSpi), where

Spi(t,t0,k) = −
∫ ∞

t

dt ′[p + A(t ′)]2/2

−
∫ t

t0

dt ′[k + A(t ′)]2/2 + Ipt0 (27)

is the action. The integral in (22) can be solved using the
five-dimensional SPM. The stationarity condition for the
integral over the intermediate electron momentum k leads to
Eq. (24), which physically corresponds to the requirement that
the electron returns to its parent ion. For k = kst the stationarity
conditions for the integral over the ionization time t0 and the
rescattering time t give

1
2 [k + A(t0)]2 = −Ip, (28)

1
2 [k + A(t)]2 = 1

2 [p + A(t)]2, (29)

which are the energy-conservation conditions at times t0
and t , respectively. The complex solutions of the system of
equations (28) and (29) for times t0 and t , for linear polarization
of the laser field, were analyzed in detail in [50–52,69]. In
the present paper, we will find analogous solutions for the
bicircular field.

We will first present the modified SPM, which was
introduced in [70] (for HHG) and in [3] (for HATI by a
few-cycle laser pulse). In the usual application of the SPM,
one carries out the integral over t0 and t in Eq. (23) using
the two-dimensional SPM in which the determinant with the
factor [(

∂2Spi

∂t0∂t

)2

− ∂2Spi

∂t2
0

∂2Spi

∂t2

]−1/2

appears. In the modified SPM, one first solves the integral over
t0 similarly to how it was done for the direct SFA. Now, instead
of Ss , as in Eq. (26), the action Spi and S ′′

pi0 = ∂2Spi/∂t2
0 =

−E(t0) · [k + A(t0)] appear. After that, the SPM is applied to
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the three-dimensional integral over k so that k → kst [Eq. (24)]
and the factor {2π/[i(t − t0)]}3/2 appears as in Eq. (23). Then
the remaining integral over t is treated with the standard one-
dimensional SPM, which generates the factor (2πi/S ′′

pi)
1/2,

with S ′′
pi = ∂2Spi/∂t2. However, since kst depends on t one has

to be careful in calculating the derivatives with respect to t .
In this case, we get S ′′

pi = (kst − p) · E(t) + [kst + A(t)]2/(t −
t0). As the final result we obtain

T
ISFA,SP

pi (n) = π2T −1Aκνν�(ν/2)

×
∑

{t0s ,ts }

(
qs

iκ

)l

Ylm(q̂s)
〈p|V |kst〉

[i(ts − t0s)]3/2

×
(

2i

S ′′
pi0,s

)(ν+1)/2( 2i

S ′′
pi,s

)1/2

eiSpi,s , (30)

where the sum is over the simultaneous complex solutions of
the system of equations (28) and (29). Here qs/iκ is equal to
1 (up to a sign since q2

s = −κ2). In our calculations with the
bicircular field we will need the spherical harmonics Y00(q̂) =
1/

√
4π (for He) and Y1±1(q̂) = ∓√

3/8π (qx ± iqy)/|q| for all
other inert gases [for l = 1 the term m = 0 does not contribute
since the corresponding matrix element is zero, i.e., 〈q|r ·
E(t0)|ψi〉 = 0].

D. Definition of the bicircular field

A bicircular laser field is a superposition of two coplanar
counterrotating fields having the angular frequencies rω and
sω, which are integer multiples of the same fundamental
frequency ω = 2π/T . It is defined by

E(t) = i

2
(E1ê+e−irωt + E2ê−e−isωt ) + c.c., (31)

where ê± = (êx ± iêy)/
√

2, with êx and êy the real unit
polarization vectors along the x and y axes. In (31) Ej and Ij =
E2

j are, respectively, the electric-field vector amplitude and
the intensity of the j th field component with the helicities hj

(h1 = 1 and h2 = −1). In Fig. 1 we present the polar diagrams
of the electric-field vector E(t), the pertinent vector potential
A(t), and the vector α(t) in the xy plane for various combi-
nations (r,s) = (1,2), (1,3), (1,4), and (2,3). The intensities
of the two components are equal. The ponderomotive energy
is Up = Up1 + Up2 = A2

1/4 + A2
2/4, with A1 = E1/rω and

A2 = E2/sω.
In principle, one can introduce arbitrary phases φ1 and φ2

in the definition of the bicircular field (31) by replacing rωt

with rωt + φ1 and sωt with sωt + φ2 [71]. In this case, the
field components are

Ex(t) = [E1 sin(rωt + φ1) + E2 sin(sωt + φ2)]/
√

2,
(32)

Ey(t) = [−E1 cos(rωt + φ1) + E2 cos(sωt + φ2)]/
√

2.

A change of the phase φ1, for a fixed value of φ2, corresponds
to a rotation of the field around the z axis by the angle
α = sφ1/(r + s). Analogously, we have α = −φ2/(r + s) for
a change of phase φ2 (with φ1 fixed). For example, for the
ω-2ω field and φ1 = 60◦ we have α = 40◦. This can be useful

-1 0 1
Ax(t)

-1

0

1

A
y(t

)

-1

0

1

A
y(t

)

-1 0 1
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E
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α y(t
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FIG. 1. Electric-field vector E(t), 0 � t � T (solid lines), and the
corresponding vector potential A(t) [dashed (red) lines] and the vector
α(t) [dot-dashed (cyan) line] of the rω-sω bicircular laser field (31).
The intensities of the field components are equal and the results are
presented in arbitrary units. The electric-field vector starts from the
point E(0) = (0,0) and develops in the clockwise direction for t > 0,
while the vector potential develops counterclockwise as indicated by
the arrows in the top left panel. The various panels depict the field for
different combinations of the values of r and s as indicated.

in experiments since it is easier to change the relative phases
φ1 and φ2 than to rotate the detector.

E. Classical cutoff law for a bicircular field

The so-called simple man model [72] neglects the ion-
ization potential Ip in Eq. (25). In consequence, it has real
solutions corresponding to electrons that start their orbits with
zero velocity. If so, the kinetic energy of the direct electron at
the detector is

Ep = A2(t0)/2. (33)

This energy is extremal for those particular values of the
ionization time t0 for which dEp/dt0 = 0, i.e., E(t0) · A(t0) =
0. Then from Eq. (32) we obtain the condition sin[(r + s)ωt0 +
φ1 + φ2] = 0, so (r + s)ωt0 + φ1 + φ2 = kπ , k is an integer,
and

(Ep)max , min = 1
4 (A1 ± A2)2, (34)

so that

(Ep/Up1)max , min =
(

1 ± q
r

s

)2

, q = E2/E1. (35)

The same analytical formula for the cutoff law is valid also for
a corotating bicircular field. Numerical results for these cutoff
laws are presented in Ref. [45]. The simple man model is very
useful for an understanding of ionization by a bicircular field
in so much as direct electrons are responsible [45].
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F. Symmetry considerations for a bicircular field

The bicircular field (31) obeys the dynamical symmetry

E′(t) ≡ Rz(αj )E(t) = E(t + τj ),
(36)

τj = jT /(r + s), αj = −jrωτj ,

where j is an integer. The prime denotes the vector rotated
by the 2 × 2 rotation matrix Rz(αj ) by the angle αj about the
z axis, with the diagonal matrix elements equal to cos αj and
the off-diagonal elements [Rz(αj )]12 = −[Rz(αj )]21 = sin αj .
Physically, Eq. (36) means that a rotation by the angle αj about
the z axis is equivalent to a translation in time by τj . Analogous
relations are valid for the vectors A(t) and α(t).

Let us consider the matrix element

Fp(t0) = 〈p + A(t0)|Vle(t0)|ψi〉

= (2π )−3/2
∫

dr e−i[p+A(t0)]·rr · E(t0)ψilm(r), (37)

which appears in both the direct and the rescattering T -matrix
elements (20) and (23). Using the invariance of the scalar
product with respect to rotation and the relations dr = dr′ and
ψilm(r) = ψ ′

ilm(r′) = e−imαj ψilm(r′) [ψilm(r) is an eigenstate
of the z component of the angular momentum operator Lz and
ψ ′ = e−iLzαj ψ], we get

Fp(t0) =
∫

dr′

(2π )3/2
e−i[p′+A(t0+τj )]·r′

r′ · E(t0 + τj )

×e−imαj ψilm(r′) = e−imαj Fp′(t0 + τj ). (38)

Analogously, for the other terms that appear in Eqs. (20)
and (23) we obtain Sp(t0) + Ipt0 = Sp′(t0 + τj ) + Ip(t0 +
τj ) − nωτj and Sp(t) − Skst (t) = Sp′(t + τj ) − Sk′

st
(t + τj ).

Then, with the aid of the substitutions t ′0 = t0 + τj and t ′ =
t + τj , we find

T SFA
pi (n) + T ISFA

pi (n) = eiϕ
[
T SFA

p′i (n) + T ISFA
p′i (n)

]
, (39)

where ϕ = −mαj − nωτj . Therefore, both the direct and
the rescattering T -matrix elements are invariant with respect
to a rotation by the angle αj = −2πjr/(r + s) up to the
same phase factor, which confirms the corresponding (r + s)-
fold rotational symmetry of the differential ionization rate.
Actually, this rotational symmetry is observed by the exact
ionization amplitude as was shown in general [42].

For the direct electrons we have additional reflection
symmetries. The vector potential A(t) (see Fig. 1) and the
direct differential ionization rate (see Fig. 2) obey reflec-
tion symmetry about the axes at the angles βj = −αj/2 =
jrπ/(r + s) with respect to the positive Ax and px axes,
respectively. Since we have already proven the (r + s)-fold
rotational symmetry of the spectrum, in order to prove the
consequences of this reflection symmetry it is enough to do it
for the angle β1 = πr/(r + s). Reflection about a line through
the origin that makes an angle β1 with the x axis is given by
the 2 × 2 reflection matrix Px(β1), with the off-diagonal matrix
elements equal to sin(2β1) and the diagonal matrix elements
[Px(β1)]11 = −[Px(β1)]22 = cos(2β1). It can be shown that
the vectors E(t) and A(t) satisfy the relations

E′′(t) ≡ Px(β1)E(t) = −E(τ1 − t), A′′(t) = A(τ1 − t),
(40)

FIG. 2. Logarithm of the differential ionization rate (in a.u.) of
Ne atoms presented in false colors in the electron momentum plane
for ionization by a bicircular rω-sω laser field with values of r

and s as in Fig. 1, equal intensity of both components I1 = I2 =
2 × 1014 W/cm2, and the fundamental wavelength of 800 nm. The
results are obtained by numerical integration of the direct SFA matrix
element and using the exact wave functions. The false color scale
covers four orders of magnitude.

where τ1 = T/(r + s) and the double prime denotes the
reflection defined above. This reflection matrix is composed
of two rotational and one reflection matrix: Px(β1) =
Rz(β1)Px(0)Rz(β1). Therefore, the wave function under this
reflection behaves as ψ ′′

ilm = e−iLzβ1 P̂yze
−iLzβ1ψilm = e−iLzβ1

P̂yze
−imβ1ψilm = e−imβ1e−iLzβ1ψil,−m = ψil,−m=(−1)mψ∗

ilm,
where we have used the fact that the reflection x → −x

corresponds to the reflection about the yz plane so that the
angular coordinates (θ,φ) → (θ,π − φ) and the spherical
harmonics Ylm(θ,φ) → Ylm(θ,π − φ) = Yl,−m(θ,φ) = (−1)m

[Ylm(θ,φ)]∗. Using the spatial inversion property of the
spherical harmonics Ylm(π − θ,π + φ) = (−1)lYlm(θ,φ) and
having in mind that the Hamiltonian H0 + V is invariant with
respect to the reflection that corresponds to Px(β1), we can
write

ψilm(r) = ψ ′′
ilm(r′′) = (−1)l+m[ψilm(−r′′)]∗. (41)

Using Eqs. (40) and (41), it can be checked that Sp(t0) +
Ipt0 = −[Sp′′(τ1 − t0) + Ip(τ1 − t0)] + nωτ1 and Fp(t0) =
(−1)l+m[Fp′′(τ1 − t0)]∗, so for the direct T -matrix element we
obtain

T SFA
pi (n) = (−1)l+meinωτ1

[
T SFA

p′′i (n)
]∗

, (42)

which confirms the invariance of the corresponding differential
ionization rate of direct electrons with respect to the reflection
Px(β1). However, as soon as rescattering is involved, the fact
that tr > t0 prevents one from exploiting the reflection sym-
metry (40), since the latter involves time inversion. Therefore,
by inspecting a given (theoretical or experimental) velocity
map with respect to presence or absence of the reflection
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symmetries one can assess the significance of rescattering. It is
important to note that Coulomb corrections act like rescattering
in that they will spoil the reflection symmetry.

III. NUMERICAL RESULTS

The numerical results in this paper will be presented for ion-
ization of Ne atoms by a bicircular rω-sω laser field with equal
intensity of both components I1 = I2 = 2 × 1014 W/cm2 and
the fundamental wavelength of 800 nm (for r = 1 it is
Up1 = 0.4392 a.u. and

√
20Up1 = 2.964 a.u.). In addition,

we will show results for ionization of Ar atoms, which were
used in the experiment [43]. We will mostly investigate the
ω-2ω case since it is the most interesting from the practical
point of view, as mentioned in the Introduction. The special
case ω-ω is equivalent to a linearly polarized field.

A. Direct SFA

The direct SFA for the case of ATD by a bicircular field was
analyzed in Ref. [42]. For the rω-sω field the parametric plot
of the field is invariant with respect to rotation by the angles
2πj/(r + s), j = 1, . . . ,r + s. Therefore, for the rω-sω field
we observe (r + s)-fold rotational symmetry of the differential
ionization rate. This is clearly visible in Fig. 2, where we
present the results obtained using Eq. (20) (one-dimensional
numerical integration over the ionization time and the bound
state of the Ne atom modeled by a linear combination of four
2p Slater-type orbitals). The central circle in Fig. 2 is related
to the minimum electron kinetic energy determined by the
energy-conservation condition Epmin = nminω−Ip−Up > 0.

Using the SPM with the asymptotic bound state of the
Ne atom and Eq. (26), we have obtained approximately
the same results as those presented in Fig. 2. If we neglect the
ionization potential Ip in the saddle-point equation (25), we
obtain that the electrons are predominantly emitted opposite
to the direction of the vector potential at the ionization time,
i.e., p = −A(t0). According to the shape of A(t) for the ω-2ω

case, presented in the top left panel of Fig. 1, it follows that
the emission in the directions θ = 60◦, 180◦, and 300◦ is the
dominating feature of the spectrum, which is in agreement
with the result of Fig. 2. For the ω-3ω case (top right panels
in Figs. 1 and 2) the relevant directions are θ = 0◦, 90◦, 180◦,
and 270◦, while for the ω-4ω case (bottom left panels) and
the 2ω-3ω case (bottom right panels) we have θ = 36◦, 108◦,
180◦, 252◦, and 324◦.

For a complete picture we should have in mind that the
solutions of Eq. (25) for Ip �= 0 are complex. The number
of saddle-point solutions of Eq. (25) in the upper half of the
complex t0 plane is r + s = 3, as was shown in [42]. In order
to illustrate the SPM, in Fig. 3 we present the spectra, the
saddle-point solutions, and the relevant quantum orbits, for
the fixed electron emission angle θ = 50◦ with respect to the x

axis. Figure 3 consists of three panels. In the right-hand panel
we compare the differential ionization rate obtained using the
SPM and the asymptotic wave functions with the rate obtained
by numerical integration of the direct SFA matrix element and
using the exact wave functions. The agreement is very good.
In the top middle panel we show the ionization time in the
complex t0 plane. There are three solutions and the electron
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FIG. 3. Shown in the right-hand panel is a comparison of the
differential ionization rate obtained by numerical integration (black
dashed curve) with the rate obtained using the SPM (red solid curve),
presented as a function of the electron energy Ep (in units of the
ponderomotive energy of the ω field component). The top middle
panel shows three complex saddle-point solutions for the ionization
time t0 (in units of the optical period T ; the electron energy on each
curve changes continuously from 0.2Up1 to 8Up1). The left panel
shows electron trajectories for the saddle-point solutions from the top
middle panel and fixed electron energy Ep = 2Up1. The laser and
atomic parameters are as in Fig. 2 and the electron emission angle is
θ = 50◦.

energy for each solution changes continuously (towards larger
values of Im t0) from 0.2Up1 to 8Up1. The energy Ep = 2Up1
is indicated by a circle on each curve. For this energy we
calculated the quantum orbits and show the corresponding
electron trajectories depicted by curves having the same color
as those for the solutions t0 in the top panel. The quantum orbits
are defined as the solutions of the classical Newton equation
of motion for the electron in the presence of the laser field,
r̈(t) = −E(t), for the complex ionization time t0, while the
electron trajectories are defined as the real part of r(t) for t >

Re t0: r(t) = (t − t0)p + α(t) − α(t0). Since Re r(Re t0) �= 0,
the electron starts a few atomic units away from the origin
(approximately at the “exit of the tunnel”) and is subsequently
driven by the laser field to the detector under the angle θ = 50◦.

In the experiment [43] ionization of Ar atoms with the
bicircular field with intensities I1 = I2 = 5 × 1013 W/cm2

and a fundamental wavelength of 790 nm was considered.
Since the definition of the bicircular field was different in [43],
we choose h1 = −1, h2 = 1, φ1 = 0, and φ2 = π in order to
obtain agreement with the results of [43] [compare the field in
the top panel of our Fig. 4 and Fig. 2(a) in [43]]. In the bottom
panel of Fig. 4 we show our numerical results obtained using
the SPM and the asymptotic wave function. These results agree
well with the experimental results presented in Fig. 3(c) in [43].

B. Rescattering ISFA: Numerical integration

In Fig. 5 we show the differential ionization rates obtained
by two-dimensional numerical integration (23). From the top
left panel it is obvious that the threefold rotational symmetry
of the ionization spectrum generated by the bicircular ω-2ω
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FIG. 4. Differential ionization rate of Ar atoms presented in false
colors in the electron momentum plane for ionization by a bicircular
ω-2ω laser field with equal intensity of both components I1 = I2 =
5 × 1013 W/cm2, the fundamental wavelength of 790 nm, h1 = −1,
h2 = 1, φ1 = 0, and φ2 = π . The results are obtained using the SPM
with the asymptotic wave function. The false color scale is linear
and normalized to 1. The corresponding bicircular field and vector
potential, in arbitrary units and normalized to one, are shown in the
top panel.

field is valid also for the rescattered electrons. The electron
energies can be larger than 10Up1. The spectrum looks like a
superposition of the three spectra generated by three linearly
polarized laser fields rotated by the angle 120◦ with respect to
the other. Let us briefly recall the HATI spectrum presented
in the form of a velocity map generated by one linearly
polarized laser field: It follows the shape of concentric circles
with centers at ±E0/ω, where E0 is the electric-field vector
amplitude. More precisely, these circles are more like droplets
(see Fig. 3 in [49] and Fig. 3 in [50]). The HATI spectra for
the linearly polarized field case were explained in detail in
Refs. [49–53] in terms of backward- and forward-scattered
electrons. Backscattering is responsible for the high-energy
electrons, which have a cutoff at the energy 10Up lin, with the
corresponding ponderomotive energy Up lin = E2

0/4ω2. The
forward-scattered electrons are responsible for the LES and the
off-axis LES (for details see Refs. [49–54]). Returning to the
ω-2ω bicircular case, the top left panel of Fig. 5 exhibits three
such structures as just described. In addition to the concentric
circles or dropletlike-shape structures, which reach energies

FIG. 5. Logarithm of the differential ionization rate for the same
parameters as in Fig. 2 and presented similarly. The ISFA result (23)
is obtained by two-dimensional numerical integration and using four
2p Slater-type orbitals (16) to represent the ground state of the Ne
atom.

up to 10Up1, we observe enhancements of the central parts of
each structure situated near the angles 50◦, 170◦, and 290◦.

In the remaining panels of Fig. 5 we show the spectra
for the ω-3ω (top right panel), ω-4ω (bottom left panel), and
2ω-3ω (bottom right panel) fields. The results are qualitatively
similar to those of the ω-2ω case, except that they exhibit
an (r + s)-fold, instead of the threefold, rotational symmetry.
Note that the velocity maps of Fig. 5 violate the reflection
symmetries (40), since in contrast to those in Figs. 2 and 4
they do include rescattering.

IV. QUANTUM-ORBIT ANALYSIS OF THE ISFA RESULTS

In this section we will analyze the saddle-point solutions
of Eqs. (28) and (29) and the corresponding quantum orbits,
which are relevant for the rescattered electrons. In our previous
work [52] we introduced a classification of the saddle-point
solutions for HATI by a linearly polarized field. Namely, we
restricted the real part of the rescattering time tr to within one
cycle of the field so that 0 � Re tr < T and determined the
solutions {t0,tr} such that Re t0 < Re tr [positive travel time
Re (tr − t0)]. The solutions were divided into two groups: The
backward-scattering solutions were classified by the multiple
index (α,β,m), while for the forward-scattering solutions the
double index (ν,μ) was used.

A. High-energy rescattering

In this subsection we consider only the backward-scattering
solutions (α,β,m) since they are relevant for the high-energy
electrons. Physically, the index m gives the approximate length
of the travel time in multiples of the laser period. Solutions
usually come in pairs. For fixed m, the index β enumerates
different pairs of solutions within one optical cycle. Finally,
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FIG. 6. Electric-field vector E(t), 0 � t � T (solid lines), and the
corresponding vector potential A(t) [dashed (red) lines] of the rω-sω
bicircular laser field (31), presented similarly to Fig. 1. For the 1-1
case a small ellipticity is introduced (ε1 = 0.99) in order to visually
distinguish the field in the direction of the x axis and in the opposite
direction (notice the different scale of the y axis for the bottom right
panel).

for fixed β and m, each pair of solutions consists of two orbits
with slightly different travel times and we discriminate the
longer (α = −1) from the shorter orbit (α = +1) by the index
α (the terminology “short” and “long” orbits derives from the
Lewenstein model [73] of HHG where only the shortest pair
of solutions is considered).

The classification (α,β,m), which was introduced for linear
polarization, applies for the bicircular field as well [74]. In
order to explain this we use Fig. 6, where the bottom right panel
shows a linearly polarized field vector that changes along the x

axis (a small nonzero ellipticity is introduced in order to make
it easier to follow the change of the field with time). Within
one optical cycle T , the field traces out two segments of the x

axis in opposite directions (0◦ and 180◦). These two segments
are completely analogous to the three segments for the angles
0◦, 120◦, and 240◦, which we have for the ω-2ω bicircular field
shown in the top left panel. For the ω-3ω case (top right panel)
we have four such segments for the angles 0◦, 90◦, 180◦, and
270◦, and so on. For the rω-sω field we have r + s segments
within one cycle. Therefore, in the general case, we use the
index m = 0,1,2, . . . to count the approximate length of the
travel time Re (tr − t0) in multiples of the laser period T and
the index β = 1,2, . . . ,r + s to count the segments within one
optical cycle characterized by the index m. The travel time
increases with the increase of the value of β. The index α

again distinguishes the long from the short orbit.
In order to acquire some practice with this classification, in

Fig. 7 we consider the saddle-point solutions for the simplest
case ω-ω, which is equivalent with linear polarization [74]. We
consider a field polarized along the x axis, Ex(t) = E0 sin(ωt),
and fix the angle θ of the emitted electron with respect to
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FIG. 7. Examples of the notation (α,β,m) used to label the
solutions of the system of the saddle-point equations (28) and (29)
for linear polarization (which is equivalent with the ω-ω bicircular
field). The solid, dotted, long-dashed, and dot-dashed curves in the
right-hand part (t > 0) of the figure (0 � Re tr � T ) specify the real
part of the rescattering times for the four pairs of orbits with the
shortest travel times. In the left-hand part of the figure (t < 0), the
counterpart of each curve identifies the corresponding real part of the
ionization times t0. The emitted electron energy in multiples of Up

is plotted on the ordinate. Horizontal lines at constant energy (not
shown) relate the real parts of the ionization and rescattering times
for the respective orbits. There are infinitely many further solutions
that have their real parts of the ionization time beyond the left-hand
margin of the figure. The curves have been calculated for Ne, for
emission in the direction θ = 50◦ (rather than 0◦, which is why the
maximal energy is lower than 10Up), and for a laser field having
the intensity 2 × 1014 W/cm2 and the fundamental wavelength of
800 nm.

the x axis. Ionization is more probable when the absolute
value of the field is close to one of its maxima. For m = 0,
i.e., for ionization within the interval −T < Re t0 < 0, there
are two maxima, at Re t0 = −0.75T and at Re t0 = −0.25T ,
which correspond, respectively, to the pairs of solutions β = 2
and β = 1. From Fig. 7 one can read off the ionization and
rescattering times of the long and the short orbits α = −1 and
α = 1 by drawing a horizontal line at the respective energy Ep.
The situation is identical for the solutions with m = 1, 2, . . . .

In Fig. 8 we present the saddle-point solutions {t0,tr},
obtained solving the system of equations (28) and (29) using
the subroutine ZSPOW from the International Mathematics
and Statistics Library routines, for the ω-2ω case, classified
in accordance with the notation (α,β,m) introduced above,
for the parameters of Fig. 7. The only difference from linear
polarization (or the ω-ω case) is that the index β now runs from
1 to 3, corresponding to the three segments of the ω-2ω field,
α = ±1, β = 1,2,3, m = 0,1,2, . . .. Similarly to the case of
a linearly polarized field, all solutions (α,β,m) [75] have a
fairly well defined cutoff, which is located at the energy where
the corresponding solutions with α = +1 and −1 approach
each other. From the top panel of Fig. 8 it is evident that
in each optical cycle (numbered by m = 0,1,2, . . .) we have
r + s = 3 pairs of solutions, which are distinguished by the
index β = 1,2,3. The members of each pair are characterized
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FIG. 8. Solutions of the system of the saddle-point equations (28)
and (29) for the parameters of Fig. 7 and for the fixed electron
emission angle θ = 50◦. For each of the presented solutions the
electron energy Ep (in units of the ponderomotive energy Up) is
presented as a function of the real part of the electron ionization time
Re t0 (top) and rescattering time Re tr (bottom), in units of the optical
period T . The solutions whose contribution should be discarded after
the cutoff are represented by the dashed lines. Each solution is denoted
by the corresponding index (β,m). In the bottom panel all solutions on
the left (right) have the index α = +1 (α = −1). There are infinitely
many further solutions that have Re t0/T beyond the left margin of
the top panel.

by the index α = ±1. Comparing Figs. 7 and 8, one should
notice that in the former the two solutions α = ±1 have only
been drawn up to the energy where they have practically
merged, while in the latter they are drawn all the way up
to the highest energy.

As already mentioned, in this subsection we will con-
centrate on the solutions that contribute to the high-energy
electrons [75]. We will use these solutions to calculate the
differential ionization rate applying Eq. (30). Let us consider
the ω-2ω case in detail. In Fig. 9 we present the rate obtained by
numerical integration (23) with the rate obtained using Eq. (30)
taking into account the T -matrix element for the coherent sum
of 14 solutions (α,β,m), as identified in the margin of the
figure. This can be compared with the individual contributions
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FIG. 9. Comparison of the differential ionization rates as a
function of the electron energy (in units of the ponderomotive energy)
for the same parameters as in Fig. 8. The results obtained by numerical
integration are represented by black solid lines with circles, while
the results obtained as a coherent sum of the contributions of 14
saddle-point solutions are shown by the solid orange line with squares.
The contributions of the divergent solutions are neglected after the
corresponding cutoff values. The partial rates for each of the 14
solutions (α,β,m) are presented and identified by their colors, as
explained in the right margin.

of these 14 solutions. Of each pair (α = ±1,β,m), one of
the two solutions (α = +1 or −1) has to be discarded for
energies higher than the respective cutoff. This solution is
drawn as a dashed line. We notice a relatively good agreement
of the results obtained by numerical integration with those
obtained using the SPM for energies above 3.2Up (below this
energy the contribution of the direct electrons dominates the
spectrum). A small disagreement, in the form of spikes, can
be noticed for those energies that correspond to the cutoffs
of particular pairs of the saddle-point solutions. This is well
known from the application of the SPM to HATI by a linearly
polarized laser field: The SPM fails at the cutoff energies and
the uniform approximation should be used instead [69,76].
Figure 9 also demonstrates the quantitative significance of the
various contributing orbits. We see that throughout the plateau
the orbit (1,1,0) is dominant and the two orbits (±1,3,0) are
the next important ones. Their contributions are smaller by
a factor of 3 or 4, except near their cutoff above 6Up where
their magnitude is the same as that of (1,1,0). However, due
to interference an orbit may make a larger contribution than
its magnitude suggests (for example, the very pronounced dip
in the spectrum around 6.4Up is likely due to the destructive
interference of the aforementioned orbits). All the other orbits
contribute only insignificantly.

We have also explored saddle-point solutions for angles
θ different from 50◦. For high-energy electrons the results
obtained are in agreement with those in Fig. 5, which were
obtained by numerical integration. As an example, in Fig. 10
we show the electron spectra for the case where the T -matrix
element is obtained as the coherent sum of the two shortest
quantum orbits that contribute to the high-energy electrons,
i.e., the orbits (α,β,m) = (±1,1,0). The spectrum is calculated
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FIG. 10. Logarithm of the differential ionization rate (in a.u.) of
Ne atoms represented in false colors in the electron momentum plane
for ionization by a bicircular ω-2ω field. The results are obtained
using the SPM with the solutions (α,β,m) = (±1,1,0), as explained
in the text.

for θ ∈ [0◦,120◦] and extrapolated to all angles. Reviewing
Figs. 5 and 10, we notice good qualitative agreement in those
regions where the backward-scattering orbits are dominant.
This way, by selecting the contribution of individual orbits and
comparing with the total (theoretical or experimental) result,
one can infer which orbit is responsible for a particular region
of final momenta.

In order better to understand rescattering ATI induced by
the bicircular-laser field, we will use the concept of quantum
orbits [3,15,16,19–23,52]. These are defined as solutions of
the classical Newton equation for the electron in the presence
of the laser field, r̈(t) = −E(t), but for complex ionization
time t0 and rescattering time tr as they result from the solution
of the saddle-point equations (28) and (29). For these complex
times we have r(t0) = r(tr ) = 0. We will define the electron
trajectories as the real part of r(t) for t real, with

r(t) =
{

(t − t0)kst + α(t) − α(t0) for Re t0 � t � Re tr
(t − tr )p + α(t) − α(tr ) for t > Re tr .

(43)
Since Re r(Re t0) �= 0, the liberated electron appears in the
continuum at the exit of the tunnel, a few atomic units
away from the origin. Eight typical electron trajectories that
correspond to the parameters of Figs. 8 and 9 are shown in
Fig. 11. The results are shown for four pairs (solid lines and
the corresponding dashed, long-dashed, dot-dashed, and dotted
lines) of solutions, which are numbered as in Figs. 8 and 9, and
for the corresponding cutoff energies [8Up, 8Up, 5.6Up, and
7.2Up for the solutions (β,m) = (1,0), (2,0), (3,0), and (1,1),
respectively]. Along the shortest trajectory (black lines) the
electron moves away from the origin in the direction of the y

axis and, after the field component has changed its sign, moves
back to the origin, following almost the same trajectory. It was
found in Ref. [27] that similar trajectories are responsible for
emission of the high-energy photon in the HHG process where
the returning electron recombines with its parent ion. In the
present case, instead of recombining, the electron elastically
scatters off the nucleus and moves in the direction θ = 50◦

-30 0 30
x (a.u.)

-30

0

30

y 
(a

.u
.)

1,0: 8
2,0: 8
3,0: 5.6
1,1: 7.2

θ=50o

β,m: Up

FIG. 11. Electron trajectories for some of the quantum-orbit
solutions presented in Fig. 8. The electron energies for the presented
pairs α = ±1 of solutions are 8Up for the solutions (β,m) = (1,0)
and (2,0), 5.6Up for the solutions (3,0), and 7.2Up for the solutions
(1,1).

with respect to the x axis. Figure 11 also displays longer and
more complicated trajectories though their contributions are
smaller, as can be inferred from Fig. 9. Analogous trajectories
also exist for HHG [27].

The bicircular field E(t) and the vectors A(t) and α(t), as
well as their values at the ionization and rescattering times,
are exhibited in Fig. 12 for the parameters of Fig. 11 and
the solutions presented by the solid lines. Analyzing Figs. 11
and 12, one can follow each of the quantum orbits, which
contribute to the HATI process, in detail. For example, it is
obvious that for all cases the field is close to its maximum at the
ionization time, while the vector potential at the rescattering
time is also maximal but points in the direction opposite to the
emission angle θ = 50◦.
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FIG. 12. Electric-field vector E(t) and the corresponding vectors
A(t) and α(t) of the ω-2ω bicircular laser field (31), presented as in
Fig. 1. The field vectors at the ionization times (I ) and rescattering
times (R), for the electron trajectories that are represented by the
solid lines in Fig. 11, are indicated by the symbols in the legend.
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B. Physical considerations of the high-energy quantum orbits
for the ω-2ω bicircular field

Here we will look at some of the orbits for the ω-2ω

bicircular field in more detail. We start with backscattering
into high energy (greater than 4Up) and will make use of the
results displayed in Figs. 8–12.

The electric field (31) consists of three segments per cycle. It
is defined such that at t = 0 the field E(0) points in the positive
x direction. For the ω-2ω case, which is illustrated in Fig. 12,
we denote the three lobes for 0 < t < T/3, T/3 < t < 2T/3,
and 2T/3 < t < T , which extend, respectively, into the lower
right, upward, and the lower left, by lobe 1, lobe 2, and lobe
3. Note that the electron charge is negative. Hence, the force
on the electron is opposite to the field. The tunnel exit is in
the direction of −E(t0) if the electron exits into the continuum
at the time t0. If the electron enters the continuum around
the maxima of the field, we can from Fig. 11 roughly read
off the ionization times of the various orbits by locating the
positions where they start (this is analogous to reading the
attoclock [77]). We will focus on the orbits (β,m) = (1,0)
and (β,m) = (3,0), which start opposite lobe 1 and lobe 2,
respectively, each at a distance of about 5 a.u. off the origin.
Since the electron starts its orbit with a substantially nonzero
momentum, its initial trajectory is not exactly in the direction
of −E(t0).

We concentrate on the orbits (1,0) and (3,0), because
according to Fig. 9 these are most important at high energy. In
particular, the very pronounced dip in the spectrum is likely
to be due to the interference of these orbits. The (1,0) orbit in
Fig. 12 looks close to an orbit typical of linear polarization:
It unfolds mostly in the y direction. Figure 12 shows that its
electron is liberated in lobe 1 right after the field has become
maximal and rescatters in lobe 2 shortly before a zero of the
field. This means that in the y direction the electron is first
accelerated to positive momenta and then decelerated and bent
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FIG. 13. The ω-2ω bicircular electric-field vector (top left), vec-
tor potential (bottom left), electron trajectory (top right), and velocity
(bottom right) between the ionization times (I ) and rescattering
times (R) that correspond to the orbit (α,β,m) = (1,1,0) and the
energy 8Up .

around such that it recollides with substantial momentum. The
force exerted in the negative x direction mostly by the field
during lobe 1 is largely compensated by the initial momentum
in this direction. All this is rather parallel to orbits in a linearly
polarized field. The trajectory and the velocity for the orbit
(α,β,m) = (1,1,0) are illustrated in more detail separately in
Fig. 13. Note that at the rescattering time the magnitude of the
vector potential is practically maximal while the field is not
far from zero.

The orbit (3,0) is more complicated. According to Figs. 8(a)
and 8(b) its length in time is almost four-thirds of a period; so
it experiences all segments of the field. Figure 12 shows that
it starts almost at the maximum of the field in segment 2; so it
exits the tunnel almost exactly on the negative y axis with some
negative initial momentum in the x direction. Figure 12 then
illustrates the action of the electric field of half the segment
2 and subsequently the full segments 3, 1, and 2, before it
rescatters shortly after a zero of the field in the beginning of
segment 3. The resulting orbit is approximately triangular. Its
three rather straight sections are due to the action of the field
in the half segment 2 and thereafter segments 3, 1, and 2.

All orbits presented in Fig. 12 rescatter into the same
direction, at an angle of 50◦, and the associated drift momenta
are −A(tr ). The return times tr are different for different
orbits, approximately tr = 0.625T for the (1,0) orbit at 8Up

and tr = 0.69T for the (3,0) orbit at 5.6Up. However, the
red dashed curve in Fig. 12 shows that the corresponding
vector potentials are very close. The situation is then rather
similar to linear polarization where the velocity map of the
rescattered electrons is shaped by circles about the vector
potentials −A(tr ) with radii that are specified by the energy
of the respective recolliding electron. The bicircular field (31)
generates three such groups of almost concentric circles as
illustrated in Figs. 5 and 10.

C. Low-energy rescattering

Let us now consider saddle-point solutions that contribute
to the low-energy electrons for the ω-2ω field. In Fig. 14 we
show various partial contributions to the ionization rate for
energies lower than 3.2Up.

1. Backward-scattering-like solutions

We will first consider the contribution of the pair of solu-
tions (α,β,m) = (±1,0,0). As we have mentioned [75], these
solutions are analogous to the solution (α,β,m) = (±1,1,0)
for the linearly polarized field case (see Figs. 9 and 10 in
Ref. [52]). In Fig. 14 these solutions are represented by the
red lines. The contribution of the dashed line (−1,0,0) should
be discarded for energies higher than some critical energy,
while the contribution of the solid line (1,0,0) is relatively
small. In Fig. 15 we show the corresponding saddle-point
solutions in the complex time plane. We see that these solutions
are strikingly similar to the solutions presented in Fig. 9 in
Ref. [52]. This indicates that the short-travel-time solutions
are generally very similar and are qualitatively different from
the other (α,β,m) solutions. For example, as a function of the
energy the time t0 for the solution (−1,0,0) forms a loop in
the complex plane (bottom left panel in Fig. 15). For higher
energies the contribution of this solution to the ionization rate
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FIG. 14. Comparison of the differential ionization rates as a
function of the electron energy, presented similarly to Fig. 9, but
for different saddle-point solutions, as denoted in the legend. See the
text for further explanation.
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FIG. 15. Quantum-orbit solutions and trajectories for the same
parameters as in Fig. 8. The left-hand panels shows the (α,β,m) =
(±1,0,0) saddle-point solutions for the complex ionization time t0 and
rescattering time tr . The α = −1 (α = +1) solutions are denoted by
the red dashed (black solid) lines. The electron energy changes from
a minimum value to the cutoff value as a continuous parameter along
each curve. The complex time tr of the solution (−1,0,0) (red dashed
line) is presented in the top left panel, while the corresponding time t0
is shown in the bottom left panel. The complex time that corresponds
to the electron energy Ep = 1.2Up is denoted by diamonds (circle)
in the top (bottom) left panel. The right-hand panels show electron
trajectories obtained using the saddle-point solutions of the left-hand
panels. The electron energy is Ep = 1.2Up . The exit of the tunnel
and the rescattering point are denoted by the corresponding symbols.
The electron leaves in the direction θ = 50◦.

becomes divergent, but it is not easy to determine the energy
after which this solution should be neglected [52]. The corre-
sponding trajectories have a discontinuity at the rescattering
time. This is a consequence of the large imaginary parts of the
complex times and is particularly pronounced for the (1,0,0)
solution (top right panel). A more appropriate analysis can be
done using the complex-time quantum orbits [52], but we will
not proceed with this in the present paper.

2. Forward-scattering-like solutions

For linear polarization, electrons returning with low energy
and especially their forward scattering are known to be
responsible for the low-energy structure and the associated
off-axis effects (the soft-recollision model [78]). In Ref. [51]
this was put in the context of the simple man model [72].
Namely, the condition of the electron return x(tr ) = 0 (for the
field linearly polarized along the x axis and for the real time)
is rewritten as αx(tr ) = αx(t0) + (tr − t0)α′

x(t0), so, for a given
t0, one can determine tr by intersecting the curve αx(t) with its
tangent at t0. In addition, for the soft-recollision model one has
the condition ẋ(tr ) = 0. Taking into account that in the simple
man model we also have ẋ(t0) = 0, we obtain the condition
α′

x(tr ) = α′
x(t0). Graphically, these times t0 and tr are found by

determining straight lines that are tangent to αx(t) at both t0 and
tr . For fixed tr this can happen for −μ < Re t0/T < −μ + 1,
μ = 0,1,2, . . ., which explains the meaning of the index μ.
In fact, in Ref. [51] the double index (ν,μ) was introduced
to characterize the forward-scattering saddle-point solutions.
The role of the index ν is similar to that of the index α: It
discriminates the longer (ν = +1) and the shorter (ν = −1)
orbits. However, the bicircular field develops in a plane and
the above analysis is not directly applicable. Nevertheless, we
will show that there is an analogy between the (ν,μ) = (±1,0)
solutions for linear polarization and particular saddle-point
solutions for the bicircular field for which the travel time is
short.

We denote the forward-scattering-like saddle-point solu-
tions for the bicircular field by the multiple index (ν,ρ,μ).
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FIG. 16. Quantum-orbit solutions (ν,ρ,μ) = (±1,0,0) (left) and
the corresponding trajectories for the electron energy Ep = 1.2Up

(right) for the same parameters as in Fig. 8 and presented similarly
to Fig. 15. The rescattering times that correspond to the energy Ep =
1.2Up are denoted by diamonds in the left-hand panel.
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FIG. 17. Same as in Fig. 8 but for the forward-scattering-like
saddle-point solutions characterized by the multiple index (ν,ρ,μ).

The role of the indices ν and μ is similar to the case of
linear polarization, while the index ρ enumerates the solutions
within one cycle, similarly to the index β for the backward-
scattering-like saddle-point solutions. The most pronounced
partial contributions to the ionization rate come from the
solutions denoted by (ν,ρ,μ) = (±1,0,0) in Fig. 14. Let us
analyze the corresponding saddle-point solutions. They are
presented in the left panel of Fig. 16. One can see that for
the solution (−1,0,0) the rescattering time is in the lower
half complex time plane. Its contribution to the ionization rate
should be discarded, similarly to how it was done in Ref. [52].
In fact, these solutions are the analogs of the forward-scattering
solutions (ν,μ) = (±1,0) for the linearly-polarized-field case
from [52]. The difference is that in the present case the time
t0 is different for the solutions ν = ±1, while in [52] the
time t0 was identical for both solutions for the chosen angle
θ = 0◦. The fact that the index ν discriminates shorter and
longer orbits can be clearly seen in Fig. 16. For the solution
ν = −1 the electron trajectory between the ionization and
rescattering time in the right-hand panel of Fig. 16 is very
short (the black solid line; the contribution of this solution
to the ionization rate should be dropped). However, the red
dashed line (the ν = +1 solution) exhibits almost forward
scattering. This is the reason why the contribution of this
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FIG. 18. Electron trajectories for five short forward-scattering-
like quantum orbits and the energies as denoted in the legend. Laser
and atomic parameters are as in the previous figures.

solution is important. Furthermore, Coulomb effects further
enhance the contribution of this solution. It is responsible for
the experimentally observed rescattered electrons in Ref. [43].

In Fig. 17, in addition to the solutions (ν,ρ,μ) = (±1,0,0)
[orange and maroon lines in the top panel: ν = 1 (solid
lines) and ν = −1 (dashed lines)], we present the saddle-point
solutions (ν,ρ,μ) for ν = ±1, ρ = 1,2,3, and μ = 0,1. From
the presented solutions, for the angle θ = 50◦, the most
important ones are those shown in Fig. 14. The contributions
of the solutions presented by the dashed line should be dropped
after their cutoff (for ρ = 2,3) or completely (for ρ = 0). From
Fig. 14 we see that this cutoff is slightly below 0.8Up for the
solutions (±1,2,0) (green curves) and 0.56Up for the solutions
(±1,3,0) (blue curves).
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FIG. 19. Vectors E(t), A(t), and α(t), presented as in Fig. 12.
The ionization times (I ) and rescattering times (R) for those electron
trajectories that correspond to the solid lines in Fig. 18 are denoted
by the corresponding symbols having the same color, as explained in
the legend.
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FIG. 20. Same as in Fig. 10 but obtained using the SPM with the
solutions (ν,ρ,μ) = (1,0,0) (top), (ν,ρ,μ) = (±1,2,0) (middle), and
(ν,ρ,μ) = (±1,3,0) (bottom).

In Fig. 18 we show the electron trajectories for various
forward-scattering-like saddle-point solutions. For the solu-
tions (ν,ρ,μ) = (±1,0,0), presented by the solid maroon
lines for the electron energy Ep = 1.6Up, the electron moves
directly from the tunnel exit to the parent ion and forward
scatters off it. The trajectories for the solutions (ν,ρ,μ) =
(±1,2,0) are presented by solid and dot-dashed cyan lines
and correspond to the energy 0.8Up. In this case, in order to

reach the detector, which is positioned at the angle 50◦ with
respect to the x axis, the electron has to (forward) scatter by
the angle ≈60◦ (cyan curve). In the upper part of the figure it
can be noticed that the field once more changes its direction,
so the cyan trajectories are further modified. The trajectories
for the solution (±1,3,0) (solid and dashed magenta lines
and the energy 0.56Up) are slightly longer: The electron
first moves away from the origin, turns around, returns, and
forward scatters off the parent ion. After rescattering, on its
way to the detector, the electron for the solutions (±1,3,0)
(magenta lines) changes its direction once again, as it does for
the solutions (±1,2,0) (cyan lines).

A complete picture of the process can be inferred from
Fig. 19, where we present the vectors E(t), A(t), and α(t). On
each of their parametric plots we have marked the ionization
and rescattering times for the solutions (1,0,0), (1,2,0), and
(1,3,0). The behavior of the trajectories can be completely
matched with this information. We will be content with just
emphasizing that for the solution (1,0,0) the field between
the ionization time (maroon star) and the forward-scattering
time (maroon filled circle) forms an almost linear segment.
Similarly, the corresponding vector α(t) follows a linear line
from the cross to the diamond. To a lesser degree, this also
holds true for the solution (1,2,0) between the ionization
time (cyan star) and the rescattering time (cyan solid circle).
However, for the solution (1,3,0) (magenta symbols) the field
traces out two such almost linear segments that are rotated by
the angle 120◦ one with respect to the other. The consequences
are obvious in the trajectory exhibited in Fig. 18.

In Fig. 20 we present the velocity maps obtained using
Eq. (30) for the same pairs of quantum orbits (ν,ρ,μ) that al-
ready were under scrutiny in Figs. 18 and 19. The contributions
of the solutions (ν,ρ,μ) = (1,0,0) and (ν,ρ,μ) = (±1,2,0)
are dominant for intermediate energies, while that of (±1,3,0)
is less important. Finally, in Fig. 21 we present the coherent
sum of the forward-scattering-orbit contributions (ν,ρ,μ) =
(1,0,0) and (ν,ρ,μ) = (±1,2,0) along with the contributions
of the backward-scattering orbits (α,β,m) = (±1,1,0). The
latter was already separately depicted in Fig. 10. We notice that
the contributions of just five orbits are sufficient to reproduce

FIG. 21. Same as in Fig. 10 but obtained using the SPM with
the coherent sum of the solutions (α,β,m) = (±1,1,0), (ν,ρ,μ) =
(1,0,0), and (ν,ρ,μ) = (±1,2,0).
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FIG. 22. Classification of the backward-scattering-like (α,β,m) (left panels) and forward-scattering-like (ν,ρ,μ) (right panels) saddle-point
solutions for the ionization time (top panels) and the rescattering time (middle panels) for the ω-3ω bicircular field presented similarly and for
the same parameters as in Fig. 8. The corresponding spectra are shown in the bottom panels, which are the analogs of Fig. 9. The spectrum
that includes both the direct and the rescattered electron, obtained by numerical integration, is presented by small diamonds and denoted by
D + R. In the bottom right panel the spectrum obtained as a coherent sum of the relevant contributions of the (ν,ρ,μ) solutions is denoted by
�′, while the sum that corresponds to both solutions (ν,ρ,μ) and (α,β,m) is denoted by �.

the velocity map of Fig. 5, which was obtained by numerical
integration. In addition, we can attribute specific orbits to
particular areas of the velocity map.

D. Quantum-orbit results for the bicircular ω-3ω field

Similarly to the ω-2ω field analyzed above, we can consider
an arbitrary rω-sω bicircular field. In this subsection, as an
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FIG. 23. Electron trajectories for some of the quantum orbits at
the given energies. Laser and atomic parameters are as in previous
figures.

illustration, we consider the ω-3ω bicircular field case. The
corresponding classification of the saddle-point solutions and
the partial ionization rates is shown in Fig. 22. From the
top left panel we see that for m = 0 we have four solutions
β = 1,2,3,4 having −0.75 < Re t0/T < 0.25, while for m =
1 these solutions are in the interval −1.75 < Re t0/T <

−0.75. From the middle left panel it follows that all these
backward-scattering-like solutions have Re tr near 3T/4 for
the ω-3ω bicircular field (for the ω-2ω bicircular field, Re tr
was around 2T/3, while for linear polarization it was around
T/2). A similar classification can be adopted for the general
rω-sω field. In this case we have α = ±1, β = 1,2, . . . ,r + s,
m = 0,1,2, . . . and the solutions Re tr are around sT /(r + s).

Even more than in the ω-2ω case, a bewildering multitude
of orbits contributes. However, only a few of them make
substantial contributions. Most importantly, as demonstrated

FIG. 24. Same as in Fig. 10 but for the bicircular ω-3ω field. Shown on the left are the backward-scattering-like solutions (α,β,m) = (1,0,0)
(top), (1,1,0) (middle), and (−1,2,0) (bottom). Shown on the right are the forward-scattering-like solutions (ν,ρ,μ) = (1,0,0) (top), (−1,1,0)
(middle), and (−1,2,0) (bottom). Notice the different color codes of each panel.
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FIG. 25. Comparison of the velocity maps obtained by numerical
integration (top) and using the coherent sum of only four SPM
solutions: (α,β,m) = (1,0,0) and (1,1,0) and (ν,ρ,μ) = (1,0,0) and
(−1,1,0) (bottom). The laser and atomic parameters are as in Fig. 24.

by the blue solid curve (denoted by �) in the bottom right
panel of Fig. 22, the result obtained by numerical integration
is well approximated by the coherent sum of the quantum-orbit
contributions. This is especially so for Ep > 3Up and < 1Up.
Below 3Up the contribution of the forward-scattering-like
orbits is essential. From the bottom left panel of Fig. 22
we see that for energies between 3Up and 5Up the orbit
(α,β,m) = (1,0,0) is completely dominant. Above 5Up the
orbit (1,1,0) takes over the leading role. The contribution
of all other (α,β,m) orbits is small for the chosen angle
θ = 50◦.

The classification of the solutions (ν,ρ,μ) and the cor-
responding spectra for the ω-3ω bicircular-field case are
presented in the right panels of Fig. 22. From the bottom right
panel we see that the spectrum below 1Up is well described
by the coherent sum of the contributions of the forward-
scattering-like saddle-point solutions (ν,ρ,μ) = (1,0,0) and
(−1,1,0). The spectrum from 1Up to 3Up is slightly lower

than that obtained by numerical integration but is qualitatively
reproduced.

In Fig. 23 we present the electron trajectories for the four
quantum orbits (α,β,m) with α = ±1, β = 0,1, and m = 0 and
the three orbits (ν,ρ,μ) = (1,0,0) and (±1,1,0). The trajectory
of the orbit (β,m) = (0,0) after ionization approximately
follows the direction 135◦, returns in the parallel direction,
and rescatters at the origin by the angle ≈45◦. The trajectories
for (β,m) = (1,0) are more complicated and the electron
rescatters by the angle ≈90◦. On the other hand, for the
orbit (ρ,μ) = (0,0) the rescattering angle is ≈30◦, while for
(ρ,μ) = (1,0) it is about 135◦.

In Fig. 24 we present the differential ionization rate in
the momentum plane for the six most important saddle-point
solutions. By comparison with the numerical integration result,
which is shown in Fig. 25, we see that only four of them are
enough to describe the spectrum qualitatively. Therefore, we
have developed a detailed physical view of the space-time
history of an electron emitted with a certain momentum. This
approach can be generalized to an arbitrary rω-sω bicircular
field.

V. CONCLUSION

We have developed and applied the modified SPM with
the asymptotic bound states to the (I)SFA. The agreement
of our simple result, which includes a sum over the saddle
points of an analytical expression, with the result obtained
using the exact wave functions and numerical integration
is very good (see the right-hand panel of Fig. 3 for the
direct electrons and the high-energy part of Fig. 9 and the
bottom panels of Fig. 22 for the rescattered electrons). The
results obtained are applied to the calculation of the (H)ATI
spectra generated by a strong bicircular field. Such fields
are of significant recent interest because of the polarization
properties of their high-order harmonics. The high-energy
electron spectra due to the application of such a field are
obtained and successfully explained using the introduced
quantum-orbit theory. In particular, a previously introduced
classification of the high-energy saddle-point solutions for a
linearly polarized field in terms of a multiple index (α,β,m)
is generalized to the bicircular field. Instead of two values,
the index β now takes on the values β = 1,2, . . . ,r + s for
the case of an rω-sω bicircular field. Particular low-energy
orbits, which should appear for an arbitrary laser field, are
now characterized by the multiple index (α,β,m) = (±1,0,0).
In addition, we have established the analog of the low-energy
orbits (ν,μ) for the linearly polarized field. In this case we
introduced the index ρ, which is the analog of the index
β, which was used for the backscattering orbits. The orbit
(ν,ρ,μ) = (1,0,0) is especially important. The corresponding
trajectory goes from the exit of the tunnel directly to the
parent ion where it forward scatters. Due to the Coulomb
potential, the corresponding rate is very strongly enhanced, so
this orbit dominates the observed spectra in the low-energy
region. Moreover, we have discovered many more orbits that
contribute to the same energy region.

We emphasize that the quantum-orbit method is, in prin-
ciple, very straightforward. For specified final momentum of

063418-18



IMPROVED STRONG-FIELD APPROXIMATION AND . . . PHYSICAL REVIEW A 93, 063418 (2016)

the released electron, it requires nothing more than finding the
complex solutions of a set of two equations (the saddle-point
equations). However, since there are many solutions, retrieving
all of them and assessing their respective significance is not
always straightforward in practice. For the bicircular field,
since it evolves in a plane, it is much more complicated than
for linear polarization. Still, the bottom line is the same: Very
few orbits suffice to provide a good description of the exact
spectrum (calculated completely numerically); see Figs. 21
and 25. The attractive feature of the quantum-orbit approach
is that it comes with an intuitive space-time picture of how
an electron having tunneled to freedom makes its way toward
the detector where it is to arrive with specified momentum.
This picture strongly depends upon the value of the final
momentum. There may be more than one orbit that leads into
the same final state, and their contributions will interfere.

For example, consider the velocity map in the top left
panel of Fig. 5, which is calculated completely numerically,
and its approximation in Fig. 21 by the coherent sum of a
finite number of quantum orbits. Let us compare this with
the contributions of individual quantum orbits exhibited in
Figs. 10 and 20. This allows one to relate particular features
of the velocity map to specific quantum orbits. Ideally, an

experimental velocity map should be compared in this fashion
with specific quantum orbits. Since each orbit corresponds to
a well-defined space-time trajectory with specified start time
and return time, this offers the potential for unlimited control,
by inhibiting or enhancing ionization or rescattering at these
times by the application of ultrashort UV pulses or fields that
are perpendicular to the plane of polarization of the bicircular
field, as it was realized, e.g., in Ref. [79]. High-order harmonic
emission could be controlled in the same way. Above-threshold
ionization has the big advantage over HHG that experiments
access the single-atom dynamics.

Finally, the rescattered electrons can have the same final
momentum as the direct electrons, which gives rise to the inter-
ference effect known as strong-field photoelectron holography.
It was first observed for strong-field ionization by a linearly
polarized laser field [80,81]. The same effect should exist for
a bicircular field. However, since in this case the electron
trajectories develop in a plane, the structures that correspond
to direct electrons and forward-scattered electrons can be well
separated [43]. This will make the holographic structures even
more interesting, but adds to the complexity of their analysis.
We leave the strong-bicircular-field photoelectron holography
for future investigation.
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[34] D. B. Milošević, Opt. Lett. 40, 2381 (2015).
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[50] W. Becker and D. B. Milošević, J. Phys. B 48, 151001 (2015).
[51] W. Becker, S. P. Goreslavski, D. B. Milošević, and G. G. Paulus,
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Schmidt, M. Li, Y. Liu, and R. Dörner, Phys. Rev. Lett. 114,
143001 (2015).

[80] Y. Huismans et al., Science 331, 61 (2011).
[81] X.-B. Bian, Y. Huismans, O. Smirnova, K.-J. Yuan, M. J. J.

Vrakking, and A. D. Bandrauk, Phys. Rev. A 84, 043420 (2011).

063418-20

http://dx.doi.org/10.1038/nphoton.2014.141
http://dx.doi.org/10.1038/nphoton.2014.141
http://dx.doi.org/10.1038/nphoton.2014.141
http://dx.doi.org/10.1038/nphoton.2014.141
http://dx.doi.org/10.1103/PhysRevA.90.043829
http://dx.doi.org/10.1103/PhysRevA.90.043829
http://dx.doi.org/10.1103/PhysRevA.90.043829
http://dx.doi.org/10.1103/PhysRevA.90.043829
http://dx.doi.org/10.1038/nphoton.2014.293
http://dx.doi.org/10.1038/nphoton.2014.293
http://dx.doi.org/10.1038/nphoton.2014.293
http://dx.doi.org/10.1038/nphoton.2014.293
http://dx.doi.org/10.1364/OL.40.002381
http://dx.doi.org/10.1364/OL.40.002381
http://dx.doi.org/10.1364/OL.40.002381
http://dx.doi.org/10.1364/OL.40.002381
http://dx.doi.org/10.1088/0953-4075/48/17/171001
http://dx.doi.org/10.1088/0953-4075/48/17/171001
http://dx.doi.org/10.1088/0953-4075/48/17/171001
http://dx.doi.org/10.1088/0953-4075/48/17/171001
http://dx.doi.org/10.1103/PhysRevLett.115.153001
http://dx.doi.org/10.1103/PhysRevLett.115.153001
http://dx.doi.org/10.1103/PhysRevLett.115.153001
http://dx.doi.org/10.1103/PhysRevLett.115.153001
http://dx.doi.org/10.1103/PhysRevA.92.043827
http://dx.doi.org/10.1103/PhysRevA.92.043827
http://dx.doi.org/10.1103/PhysRevA.92.043827
http://dx.doi.org/10.1103/PhysRevA.92.043827
http://dx.doi.org/10.1073/pnas.1519666112
http://dx.doi.org/10.1073/pnas.1519666112
http://dx.doi.org/10.1073/pnas.1519666112
http://dx.doi.org/10.1073/pnas.1519666112
http://dx.doi.org/10.1126/science.aaa1394
http://dx.doi.org/10.1126/science.aaa1394
http://dx.doi.org/10.1126/science.aaa1394
http://dx.doi.org/10.1126/science.aaa1394
http://dx.doi.org/10.1126/sciadv.1501333
http://dx.doi.org/10.1126/sciadv.1501333
http://dx.doi.org/10.1126/sciadv.1501333
http://dx.doi.org/10.1126/sciadv.1501333
http://dx.doi.org/10.1002/lapl.200510087
http://dx.doi.org/10.1002/lapl.200510087
http://dx.doi.org/10.1002/lapl.200510087
http://dx.doi.org/10.1002/lapl.200510087
http://dx.doi.org/10.1002/lapl.200610119
http://dx.doi.org/10.1002/lapl.200610119
http://dx.doi.org/10.1002/lapl.200610119
http://dx.doi.org/10.1002/lapl.200610119
http://dx.doi.org/10.1140/epjst/e2008-00724-9
http://dx.doi.org/10.1140/epjst/e2008-00724-9
http://dx.doi.org/10.1140/epjst/e2008-00724-9
http://dx.doi.org/10.1140/epjst/e2008-00724-9
http://dx.doi.org/10.1103/PhysRevA.91.031402
http://dx.doi.org/10.1103/PhysRevA.91.031402
http://dx.doi.org/10.1103/PhysRevA.91.031402
http://dx.doi.org/10.1103/PhysRevA.91.031402
http://dx.doi.org/10.1364/OE.24.006413
http://dx.doi.org/10.1364/OE.24.006413
http://dx.doi.org/10.1364/OE.24.006413
http://dx.doi.org/10.1364/OE.24.006413
http://dx.doi.org/10.1103/PhysRevA.93.053406
http://dx.doi.org/10.1103/PhysRevA.93.053406
http://dx.doi.org/10.1103/PhysRevA.93.053406
http://dx.doi.org/10.1103/PhysRevA.93.053406
http://dx.doi.org/10.1038/nphys1228
http://dx.doi.org/10.1038/nphys1228
http://dx.doi.org/10.1038/nphys1228
http://dx.doi.org/10.1038/nphys1228
http://dx.doi.org/10.1103/PhysRevLett.103.093001
http://dx.doi.org/10.1103/PhysRevLett.103.093001
http://dx.doi.org/10.1103/PhysRevLett.103.093001
http://dx.doi.org/10.1103/PhysRevLett.103.093001
http://dx.doi.org/10.1103/PhysRevLett.110.013001
http://dx.doi.org/10.1103/PhysRevLett.110.013001
http://dx.doi.org/10.1103/PhysRevLett.110.013001
http://dx.doi.org/10.1103/PhysRevLett.110.013001
http://dx.doi.org/10.1103/PhysRevA.90.023412
http://dx.doi.org/10.1103/PhysRevA.90.023412
http://dx.doi.org/10.1103/PhysRevA.90.023412
http://dx.doi.org/10.1103/PhysRevA.90.023412
http://dx.doi.org/10.1088/0953-4075/48/15/151001
http://dx.doi.org/10.1088/0953-4075/48/15/151001
http://dx.doi.org/10.1088/0953-4075/48/15/151001
http://dx.doi.org/10.1088/0953-4075/48/15/151001
http://dx.doi.org/10.1088/0953-4075/47/20/204022
http://dx.doi.org/10.1088/0953-4075/47/20/204022
http://dx.doi.org/10.1088/0953-4075/47/20/204022
http://dx.doi.org/10.1088/0953-4075/47/20/204022
http://dx.doi.org/10.1103/PhysRevA.90.063414
http://dx.doi.org/10.1103/PhysRevA.90.063414
http://dx.doi.org/10.1103/PhysRevA.90.063414
http://dx.doi.org/10.1103/PhysRevA.90.063414
http://dx.doi.org/10.3788/COL201513.070006
http://dx.doi.org/10.3788/COL201513.070006
http://dx.doi.org/10.3788/COL201513.070006
http://dx.doi.org/10.3788/COL201513.070006
http://dx.doi.org/10.1103/PhysRevA.90.063423
http://dx.doi.org/10.1103/PhysRevA.90.063423
http://dx.doi.org/10.1103/PhysRevA.90.063423
http://dx.doi.org/10.1103/PhysRevA.90.063423
http://dx.doi.org/10.1016/S0092-640X(74)80016-1
http://dx.doi.org/10.1016/S0092-640X(74)80016-1
http://dx.doi.org/10.1016/S0092-640X(74)80016-1
http://dx.doi.org/10.1016/S0092-640X(74)80016-1
http://dx.doi.org/10.1016/0092-640X(81)90012-7
http://dx.doi.org/10.1016/0092-640X(81)90012-7
http://dx.doi.org/10.1016/0092-640X(81)90012-7
http://dx.doi.org/10.1016/0092-640X(81)90012-7
http://dx.doi.org/10.1006/adnd.1993.1003
http://dx.doi.org/10.1006/adnd.1993.1003
http://dx.doi.org/10.1006/adnd.1993.1003
http://dx.doi.org/10.1006/adnd.1993.1003
http://dx.doi.org/10.1103/PhysRevA.55.3760
http://dx.doi.org/10.1103/PhysRevA.55.3760
http://dx.doi.org/10.1103/PhysRevA.55.3760
http://dx.doi.org/10.1103/PhysRevA.55.3760
http://dx.doi.org/10.1103/PhysRevA.68.050702
http://dx.doi.org/10.1103/PhysRevA.68.050702
http://dx.doi.org/10.1103/PhysRevA.68.050702
http://dx.doi.org/10.1103/PhysRevA.68.050702
http://dx.doi.org/10.1103/PhysRevA.70.053403
http://dx.doi.org/10.1103/PhysRevA.70.053403
http://dx.doi.org/10.1103/PhysRevA.70.053403
http://dx.doi.org/10.1103/PhysRevA.70.053403
http://dx.doi.org/10.1103/PhysRevA.66.033402
http://dx.doi.org/10.1103/PhysRevA.66.033402
http://dx.doi.org/10.1103/PhysRevA.66.033402
http://dx.doi.org/10.1103/PhysRevA.66.033402
http://dx.doi.org/10.1103/PhysRevA.71.023411
http://dx.doi.org/10.1103/PhysRevA.71.023411
http://dx.doi.org/10.1103/PhysRevA.71.023411
http://dx.doi.org/10.1103/PhysRevA.71.023411
http://dx.doi.org/10.1103/PhysRevA.93.051402
http://dx.doi.org/10.1103/PhysRevA.93.051402
http://dx.doi.org/10.1103/PhysRevA.93.051402
http://dx.doi.org/10.1103/PhysRevA.93.051402
http://dx.doi.org/10.1088/0953-4075/48/5/055402
http://dx.doi.org/10.1088/0953-4075/48/5/055402
http://dx.doi.org/10.1088/0953-4075/48/5/055402
http://dx.doi.org/10.1088/0953-4075/48/5/055402
http://dx.doi.org/10.1088/0022-3700/6/4/011
http://dx.doi.org/10.1088/0022-3700/6/4/011
http://dx.doi.org/10.1088/0022-3700/6/4/011
http://dx.doi.org/10.1088/0022-3700/6/4/011
http://dx.doi.org/10.1103/PhysRevA.22.1786
http://dx.doi.org/10.1103/PhysRevA.22.1786
http://dx.doi.org/10.1103/PhysRevA.22.1786
http://dx.doi.org/10.1103/PhysRevA.22.1786
http://dx.doi.org/10.1088/0953-4075/31/18/013
http://dx.doi.org/10.1088/0953-4075/31/18/013
http://dx.doi.org/10.1088/0953-4075/31/18/013
http://dx.doi.org/10.1088/0953-4075/31/18/013
http://dx.doi.org/10.1103/PhysRevA.58.3124
http://dx.doi.org/10.1103/PhysRevA.58.3124
http://dx.doi.org/10.1103/PhysRevA.58.3124
http://dx.doi.org/10.1103/PhysRevA.58.3124
http://dx.doi.org/10.1088/0953-4075/32/6/019
http://dx.doi.org/10.1088/0953-4075/32/6/019
http://dx.doi.org/10.1088/0953-4075/32/6/019
http://dx.doi.org/10.1088/0953-4075/32/6/019
http://dx.doi.org/10.1103/PhysRevA.88.023417
http://dx.doi.org/10.1103/PhysRevA.88.023417
http://dx.doi.org/10.1103/PhysRevA.88.023417
http://dx.doi.org/10.1103/PhysRevA.88.023417
http://dx.doi.org/10.1134/S1054660X07040135
http://dx.doi.org/10.1134/S1054660X07040135
http://dx.doi.org/10.1134/S1054660X07040135
http://dx.doi.org/10.1134/S1054660X07040135
http://dx.doi.org/10.1103/PhysRevA.74.023407
http://dx.doi.org/10.1103/PhysRevA.74.023407
http://dx.doi.org/10.1103/PhysRevA.74.023407
http://dx.doi.org/10.1103/PhysRevA.74.023407
http://dx.doi.org/10.1103/PhysRevA.76.053410
http://dx.doi.org/10.1103/PhysRevA.76.053410
http://dx.doi.org/10.1103/PhysRevA.76.053410
http://dx.doi.org/10.1103/PhysRevA.76.053410
http://dx.doi.org/10.1103/PhysRevA.72.033407
http://dx.doi.org/10.1103/PhysRevA.72.033407
http://dx.doi.org/10.1103/PhysRevA.72.033407
http://dx.doi.org/10.1103/PhysRevA.72.033407
http://dx.doi.org/10.1103/PhysRevA.92.053416
http://dx.doi.org/10.1103/PhysRevA.92.053416
http://dx.doi.org/10.1103/PhysRevA.92.053416
http://dx.doi.org/10.1103/PhysRevA.92.053416
http://dx.doi.org/10.1103/PhysRevA.49.2117
http://dx.doi.org/10.1103/PhysRevA.49.2117
http://dx.doi.org/10.1103/PhysRevA.49.2117
http://dx.doi.org/10.1103/PhysRevA.49.2117
http://dx.doi.org/10.1103/PhysRevA.66.043413
http://dx.doi.org/10.1103/PhysRevA.66.043413
http://dx.doi.org/10.1103/PhysRevA.66.043413
http://dx.doi.org/10.1103/PhysRevA.66.043413
http://dx.doi.org/10.1038/nphys1946
http://dx.doi.org/10.1038/nphys1946
http://dx.doi.org/10.1038/nphys1946
http://dx.doi.org/10.1038/nphys1946
http://dx.doi.org/10.1103/PhysRevLett.108.033201
http://dx.doi.org/10.1103/PhysRevLett.108.033201
http://dx.doi.org/10.1103/PhysRevLett.108.033201
http://dx.doi.org/10.1103/PhysRevLett.108.033201
http://dx.doi.org/10.1088/0953-4075/45/7/074011
http://dx.doi.org/10.1088/0953-4075/45/7/074011
http://dx.doi.org/10.1088/0953-4075/45/7/074011
http://dx.doi.org/10.1088/0953-4075/45/7/074011
http://dx.doi.org/10.1103/PhysRevLett.114.143001
http://dx.doi.org/10.1103/PhysRevLett.114.143001
http://dx.doi.org/10.1103/PhysRevLett.114.143001
http://dx.doi.org/10.1103/PhysRevLett.114.143001
http://dx.doi.org/10.1126/science.1198450
http://dx.doi.org/10.1126/science.1198450
http://dx.doi.org/10.1126/science.1198450
http://dx.doi.org/10.1126/science.1198450
http://dx.doi.org/10.1103/PhysRevA.84.043420
http://dx.doi.org/10.1103/PhysRevA.84.043420
http://dx.doi.org/10.1103/PhysRevA.84.043420
http://dx.doi.org/10.1103/PhysRevA.84.043420



