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We develop a technique for modeling of atomic and molecular ionization in superposition of XUV and IR
fields with characteristics typical for attosecond streaking and RABBITT (reconstruction of attosecond beating
by interference of two-photon transitions) experiments. The method is based on solving the time-dependent
Schrödinger equation in the coordinate frame expanding along with the photoelectron wave packet. The efficiency
of the method is demonstrated by calculating angular anisotropy of photoemission time delay of the H2

+ ion in
a field configuration of recent RABBITT experiments.
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I. INTRODUCTION

Attosecond time delay in laser-induced photoemission of
atoms and molecules is a recently discovered phenomenon of
ultrafast electron dynamics. Following the pioneering exper-
iments on two-color XUV-IR photoionization [1,2], various
aspects of photoemission time delay have been thoroughly
investigated [3]. One such aspect is angular anisotropy of the
time delay relative to the joint polarization axis of the XUV and
IR light. Such an angular dependence is natural for single XUV
photon ionization of an np atomic shell due to interference
of the εs and εd photoelectron continua [4,5]. In two-color
XUV-IR photoionization, such an angular anisotropy can
manifest itself even in photoemission from a fully symmetric
ns atomic shell, as has been demonstrated recently for the
helium atom [6]. For more complex targets like molecules,
the angular dependence of the time delay brings particularly
useful information as it is sensitive to the orientation of the
molecular axis [7].

Because of low intensities of XUV and IR fields in a
typical time-delay measurement, its theoretical modeling can
be based on the lowest order perturbation theory (LOPT) [8].
A more punctilious approach requires an accurate solution
of the time-dependent Schrödinger equation for an atom or a
molecule driven by a combination of XUV and IR pulses as
in an attosecond streaking experiment, or an attosecond pulse
train (APT) and an IR pulse in RABBITT (reconstruction of
attosecond beating by interference of two-photon transitions).
This solution can now be reliably obtained for atomic targets
with one or two active electrons [9,10]. However, due to the
lack of the spherical symmetry, the same solution becomes
computationally challenging for molecular targets. To meet
this challenge, we develop a more efficient approach and
seek a solution of the time-dependent Schrodinger equation
(TDSE) in a coordinate frame, which expands along with
the photoelectron wave packet [11]. In addition, we employ
a fast spherical Bessel transformation (SBT) for the radial
variables [12], a discrete variable representation for the angular
variables, and a split-step technique for the time evolution.
This numerical approach allows us to reach space sizes and
propagation times hardly attainable by other techniques. Also,
the use of SBT ensures the correct phase of the wave function

for a long time evolution, which is particularly important
in time-delay calculations. To calibrate our technique, we
reproduce the time-delay values known from the literature
for the hydrogen [8] and helium [13] atoms. To demonstrate
efficacy of our numerical approach, we evaluate angular
anisotropy of photoemission time delay of the H2

+ ion in a
typical RABBITT experiment. Unlike in atomic spherically
symmetric targets, the angular anisotropy of time delay in
photoemission of H2

+ is very strong due to interplay of the
two quantization axes: the polarization axis of light and the
interatomic molecular axis. The two aligned hydrogen nuclei
act as a double slit and cause a significant interference of the
photoelectron wave packet [14,15]. The interference minima
in the photoelectron spectra make their strong imprint on the
angular-dependent part of the time delay. The depth of the
minima increases close to the threshold where the normally
dominant dipole component of the ionization amplitude goes
through its Cooper minimum and gives way to the octupole
component.

II. METHOD

A. The attosecond streaking

We restrict ourselves with a single active electron (SAE)
approximation and write the TDSE as

i
∂�(r,t)

∂t
= Ĥ�(r,t) (1)

with the Hamiltonian

Ĥ = p̂ 2

2
− A(t)p̂ + U (r). (2)

Here p̂ = −i∇ is the momentum operator, U (r,t) is the
electron-nucleus interaction, and A(t) is the vector potential
of the electromagnetic field. The latter is defined as1

A(t) = −
∫ t

0
qE(t ′)dt. (3)

1The atomic units are in use throughout the paper such that e =
m = � = 1. The factor 1/c with the speed of light c � 137 and the
electron charge q = −1 are absorbed into the vector potential.
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Here E(t) is the electric field vector. In a typical attosec-
ond streaking or RABBITT experiment, the target atom or
molecule is exposed to a combination of the two fields:

A(t) = AXUV(t) + AIR(t − τ ), (4)

where τ is the relative displacement of the XUV and IR pulses.
We model an ultrashort XUV pulse by a Gaussian envelope

AXUV(t) = −nXUVAXUV exp

(
−2 ln 2

t2

τ 2
XUV

)
cos ωXUVt,

(5)

with the FWHM τXUV. The IR pulse is described by the cos2

envelope

AIR(t) = −nIRAIR cos2(πt/τIR) cos ωt, |t | < τIR/2, (6)

where τIR is the IR pulse duration. The time evolution of the
target under consideration starts from the initial state

�(r,t0) = ϕ0(r) exp(−iE0t0), (7)

where t0 = −τIR/2 + τ and ϕ0(r), E0 are the wave function
and the energy of the initial state.

After the end of the XUV pulse, the ionized electron
is exposed to a slowly varying IR field and the long-range
Coulomb field of the residual ion. The combination of these
fields induces an additional correction to the atomic time delay

τa = τW + τCLC, (8)

where τW is the Wigner time delay [16] and τCLC is the
Coulomb-laser coupling (CLC) correction [17]. During the
propagation in the IR field, the photoelectron gains a consider-
able speed and travels large distances from the parent ion. To
describe this process, solution of the TDSE should be sought
in a very large coordinate box for a very long propagation time,
which places a significant strain on computational resources.
To bypass this problem, we employ an expanding coordinate
system [11]. In this method, which we term the time-dependent
scaling (TDS), the following variable transformation is made:

r = a(t)ξ . (9)

Here a(t) is a scaling factor with an asymptotically linear
time dependence a(t → ∞) = ȧ∞t and ξ is a coordinate
vector. Such a transformation makes the coordinate frame
expand along with the wave packet. In addition, the following
transformation is applied to the wave function:

�[a(t)ξ ,t] = 1

[a(t)]3/2
exp

(
i

2
a(t)ȧ(t)ξ 2

)
ψ(ξ ,t). (10)

Such a transformation removes a rapidly oscillating phase
factor from the wave function in the asymptotic region [11].
Thus transformed wave function satisfies the equation

i
∂ψ(ξ ,t)

∂t
=

[
p̂ 2

ξ

2[a(t)]2
− A(t)p̂ξ

a(t)
+ U [a(t)ξ ]

]
ψ(ξ ,t), (11)

where p̂ξ = −i∇ξ = −i( ∂
∂ξx

, ∂
∂ξy

, ∂
∂ξz

). We note that if the

spectrum of the operator p̂ 2
ξ is upper limited, which is the case

for any numerical approximation of a differential operator, then
the first term in the right-hand side (RHS) of Eq. (11) tends to
zero as [a(t)]−2 for t → ∞. In the meantime, the potential term

with a long-range Coulomb asymptotic U (r → ∞) ∼ 1/r is
transformed to U [a(t)ξ ] ∼ Z/a(t)ξ . This means that both the
Coulomb term and the vector potential term are decreasing
in time as 1/a(t). Therefore, when solving Eq. (11), we
can increase the time propagation step �t = a(t)�t0, which
accelerates the solution even further [11].

Remarkable property of the expanding coordinate system
is that the ionization amplitude f (k) is related with the wave
function ψ(ξ ,t) by a simple formula [11]

|f (k)|2 = ȧ−3
∞ lim

t→∞ |ψ(k/ȧ∞,t)|2. (12)

In practice, the evolution is traced for a very large time tf �
τIR and then the ionization probability density is obtained from
the expression

P (3) ≡ dP

dkxdkydkz

= |f (k)|2 � ȧ−3
∞ |ψ(k/ȧ∞,tf )|2. (13)

The coordinate frame (9) is well suited for approximating an
expanding wave packet. However, its drawback is that the
bound states are described progressively less accurately as the
coordinate frame and its numerical grid expands. Therefore,
during the XUV pulse, when an accurate approximation of the
bound states is required, we use a stationary coordinate frame.
The expansion of the frame starts at the moment t1 � τXUV.
We use the piecewise linear scaling

a(t) =
{

1, t < t1;
ȧ∞t, t > t1.

(14)

At t < t1 the wave function ψ(ξ ,t) = �(r,t). Since the time
derivative of a(t) defined by Eq. (14) has discontinuity at
the start of the expansion, the wave function at t1 should be
multiplied by the phase factor

ψ(ξ ,t1 + 0) = exp

(
i

2
ȧ∞ξ 2

)
ψ(ξ ,t1 − 0). (15)

Here we choose ȧ∞ = 1/t1. Such a choice ensures that the
wave packet remains stationary in the expanding frame at t >

t1. To reduce the initial state error from expanding frame,
this state is projected out from the wave packet by a simple
orthogonalization

�(r,t1) → �(r,t1) − 〈ϕ0(r)|�(r,t1)〉ϕ0(r). (16)

Other bound states are suppressed by introducing an imaginary
absorbing potential

Usa(ξ,t) = i
ln

(
1 − e−ξ 2)
a(t)

. (17)

This is equivalent to multiplying the wave function on each
step of the time propagation by the multiplier exp(−iUsa�t) ≈
(1 − e−ξ 2

)�t/a(t), which tends to 0 at ξ → 0. This way we
introduce an absorbing mask with the radius ξ ∼ 1. As the
coordinate frame expands, this mask suppresses all the bound
states but does not affect the expanding wave function with the
momenta k � ȧ∞.

B. RABBITT

In a RABBITT measurement, unlike in attosecond streak-
ing, a target atom or molecule is subjected to an attosecond
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pulse train (APT) rather than a single XUV pulse. The APT
field can be represented as

AXUV(t) =
NAPT/2�∑

ν=−NAPT/2�
(−1)νfenv(tν)A(1)

XUV(t − tν), (18)

where NAPT is the number of pulses in the APT and the arrival
time of each pulse

tν = TIR

2
ν (19)

is a half integer of the period of the IR oscillation TIR = 2π/ω.
The envelope of the APT is given by

fenv(t) = exp

(
−2 ln 2

t2

τ 2
APT

)
, (20)

where τAPT is the FWHM.
It is necessary to ensure an accurate representation of the

bound states during each of the pulses in the APT. As the APT
duration is large, direct application of the expanding frame is
not practical. However, because the field intensity of the APT
is usually small, we can add contributions of each pulse to the
ionized electron wave packet by a simple summation.

Let us coincide a set of the wave functions ψν(ξ ,t)
satisfying the equation

i
∂ψν(ξ ,t)

∂t
=

[
p̂ 2

ξ

2a(t)2
− Aν(t)p̂ξ

a(t)
+ U [a(t)ξ ]

]
ψν(ξ ,t), (21)

where

Aν(t) = A(1)
XUV(t) + AIR(t + tν − τ ). (22)

By taking into account the coordinate and momentum relation
ξ � k/ȧ∞ at large tf , the APT perturbation of the wave
function, orthogonalized to the ground state, can be expressed
as

ψ(ξ ,tf ) =
NAPT/2�∑

ν=−NAPT/2�
(−1)νfenv(tν) exp

(
i
ȧξ 2

2
tν

)
ψν(ξ ,tf ).

(23)

The intensity of the IR pulse should be fairly large to ensure
sufficient intensity of the two-photon transitions. If such an
IR pulse is applied suddenly to the target before arrival of the
APT, this may cause a considerable unphysical distortion of
the initial state. To avoid this artifact, we applied the following
initial condition:

ψν(r,t0) = �IR(r,t0 + tν − τ ). (24)

Here t0 < 0, |t0| � τXUV, and the wave function �IR(r,t) is a
solution of the equation

i
∂�IR(r,t)

∂t
=

[
p̂ 2

2
− AIR(t)p̂ + U (r)

]
�IR(r,t) (25)

with the initial condition (7) that describes the evolution in the
IR field alone. As the low-frequency IR field does not cause
a considerable ionization, such a solution does not expand to
large distances and can be modeled with a modest size of the
radial box.

In our approach, the resulting photoelectron spectrum is a
simple sum of the spectra induced by each of the NAPT pulses.
In the case when τIR � τAPT, the amplitude of the IR field
oscillation during ionization can be considered constant. Thus
the photoelectron spectrum can be constructed from just the
two XUV pulses of the opposite polarity overlapping with a
single IR oscillation. The remaining pulses are translated by an
integer number of IR periods. According to the Floquet theory,
the initial state wave function satisfies the following periodic
condition:

�IR(r,t + nTIR) = �IR(r,t) exp(−iEQnTIR), (26)

where EQ is the Floquet characteristic exponent, commonly
referred to as the quasienergy. Hence

ψν+2n(ξ ,tf ) = ψν(ξ ,tf ) exp(−iEQnTIR). (27)

Thus, by solving Eq. (21) and calculating ψν(ξ ,tf ) for ν = 0
and ν = 1 with the initial condition (24), Eq. (27) allows us to
express all the other terms for evaluating the sum in Eq. (23).

A separate task is to evaluate the function �IR(r,t) sat-
isfying the periodic condition (26) and find the quasienergy
EQ. This can be done by a direct solution of Eq. (25)
with the condition (26), or by the Floquet series expansion.
We, however, found a simpler way. We determined the time
evolution of �IR(r,t) with the initial condition �(r,t0IR) =
ϕ0(r) exp(−iE0t0IR) after the IR field is gradually switched
on:

A′
IR(t) = −nIRAIR cos ωt

×
{

exp
(− (t−ton)4

τ 4
on

)
, t < ton;

1, t > ton.
(28)

Adiabatic switching and a smooth transition to the constant IR
field regime ensures that the wave function at t > ton is close
to the true periodic solution. We used the switching parameters
ton = −0.75TIR, τon = TIR and started the time evolution
from t0IR = −3τon + ton = −3.75TIR. The quasienergy was
extracted by projecting thus obtained function at the end of
the period onto the one determined at the beginning of the
period:

EQ = E0 − Im{ln[〈�IR(r,−TIR/2)

× |�IR(r,TIR/2)〉eiE0TIR ]}/TIR.

(29)

At the field intensity employed in our calculations, the
quasienergy EQ differs from the ground-state energy E0 only
in the fourth significant figure.

Because Eq. (23) was derived under assumption of vanish-
ing external field at tf , ψν(ξ ,t) was evaluated with a smooth
switching of the IR vector potential

AIR(t) = −nIRAIR cos ωt

×
{

1, t < toff ;
exp

(− (t−toff )4

τ 4
off

)
, t > toff .

(30)

Here the switching time toff and duration τoff were chosen very
large, toff = 32TIR, τoff = 4TIR. The end of propagation was
set to tf = toff + 5τoff = 52TIR.
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FIG. 1. Photoelectron spectrum of the hydrogen atom in the polarization axis direction. Left: the probability density P (3)k2 as a function of
the photoelectron momentum k for two fixed values of τ . Right: a grayscale map of P (3)(k,τ )k2.

III. RESULTS

We solve Eqs. (21) and (25) using a fast SBT [12] for
the radial variables, a discrete variable representation for the
angular variables, and a split-step technique for the time
evolution. In all the calculations, we set the box size to
ξmax = 51.2 a.u. The radial grid step was set to �ξ = 0.1 a.u.
unless specified differently. For atomic calculations on H
and He, the angular basis was restricted to Nθ = 4 spherical
harmonics, whereas for H2

+ we used Nθ = 16.
The APT is modeled by a series of NAPT = 11 Gaussian

pulses with the width τXUV = 5 a.u. (120 as) and the APT
width τAPT = 2TIR (5.2 fs), whereas a long IR pulse is
modeled by a continuous wave with the frequency ω =
0.05841 a.u. (photon energy 1.59 eV, λ = 780 nm) and the
vector potential amplitude AIR = 0.05. The latter corresponds
to the electric field strength EIR = 1.5 × 109 V/m and the
field intensity 3 × 1011 W/cm2. The amplitude of the XUV
pulse was AXUV = 0.025 a.u. (the field intensity 0.75 ×
1011(ωXUV/ωIR)2 W/cm2). The relative APT-IR time delay
τ was varied from 0 to 0.5TIR with a step of 0.03125TIR.
By exposing an atom or a molecule to the APT (18) with
the central frequency ωXUV = (2q0 + 1)ω, the photoelectrons
will be emitted with the energies E2q+1 = (2q + 1)ω − E0

corresponding to the odd harmonics of the IR frequency ω.
The heights of the corresponding peaks will be Gaussian
distributed with the center at E2q0+1 and the width inversely
proportional to the width of the XUV pulse τXUV. The
width of the individual photoelectron peaks will be inversely
proportional to the APT width τAPT. Superimposing a dressing
IR field will add additional peaks in the photoelectron spectrum
at E2q = 2qω − E0. These additional peaks, known as the
sidebands (SB), correspond to the even harmonics. The
sideband amplitudes will vary with the relative time delay
τ of the APT and the IR pulses as [18]

S2q(τ ) = A + B cos[2ω(τ − τa)], (31)

where τa is the atomic time delay (8). Here we assume that
there is no group delay (chirp) in the APT spectrum and all the
harmonics have the same phase.

This characteristic behavior is clearly seen in Fig. 1 where
we display the photoelectron spectrum of the hydrogen atom
subjected to an APT with the central frequency ωXUV = 17ω.

Here and in examples below, we set ωXUV such that the so-
called central peak in the photoelectron spectrum is positioned
at E2q0+1 ≈ 0.5 a.u. We set the photoelectron detection angle
to θ = 0, which corresponds to the polarization axis direction.
By the least square fit to Eq. (31), we obtained the values of
τa shown in Fig. 2. Here the atomic time delay is exhibited
as a function of the photoelectron energy Ee = k2/2. The
corresponding sideband indices are marked in the figure. To
test the numerical stability of our computational procedure,
we performed three sets of calculations: (a) the radial grid step
�ξ = 0.2 and the number of spherical harmonics Nθ = 4; (b)
�ξ = 0.1 and Nθ = 4; (c) �ξ = 0.2 and Nθ = 8. It is clearly
seen from Fig. 3 that an increase of the angular basis size Nθ

does not affect the result. For lower photoelectron energy, the
time delay is not sensitive to the radial grid step. However,
such a sensitivity becomes noticeable for higher photoelectron
energy Ee > 25 eV.

The same sensitivity to the radial and angular grid
parameters can be seen in Fig. 3 where we display
the angular-dependent part of the atomic time delay

FIG. 2. Atomic time delay τa of the hydrogen atom in the
polarization axis direction as a function of the photoelectron energy
Ee. Radial and angular numerical parameters are displayed in the
legend. Error bars indicate the least squire fit uncertainty. The solid
line visualizes the LOPT result of Dahlström et al. [8]. Sideband
indices made on the figure correspond to the four panels of Fig. 3.
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FIG. 3. Angular-dependent part of the atomic time delay �τa = τa(Ee,θ ) − τa(Ee,0) for the hydrogen atom as a function of the
photoelectron emission angle θ relative to the polarization axis. The four panels correspond to different sideband indices. Different line
styles visualize three sets of radial and angular grid parameters as indicated in the legend of Fig. 2.

�τa = τa(Ee,θ ) − τa(Ee,0) for the hydrogen atom as a func-
tion of the photoelectron emission angle θ relative to the polar-
ization axis. Based on this calibration, we restricted ourselves
to �ξ = 0.1 and Nθ = 4 to all the atomic calculations shown
below. For the H2

+ ion, we used a larger angular basis with
Nθ = 16 to account the for the nonspherical ionic potential.

Further calibration of our technique is demonstrated in
Fig. 4 where we compare the atomic time delay of the helium
atom at ωXUV = 25ω with the results of direct numerical

FIG. 4. Atomic time delay τa of the helium atom as a function of
Ee for ejection angle θ = 0◦ and various sets of numerical parameters.
Error bars display the uncertainty of the least square fit. The TDSE
SAE results from Ref. [13] are also shown for comparison.

solution of the TDSE in the SAE [13]. In both sets of the
TDSE calculations, the nonlocal potential of the He atom
was modeled by an analytical parametrization [19]. Close
resemblance of the two sets of data can be seen.

We note in passing that the numerical TDSE SAE results
reported in Ref. [13] required many hours of supercomputer
time whereas the present calculations were carried out on a
notebook computer in less than an hour.

The angular-dependent part of the time delay in He is
exhibited in Fig. 5 where we make a comparison with other
calculations reported in Ref. [6]. Our modeling showed that
the angular-dependent part of the time delay, unlike the
energy-dependent part, is sensitive to the APT width τAPT.
This is illustrated in the figure where we present the two set
of calculations with τAPT = 2TIR and τAPT = 1.32TIR as in
Ref. [6]. The latter results are particularly close to both the
SAE and ab initio TDSE results from Ref. [6].

Finally, we demonstrate the efficiency of our technique
by original calculations of the atomic time delay in the H2

+
molecular ion. In these calculations, the central frequency of
the APT was set to ωUV = 27ω. A polarization of the field
is parallel to the molecular axis. The energy and angular
variation of the time delay in H2

+ are displayed in Figs. 6
and 7, respectively. Both these dependencies are very different
from those of atomic H and He. The energy variation of τa with
Ee for H2

+ is nonmonotonous. The angular dependence of H2
+

displays an additional strong variation in the range of emission
angles θ = 30–50◦. To visualize clearly this molecular effect,
we make a comparison of the angular-dependent time delay
in H2

+ with the spherically symmetric He+ ion. To account
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FIG. 5. Angular-dependent part �τa of the atomic time delay in He as function of electron ejection angle θ for four fixed SBs. The present
results for τAPT = 2TIR (black solid line) and for τAPT = 1.32TIR (blue dash-dotted line) are shown. Also displayed are the TDSE SAE (red
dashed line) and TDSE ab initio (green dotted line) results from [6].

for different ionization potentials, we carried out the He+

calculation at the central frequency ωXUV = 43ω. It is clearly
seen that the atomic and molecular ions display the angular-
dependent time delay, which differs considerably not only by
additional strong angular variation but also the magnitude of
the sharp drop of the time delay near the 90◦ emission angle.
We note that the asymptotic field of the ion remainder is
the same in both cases and hence should be the same CLC

FIG. 6. The time delay τa for H2
+ as a function of the photoelec-

tron ejection energy Ee at a fixed ejection angle θ = 0. The SC-CCLC
results (green dotted line) and TDS results for He+ (red squares) are
also shown for comparison. Sideband indices made on the figure
correspond to the four panels of Fig. 7.

term of the atomic time delay (8). Therefore the difference
of the atomic time delay in the H2

+ and He+ ions should be
attributed largely to the Wigner component τW of the time
delay.

This component is related to the monochromatic XUV
photoionization and can be expressed via the logarithmic
derivative of the corresponding photoionization amplitude:

τW = Im

[
1

fXUV(k)

∂fXUV(k)

∂Ee

]
. (32)

The angular differential XUV cross section is expressed via
the same amplitude as

σ (3) = d3σ

dEed�e

= 4π2ωXUV

c
k|fXUV(k)|2. (33)

By inspecting these two equations, we observe that the
minimum of the angular differential XUV cross section
corresponds to the maximum of the Wigner time delay. This
can be indeed confirmed by aligning Fig. 7 with Fig. 8 where
we exhibited the angular differential XUV cross section for
the corresponding sidebands.

Ionization of H2
+ by a monochromatic XUV radiation was

modeled separately by the method based on the spheroidal
Coulomb (SC) functions [20,21]. With this method, we
obtained the XUV ionization amplitude and fed it to the
expression for the Wigner time delay Eq. (32) and differential
cross-section (33). The atomic time delay can be expressed
from Wigner time delay using a classical approximation to
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FIG. 7. The angular variation of the time delay �τa (black solid line) and Wigner’s time delay �τW = τW (Ee,θ ) − τW (Ee,0) (green dotted
line) of H2

+ for several fixed photoelectron energies Ee. The TDS results for He+ for SBs with close energies are also shown (red dashed line).

CLC (CCLC) derived in Ref. [22] for the case of θ = 0:

τa ≈ τW + [a ln(k/Z) + Ic(a)]/ω

1 − Is(a)
(34)

with the parameter a = Zω/k3 and functions

Ic(a) = −a[ln(2/a) − 1 − γ ] − 3π

4
a2;

Is(a) = −π

2
a + 3

2
a2[ln(2/a) − 1/6 − γ ].

FIG. 8. The triple-differential cross section σ (3) of ionization of
H2

+ by monochromatic XUV as function of θ for several fixed
photoelectron energies Ee equal SB energies on Fig. 7.

Here γ = 0.577 is the Euler constant. We will refer to
the atomic time delay calculated using SC and CCLC as
SC-CCLC. It is seen in Fig. 6 that for Ee > 8 eV results
of SC-CCLC are rather close to those obtained from our TDS
RABBITT simulations. However, at lower energies, SC-CCLC
fails. One can observe in Fig. 7 that the angular variation of
the Wigner time delay is qualitatively similar to variation of
τa , but a quantitative difference is quite noticeable. This means
that the CLC correction τCLC is not a universal function that
fits Eq. (8) both for the He+ and H2

+ ions.
The interference character of the minimum in the angular

differential cross section is revealed by its shift to the
right when the photon and photoelectron energy increase.
An additional minimum appears at small angles when the
photoelectron energy exceeds 200 eV but this energy range is
not visualized in the figure. The relative depth of the minimum
of the angular differential cross section increases closer to the
threshold. Accordingly, the magnitude of the oscillation of the
Wigner time delay and the atomic time delay grows bigger in
lower side bands. As demonstrated in Ref. [7], this deepening
of the minima is related to appearance of a near-threshold
Cooper minimum. This minimum has an angular character as
the dipole component of the ionization amplitude vanishes,
giving way to a octupole component.

IV. CONCLUSION

We have developed an efficient computational technique
for solving the time-dependent Schrödinger equation. As
an illustration, we applied this scheme to the process of
two-color XUV-IR photoionization of the molecular H2

+
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ion. Up to now, this process has only been described by a
simplified two-dimensional (2D) model [15]. We derived the
energy- and angular-dependent photoemission time delay and
connected its peculiarities with the photoelectron group delay
(Wigner time delay) and the Coulomb-laser coupling–induced
correction. The Wigner time delay carries a strong imprint
of the interference structure in the angular resolved XUV
photoionization cross section. The Coulomb-laser coupling
correction is similar in the atomic He+ and molecular H2

+
ions and is determined largely by the asymptotic part of the
photoelectron wave packet propagating in the Coulomb field
of the ion remainder and the dressing IR field.

As a further development, we will expand our technique to
describe the photoemission time delay in H2 and other diatomic
molecules. Experimental observation of time delay in such
systems has now become possible [23].
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