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Nonlinear Fano interferences in open quantum systems: An exactly solvable model
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We obtain an explicit solution for the stationary-state populations of a dissipative Fano model, where a discrete
excited state is coupled to a continuum set of states; both excited sets of states are reachable by photoexcitation
from the ground state. The dissipative dynamic is described by a Liouville equation in Lindblad form and the
field intensity can take arbitrary values within the model. We show that the population of the continuum states
as a function of laser frequency can always be expressed as a Fano profile plus a Lorentzian function with
effective parameters whose explicit expressions are given in the case of a closed system coupled to a bath as well
as for the original Fano scattering framework. Although the solution is intricate, it can be elegantly expressed
as a linear transformation of the kernel of a 4 x 4 matrix which has the meaning of an effective Liouvillian.
We unveil key notable processes related to the optical nonlinearity and which had not been reported to date:
electromagnetic-induced transparency, population inversions, power narrowing and broadening, as well as an

effective reduction of the Fano asymmetry parameter.
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I. INTRODUCTION

The original Fano model was introduced by Fano in
1935 [1] and formalized in 1961 [2] to explain the asymmetry
in the absorption or photocurrent profile as a function of
laser frequency used to ionize a gas of helium-like atoms [3].
Previously, similar diffuse absorption bands induced by iodine-
chloride predissociation had been observed and theoretically
addressed [4]. Friederichs [5] developed the mathematical
formalism of perturbation of linear operators to describe the
essential feature of the Fano model: a discrete state coupled to
a continuum set of states; both sets of states being reachable
by photoexcitation from the ground state. The resulting
photocurrent, which is proportional to the population of the
continuum set of states, as a function of the excitation laser
frequency w; is known as the Beutler—Fano or Fano profile:

. (gter
fle;q) = m,

where ¢ is the ratio of the transition dipole moment of
the ground-discrete and ground-continuum transitions,
€ = (v, — w,)/y where hw, is the energy of the discrete state
relative to the ground state, @, is the incident radiation field
frequency, and hy = nmV? is the linewidth of the excited
state induced by its coupling (per unit energy) nV? to the
continuum set of states, with n being the density of states.
The Fano literature is extensive and we cannot do justice in
this paper to all the contributions since 1935. The interested
reader is pointed to Refs. [6-8].

Two important extensions of the original model have been
considered in the present work: first, inclusion of incoherent
relaxation and dephasing processes, and second high field
intensities. The motivation to include incoherent processes was
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first to describe the pressure broadening [9] due to elastic col-
lisions, laser-phase fluctuations [10], and spontaneous emis-
sion [11,12]. Nowadays, Fano profiles in nanoscale structures
are standard [13,14]; for example, in plasmonic nanostruc-
tures [15—-17], quantum dots, decorated nanoparticles [ 18], and
spin filters [19]. The coherent coupling with the incident light
induces large Rabi frequencies which in turn compete with the
relaxation rates in order to modify the stationary state. The
ability to predict the lineshape, and in general to investigate
nonlinear optical phenomena in the presence of a continuum
set of states are the main motivations to consider large
incident-field intensity. A growing number of experimental
and theoretical papers have recently appeared on the subject of
coherent control and ultrafast pulses on Fano models [20-23].

In spite of the ubiquity of the Fano interferences, to the best
of our knowledge, explicit solutions for high laser intensities
that include general relaxation processes have not been
obtained. Even in Refs. [24,25], which deal with quantum dots,
despite some approximations no analytical expressions are de-
rived that afford a simple physical interpretation of the results.

In a recent work [26], we investigated the signatures of
the Fano interferences in the emitted spectrum of a system
with a vibrational manifold. We obtained explicit expressions
of spectroscopic observables like Rayleigh, Raman, and
fluorescence emission but restricted to the low-intensity-field
limit where the lowest order of perturbation was enough to
describe the laser-matter interaction. In this paper, we focus
on the description of the nonlinear Fano effect on the total
population of the continuum excited state, the observable in the
original Fano model, but for the general case of large intensities
of the laser field and including dissipation processes. Here,
unlike in Ref. [26], obtaining explicit expressions requires
nonperturbative calculations. We present a method that allows
us to obtain such an explicit formulation for large field
strengths and Markovian baths in an elegant and intuitive
framework where the entire solution is formulated in terms of
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a4 x 4 matrix corresponding to an effective Liouvillian acting
in the space of the discrete states only. We calculate the usual
Fano observable; that is, the total population of the continuum
set of states, which is related to the optical absorption or to the
photocurrent, as a function of the incident laser frequency. The
striking result is that such a function can be written exactly as a
linear combination of a Fano profile and a Lorentzian function
like in Ref. [26], but where the Fano ¢ and e coefficients
become effective parameters that are functions of the field
intensity and the decay rates.

II. MODEL

Although the objectives and results of the present work
differ from our previous one [26], the model is similar. Because
there are some differences and for the sake of introducing the
notation in a self-contained way, we summarize it below. The
ingredients of the model are schematically presented in Fig. 1.
The Hamiltonian H = Hy + Hy + Hp is exactly the same as
in the original Fano model [2]:

Hy = Eolg)(g| + Ecle) (el +/dk6klk>(k|,

Hy = /de(k)|€>(kI + VI(K)lk) el

(2)
Hp = F[p. cos(wrt)|g)(e] + 1, cos(wrt)le)(gl]

+F / dkl cos(r D)lg) (k] + e} cos(er k) (g,

where H) is the site Hamiltonian, and Hy is the coupling of the
excited state to the continuum. For simplicity, in the following
we consider that V (k) = (e| Hy |k) is real. Hp is the interaction
with the incident radiation field, allowing transitions from the
ground state to the discrete excited state g <> e and to the
continuum of states g <> k, u;; = (i|wn|j) is the transition
dipole moment between states i and j and F is the field
amplitude.

The relaxation and dephasing processes are introduced in
an analog way as in Ref. [26]. It consists of a Liouville equation
in Lindblad form to ensure complete positivity of the density
matrix describing the quantum system. The dynamics of the
system is given by ‘;—f = L(t)p, where L) = Ly () + LP,

)

e
9)

FIG. 1. Energy levels and transitions of a Fano-type model with
dissipation (see main text for notation).
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with WLy = —i[l® H(t) — H(t)®1] is the Hamiltonian
conservative part, with H being the complex conjugate of
H, and LP = L}?Op + Lg]re is the generator of dissipative
dynamics, where

LP = /dkF(k){A(k,g)®A(kvg)

1
—5le Al(k,g)Alk,g) + Al(k,g)A(k,8) ® 1]}
+re{A(e,g> ® Ale,g)

1

3)

describes the population relaxation from the |k) manifold and
from the |e) state to the ground state, and

Ly = —Velle)(el ® 1g)(g] + 1) (g] ® le)(el]

- fdk)/kg[lk>(k|®|g>(g|+ 18)(g] ® |k){kl]

—fdkyke[lk><k|®|e><€|+|6>(€|®Ik>(k|] 4)

describes pure dephasing; that is, the dynamics of the non-
diagonal matrix elements of p. A(i,j) = |j)(i| are the jump
operators and I' (k) is the population relaxation rate from state
|k) to |g) as is I', for the |e) population. y;; is the pure
dephasing rate for the ij coherence. As in Ref. [26], we have
used the correspondence: |I)(m| < |I) ® |m) = ||lm) [27].
We use the rotating-wave approximation (RWA) on L =
2t L(1)e ! and remove nonresonant terms such that L
can be considered time independent. 2, is a diagonal matrix
whose matrix elements are equal to £, for excited-ground
(ground-excited) coherences, and zero elsewhere.

There are a number of phenomena that occur at strong
fields which are not described by the present model (above-
threshold ionization, continuum-continuum transitions). This
is in line with previous literature where these processes are
also neglected by the model. Within these assumptions, the
only restriction of the model is that the Rabi frequency should
be much smaller than the laser frequency, which is around
the two-level-system (TLS) transition because we consider
near-resonant processes. This is once more an approximation
done throughout the literature. This is not restrictive since all
the high-field effects described by the model appear at field
intensities that are a few percent of the intensities at which the
RWA breaks down for a TLS in the visible and a linewidth of
around 0.1 eV. In this context, it is the comparison between
the laser intensity or more precisely the Rabi frequency and
relaxation rates that determines the limit between the linear
and nonlinear regime.

III. FESHBACH PARTITIONING AND EFFECTIVE
LIOUVILLIAN

The continuum states population [ dkpg, where p is the
full steady-state density matrix, can be obtained by finding
the kernel of the time-independent operator (2; — L); that
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is, (£; — L)p = 0. To solve this equation, we split L in two
terms, L = Lo+ V), where Ly is diagonal and V is purely
nondiagonal, and proceed to Feshbach partitioning [28]. For
that, we introduce the projectors P = |g)(g| + |e)({e| and Q =
f dk|k)(k|,with P + Q = 1. The corresponding projectors for
the discrete and continuum parts in Liouville space are given
by

P=PQP, Q=PRQ0+0®P+0R0. (5

This allows us to rewrite the kernel equation as (2, — L)(P +
Q)p = 0. By projecting on both P and Q and after some
algebra (see Appendix A), we obtain

P2, — Let)Pp =0, (6)
with an effective Liouville operator,
Lesg = PLP 4+ PVQGoQOVP, @)

and Go = [Q(, — L)Q]"!. Go, which is related to the
resolvent of QL Q, is not straightforward to calculate unless
QLQ is diagonal. To achieve the calculation of Gg, we
proceed to a subpartition of the Q subspace until the projected
Liouvillian is diagonal (see Appendix A). PQ; P — L acts
on the P space only, but its kernel is equal to the projection Pp
of the exact stationary density matrix, on the discrete subspace.
Once the density matrix Pp on the discrete space has been
obtained, the density matrix Qp in the continuum subspace
can be computed through the following equation:

Qp = QGoQVPp. ®)

L can be thought of as a4 x 4 matrix when P p is considered
as a column vector with four elements. To obtain an explicit
expression for L, the usual wide-band approximation is
employed. It is also in this same approximation that an explicit
expression was obtained in the original Fano problem [2]. It
consists of assuming that the parameters of the model do not
depend upon k. From now on, we consider this approximation
and define I'. = I'(k), . = i as constants.

After tedious but straightforward calculations (see Ap-
pendix A), the effective Liouvillian L.y defined in Eq. (6)
can be written in a surprisingly simple form:

Lest = —i(1 ® Her — Herr ® 1) + LY, ©)

where H.s is an effective Hamiltonian and L 3f is the
dissipative part of the effective Liouvillian. We show explicitly
in Appendix B that L has a Lindblad form. It can thus be
considered as the generator of complete positive evolution.
This ensures that its kernel Pp is indeed a physical state. Here,
we prefer a different presentation of the operator that makes
it more amenable for comparison to the effective Hamiltonian
that is calculated in the scattering problem where dissipation
is ignored. The effective Hamiltonian can be written as

He = PHyP + Hgeq, With
(10)

F .
Hgea = = (e — inmV pue)([g)e] + le)(gl).
It contains a Hermitian and an anti-Hermitian part and

corresponds exactly to the effective Hamiltonian of typical
resonance problems in Hilbert space [29,30]. The non-
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Hamiltonian part of the effective Liouvillian is

L =1P + 1P+ LD

pure’

with

hLY = QnmV? + hm{A(e,g) ® Al(e.g)

| S
—5lAegAl)®1+1® AT(e,g)A(e,g)]}

Lpe = —(veg +nwiil)lle) el ® 1g)(g] + lg) (gl ® le)(el],
ALY = 2n7V i (llgg) (egll + llgg) (gelD- (1)

LP is a dissipation superoperator in Lindblad form that
describes the population decay with rate 2nw V?/h + T, due
to the coupling to the continuum and the natural decay rate
I',, and Lg]re is a pure dephasing superoperator. L? is an
additional part of the relaxation superoperator which cannot
be put into a Lindblad form. We stress that this presentation
allows a comparison to the Hilbert space solution but that the
full L.g operator of Eq. (9) can be put in Lindblad form (see
Appendix B).

Finally, solving Eqs. (6) amounts to finding the kernel
of a 4 x 4 matrix, which can be done explicitly with the
help of symbolic calculation software (see Appendix C).
Then, applying Eq. (8) along with the normalization condition
Pgg + Pee + f dkprr = 1 gives us all of the populations and
coherences.

The results will be given in terms of dimensionless
quantities and hy = nmV? is taken as the unit of energy.
In addition to the original dimensionless Fano parameters
€ = (wp, —w,)/y and g = u./nmV ., we introduce the new
parameter 2 = . F/(2qhy) = u F/2V, which corresponds
to a dimensionless Rabi frequency. Also, all relaxation rates
will be given in units of y; this amounts to performing
the following replacement: I'c — I'c/y, I'e = T'o/V, Veg —

Yeg/V-

IV. GENERALIZED FANO PROFILE WITH DISSIPATION

The main result of the paper is that the population of the
excited state n, = f dkpyy can always be brought back to a
Fano profile f plus a Lorentzian term:

D
1 (€eff; Geft) = C|:f(€eff; qefr) + 2—}, (12)
e T 1

where the dependence on w; is solely contained in €. =
(wr — Wefr)/ Vett- Wett, Vett, and gegr are effective Fano param-
eters that depend on all the parameters of the model but w, .
C is a measure of the total population and D indicates the
relative weight of the Lorentzian term in comparison to the
Fano profile. The transformation into the above form involves
a rescaling of the parameters achieved in the accompanying
software (see Appendix C).

Simple explicit expressions for the effective Fano param-
eters can be given when the relaxation and the dephasing
rates concerning the |e) state can be neglected; that is,
when I', =0 and y., =0 [see Eq. (13)]. This is often a
very good approximation in the context of semiconductor
quantum dots or in hybrids consisting of an organic molecule
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adsorbed on metallic or semiconductor nanoparticles [31-35]
(1/ T, ~ nanoseconds, i/nm V2 ~ 10 femtoseconds). In that
case, the only relaxation process consists of the continuum

J
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states population decay to the ground state, and the profile is
given by a pure Fano profile and the Lorentzian term is absent,
D =0and C =292/(2Q? + I'.). We obtain

Yerr _ Tell + (g% + DQAQAQQ +4)/ T + 11+ 2/ T + 211"/

14
Wetf W, ) 2
= — Q1
v tq ( 22+ T

We now discuss each one of the parameters as a function
of the Rabi frequency and illustrate them in Fig. 2. We
note that these parameters have a nonlinear dependence
on the Rabbi frequency 2 or, in other words, a nonlinear
dependence on the strength of the field. The prefactor C
which is proportional to the intensity of the field for weak
fields (linear regime) saturates to C = 1 when 2Q% > ...
In Fig. 2(a), we show the normalized Fano profiles at two
intensities of the field (2 = 0.001 and Q = 0.1 for g =5).
As the field intensity increases, we see changes in all of
the Fano parameters. The effective width y.¢ increases or
decreases (power narrowing or power broadening) depending
on the value of the relaxation [see Fig. 2(b) and Eq. (13)]. The
effective asymmetry parameter g.; decreases monotonically
with g [see Fig. 2(c) and Eq. (13)] . As shown in the inset,
the population of the continuum, even for modest values of
2, is significant, underlying the importance of a theory which
can handle non-negligible population in the continuum set
of states, contrary to the approximations in Ref. [25]. The

1.0

Normalized intensity

T =0.1

9.0 " " " " " " "
00 02 04 06 08 10 12 14 16

Q

FIG. 2. Effect of field on Fano profiles and parameters: (a) Fano
profiles for ¢ = 5 for Q2 = 0.001 and 2 = 0.1. (b) y.g for different
values of I'.. (¢) gerr/q for different values of g. Inset shows n, as
a function of ¢ and Q2. Upper end (red) corresponds to n, = 1 and
lower end (blue) corresponds to n,. = 0. (d) weg for different values
of I', and w, = 10.

2Q2 + T, ’
(13)
_ ) G . Te 1
c ' q 292+Fc Veff'

(

decrease of gt can be thought of as a consequence of the
saturation of the discrete excited-state population. The energy
shift A(wesr — w,) of the discrete state |e), which can be seen
as an ac Stark shift, has an interesting behavior. For I', < 2,
the shift is negative if 0 < Q < /(2 — I'.)/2 and it is positive
if Q@ > /(2 —-T,)/2. Therefore, ', <2,Q = /(2 —-T,)/21is
a null point. On the contrary, for large relaxation rates such
that I'. > 2, the shift will be positive for all values of the field
[see Fig. 2(d)].

Inclusion of population relaxation (I, # 0) or pure dephas-
ing processes (ye; # 0) results in heavy expressions of the state
populations that we provide in the accompanying software (see
Appendix C). The main qualitative features remain unchanged
except for the appearance of a Lorentzian term.

Until now, we have focused on the stationary population
of the continuum set of states | dkpyx. Another quantity that
can be measured is the photocurrent, that is the total flow
of electrons in the continuum. Assuming that all electrons
emitted in the continuum |k) states are collected by an
electrode, in the limit of low bias voltage, the current
intensity / can be obtained from the stationary populations as
I =limr,_,¢ |e|(T, fdkpkk)/pgg [36], where e is the electron
charge. It turns out that / can also be brought into the form of a
Fano factor and a Lorentzian factor as in Eq. (12). Explicit ex-
pressions for the Fano and Lorentzian parameters can be given
with both the population relaxation and dephasing included:

Ve = A +T) ' QTo(¢* + T + 1)
+ QX1+ T (g + 2T + )Ty + yeg + 1)

+ (1 + T (e + yee + DA, (14)
tr__ 1 —2ro4 2 2
D" = ——(1+T)7[QTe(q” + Te + 1) + (1 +T)
(Veff)
1
X (q° + 20 + D(Te + ye)l + —— (1 + T
Yeit
X (T2 4T + veg (217 + Toveg +° + 2T + veg + 1)),
(15)
tr . QZ 1
Do _Le B0 gr— . C"=2Q2  (16)
Y y 14T, Veft

These expressions give an exact description of the scattering
problem, as formulated by Fano in his original work [2], but
extended to large field intensities and dissipation processes.

An interesting consequence of the nonlinear Fano effect is
electromagnetically induced transparency (EIT) [37]. Indeed,
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FIG. 3. Population in the continuum showing electromagneti-
cally induced transparency (EIT) for (a) € = 0, ¢ = 15 with different
values of I', and (b) for ¢ = 15, I', = 0 different values of €.

in the absence of discrete-state relaxation and dephasing
(Te = yeg = 0), then D" =0 in Eq. (15) and therefore the
continuum population goes through zero when €. = —qesr
[see Eq. (12)]. The phenomenon of EIT has been characterized
before [38,39]. In the standard scheme, EIT is obtained with
two laser frequencies, where one acts as the control radiation
that creates the transparency window while the second one
acts as a probe. In our case, which is nonstandard, the
same frequency acts as a control and probe radiation, and
the transparency window arises from two pathways whose
destructive interference point is tunable via its intensity. It
can be shown that the condition €. = —g.s iS equivalent to
Q=1+ 2 either for the light absorption or the photocurrent
intensity. This phenomenon is shown in Fig. 3(a) for the case
€ =0, g = 15 for different values of I',, and ¢ = 15, and
Fig. 3(b) I, = 0O for different values of €. This phenomenon
provides an interesting tool for devices as well as a means for
determining the system parameters. For example, irradiating
at the discrete level resonance (¢ = 0) in weak field and
increasing the intensity until the induced transparency is
found determines the ratio of transition dipole moment f,
to the coupling V such that ;./2V = 1/F. In the presence
of pure dephasing or of relaxation from the discrete state, the
zero becomes a minimum but its position does not change
appreciably [see Fig. 3 (left)]. One should take care not to
confuse the present effect with the trivial zero of the standard
Fano profile ate = —q [see Eq. (1)]. In the case presented here,
the effect is nonlinear because the condition is €.t = —gefr and
both of these parameters depend nonlinearly on the field. The
condition for the minimum is thus obtained by adjusting the
intensity of the field.

V. CONCLUSION

We have obtained an explicit formula solving the original
Fano problem for arbitrary relaxation processes and large
radiative couplings. The inclusion of more than a single excited
discrete state is straightforward as long as the couplings do not
exceed the energy gap between excited states. Furthermore,
our approach serves as a stepping stone for descriptions going
beyond the wide-band approximation, which was already

PHYSICAL REVIEW A 93, 063414 (2016)

discussed in the scattering framework. Finally, there is a
wide class of systems where the present model is directly
applicable, opening new horizons in the analysis of Fano
profiles under intense fields, as well as in applications and
devices that exploit processes such as population inversion
and electromagnetically induced transparency.
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APPENDIX A: STEADY-STATE DENSITY MATRIX

We outline the procedure used to obtain the steady-state
density matrix by finding the kernel of 2, — L. This process
can be separated into two different equations: one for the
discrete subspace and one for the continuum subspace. The
density matrix in the discrete subspace Pp is the solution to

[2, — (PLP +PVQGoQVP)|p =0. (A1)

The density matrix in the continuum subspace Qp can then be
calculated:

Qp = QGoQVPp. (A2)

The derivation of these equations is presented below. Solving
them requires the calculation of the kernel of a 4 x 4 matrix,
which we do with a symbolic calculator and knowledge of
the resolvent QGoQ = (z + QR — L)Q)~!|.—o. In what
follows we omit z altogether since all of the expressions
for the density matrix require evaluation of the resolvent for
z = 0. There are problems arising from this inversion because
the operator in parentheses is infinite dimensional with a
continuous spectrum. However, we can partition this equation
successively until we arrive at a partition where the Liouvillian
is diagonal. The resolvent of a diagonal matrix is trivial and
this will be the cornerstone of the rest of the calculation which
will use exact resummations of perturbative expansions given
by the Lippman—Schwinger equation.

In the case of a Fano-type model, we use three partition
spaces which are schematically represented in Fig. 4.

L P =|lgg)(ggll + llge)(gell + |leg)(egll + |lee)(eel]].

ii. Py= [dkllkg)(kgll + |lgk)(gkll.

iii. P5= [dk|lke){kel|| + ||ek)(ek||.

iv. Q3= [dk [dk'||kk')(kK']].

The first partition divides the continuum from the discrete
states and the remaining partitions divide the continuum
subspace such that P,, P;, and Q3 are diagonal. A Lippman—
Schwinger recursion equation applied to the last partition
Q3 and P; gives 02Gg, 02, a Lippman—Schwinger equation
applied to the second partition gives QG Q, and a third and
final Lippman—Schwinger equation yields the resolvent in the
entire Liouville space G.
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FIG. 4. Partitions of the Liouvillian superoperator.

Taking the upper partition as an example, we show
the expressions to calculate the resolvent. We assume that
QGyQ =[Q(Q; — L)Q1™" and PGP = [P(Q, — L)P]"!
are known from the previous recursion step. We also write
the nondiagonal part as PLQ + QLP = ). We decompose
the Lippman-Schwinger equation G = Gy + GoVG into its
partitions. We insert 1 = P + Q on both sides of )V and project
the entire expressions onto P and Q. After some rearranging:

PGP = PGP + PGyP(PVQG,QVP)PGP,
QOGP = QG QVPGP,

PGQ = PGPPVQQG,Q,

0GQ = 9GyQ + QG QVPGPV QG Q.

We can explain more explicitly why Eqgs. (A3) solve the
problem: The first equation give PGP by the inversion (or an
infinite resummation) in P space—we can give the explicit
equation, and the other equations give the others projections
in term of PGP.

In our aim to obtain the steady-state density matrix, we
do not need to calculate PGP but only PVQG,QVP. The
steady-state density matrix is obtained by (2, — L)p = 0. We
can project onto P and Q:

(A3)

P&, — L)YPp+ P&, — L)Qp =0,

(A4)
Q2 — L)Pp+ QA — L)Qp =0,

which can be rearranged to get
[P@, — LYP -~ PYQQQ, — L)™' QVP]p =0 (AS)
and

Qp = {19, — L)QI'QVP}p. (AO6)

PHYSICAL REVIEW A 93, 063414 (2016)

We recognize that we can group the terms in Eq. (AS) into an
effective Liouvillian L.,

Leg = PLP +PVQGoQAVP, (A7)

where Go = [Q(R, — L)Q]™!, leading to expressions (5)
and (6) of the main text. To illustrate the procedure we show
the calculation of the resolvent for the subspace P; + Q3 =
Q,. We start with the first line of Eq. (A3) which gives
the solution for the resolvent in the P;P; subspace. We
can rewrite it in the form of an infinite series PGPz =
P3GoP3 Z;’;O(P3VQ3QQ A3 VP3GoP3)". We denote the argu-
ment which is exponentiated inside the sum as ws:

wy = — / dkV?>g(k.k")g(k,e)||ke) (ke
- f dkV2g(K',k)g(e,k)|lek) (ek|]
+ / dk / dk'V2g(k' \k)g(e,k)||k e) (ek||
+fdk/dk’Vzg(k,k’)g(k,e)||ek’)(ke||, (A8)

where g(a,b) = {—i[(2)a — Ea + Ep] + Fab}717 and I"yp is
the dissipative term of the ||ab) element of the density matrix.
We need to take the geometric series of term ws. In the wide-
band approximation, the only terms which contribute to the
final result give for P3[Q2(; — L)Q,]~ ' P5:

_ 1y g(k,e)
PAQAR, ~ D)@' Ps = s ke) ke
k
8O0 1ok ekl

1 +nmV2g(ek)
(A9)

This amounts to a renormalization which introduces an
effective dissipation term—and thus linewidth—of nm V2 to
the ek and ke coherences due to the coupling of the discrete
excited state with the continuum set of states. This term appears
in the final effective Liouvillian as a Lindblad dissipation
from the discrete excited state to the ground state with rate
2n7 V2 /h. For a more detailed description of the integrals and
their evaluation, see the Supplemental Material of Ref. [26].

APPENDIX B: LINDBLAD FORM OF EFFECTIVE
LIOUVILLIAN

We now write the effective Liouvillian [Eq. (9)] in Lindblad
form. Lindblad [40] and Gorini, Kowassaowki, and Sudar-
shan [41] showed that the most general form of a Markovian
process was described by a semigroup. This ensures complete
positivity and trace-preserving properties of the dynamical
map. The Lindblad-GKS form is

N2-1
. 1
L=—ilHpl+5 ) cj(F.pFi1+[Fip, FD), (B
i,j=1

where the F; form a traceless orthonormal set, H is a self-
adjoint operator, and ¢;; is a positive definite matrix. We choose
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as basis the Pauli matrices:
110 1 _ 170 i
Ll o] 7T Al of

11 O
== Ao -1
and express the effective Liouvillian in the new basis. The
result is

Oy =

(B2)

Lt = Lo + PVQGo(0)QVP,
Lut— Lo = —[H' ]+ 1P
off — 0__ﬁ[ J+ L7, E3)
H' = 2n7Vyo,,

where L is the original Liouvillian in the P partition, H' is
an (Hermitian) addition to the Hamiltonian, and L? is a super-
operator in Lindblad form [Eq. (B1)]. The strictly dissipative
part can be completely determined by the coefficients ¢;;:

C3 iC3 Cc

. (B4)

C,’j =

) icy Ci
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with ¢; = Q2 + Yeg> 2 = 2, and ¢3 = 1 + I',.. To check the
positivity of the ¢;; matrix we diagonalize it. The eigenvalues
are

cx = (7 + 20 + yep +2)

+ \/(szz DT+ yeg — 22 + 822 (BS)

Both eigenvalues are positive, proving that the matrix is
positive definite and that the operator can in fact be written
in Lindblad form.

APPENDIX C: ACCOMPANYING SOFTWARE

To make the results of this paper more accessible, we
included all results, equations, and plots in an interactive
python notebook [42]. The notebook consists of a symbolic
part where the expressions that include dissipation from the
discrete state and pure decoherence—too intricate to write
in an article—can be obtained. The second part consists of
numerical simulations where the plots produced in the paper
can be redrawn and where any simulation of the solution to the
Fano model can be plotted. The software can be downloaded
from finogs.wordpress.com.
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