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Photoionization microscopy for a hydrogen atom in parallel electric and magnetic fields
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In photoionization microscopy experiments, an atom is placed in static external fields, it is ionized by a laser,
and an electron falls onto a position-sensitive detector. The current of electrons arriving at various points on
the detector depends upon the initial state of the atom, the excited states to which the electron is resonantly
or nonresonantly excited, and the various paths leading from the atom to the final point on the detector. We
report here quantum-mechanical computations of photoionization microscopy in parallel electric and magnetic
fields. We focus especially on the patterns resulting from resonant excited states. We show that the magnetic
field substantially modifies some of these resonant states, confining them in the radial direction, and that it has a
strong effect on the interference pattern at the detector.
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I. INTRODUCTION

Recent developments in the field of photoelectron imaging
have allowed the direct observation of the oscillatory structure
of a microscopic wave function on a macroscopic scale [1–4].
The theory of photodetachment or photoionization microscopy
was introduced [5–7] with a proposed experiment in which an
electron of a fixed energy is detached from a negative ion
or ionized from an atom in an applied static field and then
accelerated by the field to a position-sensitive detector. The
outgoing electrons can display circular interference rings on
this detector. The observed patterns result from interference of
electron waves traveling along different classical paths from
the ion or atom to the detection point. For photodetachment,
only two trajectories interfere at each detector position and
the observed structures can easily be interpreted based on
analytical expressions for the accumulated phases along both
trajectories [8–10]. However, in photoionization, because
of the long-range Coulomb interaction, the trajectories are
more complex and an infinite number of classical trajectories
arrive at any point in the classically allowed region on the
detector.

Up to now, experimental measurements of photoionization
microscopy have been carried out only in a pure electric field
(no magnetic field). The first experimental implementation
was for the Xe atom by Nicole et al. [2], following the
pioneering study on slow photoelectron imaging [11]. The
interference pattern was found to evolve smoothly with excess
energy above the saddle point and was only weakly affected by
the presence of Stark resonances. The observed interference
patterns were qualitatively explained by Bordas et al. [9],
using a semiclassical framework. Subsequent studies with the
Xe atom [12] investigated the influence of Stark resonances
and concluded that the semiclassical theory applied to the
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Stark hydrogen atom was unable to assign all observed
resonances.

On the theoretical side, pioneering work on the dynamics of
electrons photoionized from rubidium in a pure electric field
was carried out by Robicheaux and Shaw [13] using a form of
Harmin’s frame-transformation theory [14]. A quantum theory
for photoelectron microscopy in both hydrogen and lithium
atoms was developed by Zhao et al. [15,16]. They found
that Stark resonances dramatically change the electron spatial
distribution. Recently, such theoretical predictions for the
effects of resonances [10,16] were confirmed by measurements
on hydrogen [3] and lithium [4]. In contrast to observations
with Xe atoms, microscopy images of Li and H atoms are
found to be sensitive to the presence of resonances.

A natural question to ask concerns how the microscopy
interference patterns change if a magnetic field is added
parallel to the electric field (Fig. 1). For the case of
photodetachment, where the Coulomb field is absent and
trajectories only spiral around magnetic-field lines while
falling at constant acceleration, there have been a number of
recent studies [17–20]. For photoionization, however, again the
Coulomb interaction dramatically complicates the situation,
as infinite sets of electron trajectories from different families,
some of which are chaotic, contribute to the observed electron
spatial density distribution [21].

The spectrum of the hydrogen atom in parallel fields has
been studied by many researchers at energy far below the Stark
saddle point [22–24]. Our previous semiclassical open-orbit
theory approach [21], however, reports on the photoionization
microscopy of atoms in parallel fields, with the tunneling and
resonance effects omitted. Two related aspects of that work
show the need for the present study. (i) Trajectories were
started at the nucleus and were assumed to be isotropically
distributed. (ii) The effects of resonances were ignored;
thus the energy domain of interest was approximated as an
unstructured continuum [9]. However, as already mentioned,
it is known that for hydrogen in a pure electric field, resonances
have a large effect [16], greatly changing the outgoing
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FIG. 1. (a) Potential energy surfaces E of the hydrogen atom in a
uniform electric field (F = 808 V/cm) along the z axis, compared to
(b) the case in parallel electric and magnetic fields (F = 808 V/cm
and B = 8 T). The singular attractive feature at the origin comes from
the Coulomb interaction.

waves in narrow ranges of energy. A semiclassical open-orbit
theory of photoionization microscopy including the effects of
resonances is currently unavailable.

Accordingly, in this paper we calculate by quantum theory
the patterns that may be seen in photoionization microscopy
experiments on hydrogen in parallel electric and magnetic
fields, giving particular attention to the effects of resonances.
There are two parts to our calculations. (i) We find the energies
of resonances in parallel fields using the complex-rotation
technique (CRT) [25]. (ii) Using a wave-packet propagation
method, we compute the wave function extending to large
distances and show how the patterns on the detector change
when a parallel magnetic field is applied.

II. THEORY AND NUMERICAL APPROACH

Atomic units are used throughout this work unless other-
wise specified. The Hamiltonian for our model of a neutral
hydrogen atom in uniform parallel electric and magnetic fields
F = Fez and B = Bez, respectively, is expressed in spherical
coordinates as

H = p2

2
− 1

r
+ Fr cos θ + B

2
Lz + B2

8
r2sin2θ, (1)

where F and B are the electric- and magnetic-field strengths,
respectively. The first term on the right-hand side of Eq. (1)
is the kinetic energy for the electron, the second term denotes
its Coulomb potential, the third term corresponds to the Stark
interaction of the electron with the applied electric field, and
the last two terms are, respectively, the paramagnetic and
diamagnetic interactions from the external magnetic field. In
the parallel field configuration we study, the above model
Hamiltonian preserves azimuthal symmetry, which ensures
that the z component of the angular momentum Lz is the
constant of motion and the magnetic quantum number m

is a good quantum number. We take m = 0 in all reported
calculations here in order to match the experimental condition
of Ref. [3] where the laser pulse is linearly polarized along the
direction of the electric and magnetic fields.

In a uniform electric field, electron Stark states are
conveniently treated in separable parabolic coordinates η

and ξ . The electron motion is bounded in ξ = r + z and
unbounded in η = r − z. The Stark manifolds are denoted by
(n1,n2,m) in terms of parabolic quantum numbers n1 and n2

(n = n1 + n2 + |m| + 1), which respectively characterize the
numbers of wave-function nodes along the ξ and η coordinates.
Red Stark states (n1 < n2) are localized on the downhill side
of the Coulomb plus pure electric-field potential and they
are more weakly bounded in their spatial distributions than
blue Stark states (n1 > n2) on the opposite uphill side. When
the quantum number n1 of a red state is equal to the n2 of
a blue state, these two states will have the same transverse
nodal structure, except that the nodes for the former cross
the negative z axis while for the latter they cross the positive
z axis. As long as the Stark nodal structure (the number of
nodes in parabolic coordinates η and ξ ) remains intact when
the magnetic field is introduced in addition to the electric field,
we can still identify the Stark resonances in parallel fields by
effective quantum numbers (ñ1,ñ2,m) in reference to the Stark
state notation (n1,n2,m) in a pure electric field.

A. Resonances in parallel fields

The method of CRT can be found in detail in Ref. [25].
Upon rotating the radial variable r by an angle α in the complex
plane according to r = |r|eiα , we transform the Schrödinger
equation into a complex general eigenvalue problem

HC = ESC, (2)

where E and C represent the complex eigenvalues and their
corresponding eigenvectors, respectively, and S denotes the
overlap matrix. A Lanczos algorithm for the general complex
eigenproblem is then applied to solve for the eigenvalue E

and eigenvector C. If α is sufficiently large, resonance states
become square-integrable states. When α is reduced, a long
tail in the wave function of the resonance state appears. Also
other quasistates appear that are unstable under variation of
α. Because we want to display the long tails of the resonant
states, we show graphs of stable resonant states of sufficiently
small values of α = 0.01 whose tails are visible. At these
resonant energies, ionization is strongly enhanced and the
distributions of both the electron spatial probability density and
its two-dimensional (2D) momentum are highly structured.
For example, we take two red Stark states as shown in Fig. 2,
both having ñ1 nodes in their transverse structure as carefully
illustrated in Figs. 2(a) and 2(b), and their one-dimensional
momentum distributions of pρ are characterized by the same
node number as well in Figs. 2(c) and 2(d). From Fig. 2 we
can see that for red states with smaller quantum numbers ñ1,
their spatial distributions and the momentum distributions are
concentrated more along the central symmetrical axis. The
blue resonances with smaller quantum number ñ2 show similar
features. These resonance states are found to be reasonably
immune to the introduction of external magnetic field, unlike
the states with large spatial distributions perpendicular to the z

axis or wide momentum distributions in the pρ direction. We
will discuss this observation in more detail later.
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FIG. 2. Quantum theory calculated 2D electron spatial and mo-
mentum distributions in a uniform pure electric field F = 808 V/cm
for certain resonant states. Spatial distributions are shown for the two
red states (a) (0,29,0) and (b) (3,26,0). A tail of the spatial distribution
is obviously noticeable beyond the saddle point z = −1/

√
F =

−2522.72 a.u. in both (a) and (b). (c) and (d) Corresponding 2D
momentum distributions. In addition, 1D momentum distributions
along pρ obtained after integrating over pz are also shown by pink
curves. The same number ñ1 of nodes as in their corresponding spatial
distributions can be clearly counted.

B. Wave-packet propagation in parallel fields

To describe the wave-packet propagation dynamics in
parallel fields, we follow the approach of Ref. [3], except
that we solve the time-dependent Schrödinger equation using
a split-operator technique instead. The wave function ψ(r,t)
at any time t obeys the time-dependent Schrödinger equation

i
∂

∂t
	(r,t) = (HA + HFB + HL)	(r,t), (3)

with

HA = p2

2
− 1

r
, (4)

HFB = Fr cos θ + B

2
Lz + B2

8
r2sin2θ, (5)

HL = FL(t)r cos θ, (6)

respectively, denoting the free-field hydrogen atom Hamil-
tonian, the interaction between the atomic electron and the
external parallel fields, and with the pumping laser pulse
characterized by FL(t). Here the spin-orbit interaction is
omitted since it is very small for high Rydberg states. The
spin-orbit interaction is proportional to 1/r3 and decreases
quickly at large r . The paramagnetic term B

2 Lz = B
2 m is a

constant for a given state with magnetic quantum number m,
in our case, m = 0. As the paramagnetic term is not concerned
with the radius, even considering the spin, it only contributes
a constant energy shift.

To the first-order approximation, the wave function describ-
ing the excitation from an initial state 
(r) at energy E0 to a
final state 	(r,t) of energy E is given by

	(r,t) = 
(r)e−iE0t + ψ(r,t)e−iEt , (7)

where the first term satisfies the free-field Schrödinger equa-
tion (3) with only HA included. Substituting Eq. (7) into Eq. (3)
leads to an inhomogeneous Schrödinger equation for ψ(r,t),

i
∂

∂t
ψ(r,t) − (HA + HFB − E)ψ(r,t) = S(r,t). (8)

The excitation process is taken into account via the source
term S(r,t) defined as

S(r,t) = e−t2/(�τ )2
rS(r) cos θYm

l , (9)

with Ym
l the spherical harmonic describing the initial state

characterized by quantum numbers l and m. Here S(r) de-
scribes the radial dependence of the initial wave function. The
laser pulse is assumed to take a Gaussian shape parametrized
by a temporal width �τ .

By integrating Eq. (8) using the generalized pseudospectral
and split-operator technique, we obtain the time-dependent
wave function numerically (see the Supplementary Material
of Ref. [3]). In the calculation, the outer boundary of the
grid of points used for the wave-packet propagation extends
far past the hypothetical location of the detector (8000 a.u.),
to avoid the reflections from the boundary. For the reported
experimental conditions, the total propagation time extends to
at least 500 ps.

If an imaging detector is placed at z = z0, it will see
the propagated electronic wave packet that arrives at its
surface. The generated electric signal on the detector surface
is proportional to the probability flux integrated over a
given propagation time T , P (z0) = ∫ T

t=0 dt
∫
ρ
ρdρ �j (ρ,z0) ·

ẑ = ∫ T

t=0 dt
∫
ρ
ρdρjz(ρ,z0), where the probability density jz

can be approximated as νz|	(ρ,z0,t)|2. Here νz is the velocity
of the electron at (ρ,z0) and is a function of ρ, its values are
almost equal at for different ρ since the electron is accelerated
greatly by the applied electric field [1]. Thus the signal at
(ρ,z0) can be expressed as P (ρ,z0) ∝ ∫ T

t=0 dtρ|	(ρ,z0,t)|2,
giving a plot in 2D polar coordinates (ρ,z = z0).

III. RESULTS AND DISCUSSION

We first calculate the positions of the same four red
resonances (ñ1,ñ2,m) = (0,29,0), (1,28,0), (2,27,0), and
(3,26,0) at an electric field strength F = 808 V/cm, the same
experimental condition as in Ref. [3]. Four blue resonances
(23,0,0), (22,1,0), (21,2,0), and (20,3,0) are also calculated
in order to compare with the red ones in the same energy range
as listed in Table I. The calculated values we obtain for zero
magnetic field are the same as or very close to those given
in Ref. [26]. Six other red resonances are also given for their
interesting interaction features with the magnetic field, which
we will use as an example in later discussion.

We also calculate the energy level map for these tabulated
red and blue resonances at increasing magnetic field up to 8.5 T
as shown in Fig. 3. Typically the red states are more extended
in ρ than blue states with the same number of transverse nodes
[compare Fig. 4(a) with Fig. 4(c) and Fig. 4(b) with Fig. 4(d)].
Since the diamagnetic interaction is proportional to ρ2, the
energies of these red states are more sensitive to magnetic
fields than those of the corresponding blue states. From a
different perspective, focusing on the pρ distribution shown in
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TABLE I. Stark resonance positions (in cm−1) for the hydrogen
atom in a uniform electric field (F = 808 V/cm) corresponding to
the conditions used for Fig. 3. As a comparison, the saddle point is
located at −174.00 cm−1 in this case.

Red states Blue states

(ñ1,ñ2,m) Position (cm−1) (ñ1,ñ2,m) Position (cm−1)

(0,29,0) −172.810 (23,0,0) −162.791
(1,28,0) −169.617 (22,1,0) −165.312
(2,27,0) −166.426 (21,2,0) −167.831
(3,26,0) −163.240 (20,3,0) −170.348
(4,24,0) −164.623
(3,25,0) −167.645
(4,23,0) −170.655
(2,26,0) −170.662
(3,24,0) −173.554
(1,27,0) −173.676

Fig. 2, the resonances that are narrower in pρ correspond to
momentum distributions more concentrated around pρ = 0, so
these states are less influenced by the Lorentz forces produced
by the magnetic field acting on the pρ component.

In a pure electric field, the adjacent Stark manifolds
overlap for a given value of the principal quantum number
n if F > 1/3n5. The blue and red states in fact cross each
other without coupling in the hydrogen atom. In parallel
fields, however, the diamagnetic interaction from the applied
magnetic field couples nearby crossing Stark states, which
results in anticrossing or avoided crossing level diagrams as
shown in Fig. 3(a). For example, the avoided crossing region
A arises from coupling between the (1,28,0) (red short-dashed
line) and (2,26,0) (red solid line) states. The nodal structures
for states (1,28,0) and (2,26,0) exchange after passing the
anticrossing region. In contrast, as shown in Fig. 3(b), the blue
resonance states are insensitive to the magnetic field up to quite
strong magnetic fields, but the blue states are contaminated by

FIG. 4. Quantum theory calculated 2D electron spatial distribu-
tions in the electric field (a)–(d) without and (e)–(h) with the parallel
magnetic field applied for certain resonant states. The electric field
has the same value F = 808 V/cm as in Fig. 2 and the applied
magnetic field is 6 T in (e)–(h). The red resonances (a) (0,29,0) and
(b) (3,26,0) are as shown. Their spatial distributions are compressed
in the ρ direction as shown in (e) and (f), respectively, after the
magnetic field is applied. However, the blue states (c) (23,0,0) and
(d) (20,3,0) show opposite behaviors with their spatial distributions
extending away from the central symmetry axis when the magnetic
field is applied in (g) and (h), respectively.

nearby red states. For example, the red state (4,23,0) gradually
appears along the −z direction of the blue state (23,0,0) in
region B.

FIG. 3. Calculated energy level maps for both (a) red and (b) blue resonances in Table I. Comparing red states with blue states having the
same number of transverse nodes (0–3), it can be seen that the magnetic field has a greater effect on the energies of the red states. As a result,
anticrossings occur more easily between red states (a) than between blue states (b). As an example, in region A, the anticrossing occurring
between the states (1,28,0) (red short-dashed line) and (2,26,0) (red solid line) is marked. Blue states are strongly mixed with nearby red states
at high magnetic field. Region B shows the blue state (23,0,0) (blue dotted line) is mixed with the red state (4,23,0) (red solid line).
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FIG. 5. Overview of the calculated 2D spatial distributions of the electron probability density, photoionization microscopy images, after a
500-ps evolution, and their normalized radial probability distributions on the detector for the red state (ñ1,ñ2,m) = (1,28,0) in parallel fields
with increasing magnetic field from 0 to 8 T, correspondingly shown in (a)–(e). The interference patterns on the detector plate shown on the
right side are recorded at z = −0.423 μm (8000 a.u.) and the detector positions are also shown by the green dashed line in (a) and (e). Several
typical classical trajectories are shown by solid color lines for the cases of (a) B = 0 and (e) B = 8 T. The red dashed line in (e) is a typical
trajectory with Coulomb interaction removed, indicating a non-neglectable focusing effect caused by the Coulomb potential.

On the one hand, the magnetic field introduces a harmonic
potential perpendicular to the z axis, which consequently
draws the wave functions towards the z axis. This can be seen
clearly if we compare the two red states as shown in Figs. 4(a)
and 4(b) in a pure electric field with Figs. 4(e) and 4(f) in
parallel fields. On the other hand, the applied magnetic field
also raises the overall potential surface, which pushes states
to higher energies. This gives rise to a non-negligible factor
when the wave function is extended out in the ρ coordinate.
In contrast, for the two blue states shown in Figs. 4(c)
and 4(d), their wave functions in parallel fields are pushed
away from the central symmetry axis by the magnetic field
[Figs. 4(g) and 4(h)]. The competition between these two
factors determines the behavior of the final distribution of
the wave function along the ρ axis.

Because of their long lifetimes, blue resonances are not suit-
able for photoionization microscopy experiments. We instead
examine the red resonance state (ñ1,ñ2,m) = (1,28,0) with a
simple transverse nodal structure to study the characteristic
features of wave propagation in parallel fields. In a pure
uniform electric field, the calculated Stark state electron radial
distribution on the detector is shown in Fig. 5(a), which is in
good agreement with reported experimental results [3] and
other theory calculations [26]. Figures 5(b)–5(e) show the

same spatial distributions for resonances in parallel fields.
As the magnetic field increases, the long “hair” in Fig. 5(a)
changes into “braids” in Figs. 5(d) and 5(e), due to the
focusing effect related to the spiraling of the electron around
the magnetic field lines. This feature will also be explained by
the classical calculation later.

In a pure electric field, the number of dark fringes of
the interference patterns on the detector directly reveals the
transverse node number of the Stark state [Fig. 5(a)]. However,
this general correspondence no longer holds true in parallel
fields. The peak position and the relative strength of the radial
probability distribution vary with magnetic field as shown in
Figs. 5(a)–5(d) for increasing magnetic field from 0 to 6 T. At
8 T we find that only one peak remains [Fig. 5(e)]. The
transverse nodal structure for this red state remains clearly dis-
tinguished within the saddle point in parallel fields [Fig. 5(e)],
but it does not extend to the location of the detector.

For comparison, we also carried out trajectory calculations
based on the semiclassical open-orbit theory [21], within
which the resulting wave function ψz0 (ρ) at point M(ρ,z0)
on the detector corresponds to the sum over all possible
trajectories. Several open orbits at 8 T in Fig. 5(e) are
presented in solid color lines, which can be easily compared
to analogous ones at 0 T in Fig. 5(a). Superimposed on
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FIG. 6. Dependence of the radius of impact on the detector on the initial angle θ at which the trajectory is launched. (a) B = 0 T and
(b) B = 8 T correspond to results shown in Figs. 5(a) and 5(e), respectively. The dashed lines connect each of the escape segments to their
corresponding patterns. Some extremal trajectories with ∂ρ/∂θi = 0 at z0 are marked by colored asterisks and the associated trajectories are
shown with corresponding colors in Figs. 5(a) and 5(e). It should be noted that, in Fig. 6(a), the olive-colored asterisk corresponds to a trajectory
that arrives at the outer edge of the inner circle in Fig. 5(a).

their backgrounds are the electron spatial distributions from
quantum calculations. Following Mitchell and Delos [27], we
classify the trajectories using a string of the symbols (−) and o.
The ejection angles for these orbits are selected as the extreme
points labeled by the asterisks in Figs. 6(a) and 6(b). In this
case, semiclassical open-orbit theory as formulated in [10]
cannot give good results when the ejected electron energy
comes near the resonance state. A semiclassical theory of such
states must include reflections and tunneling, which are yet to
be incorporated into the theory [10,21]. However, we see that
the boundaries of the classically allowed region coincide well
with the extent of the quantum distribution.

Of course, the Coulomb interaction also plays an important
role in the spatial electron probability distribution. In the
absence of the Coulomb field, the photodetached electrons
in parallel fields are associated with individual trajectories in
spiral motion: harmonic oscillations in the radial ρ direction,
accompanied by uniform rotations in the azimuthal angle
with a Larmor frequency ωL = B/2. In the cases with and
without Coulomb potential, the system energy satisfies E =
1
2v2 + V (r) in atomic units, where V (r) = −1/r + Fz +
B2/8r2 sin2 θ and V (r) = Fz + B2/8r2 sin2 θ , respectively.
With an s-wave approximation, each trajectory starts at initial
velocity v0 = √

2[E − V (r)] at a finite radius a0 = 50 a.u. in
all directions with the same weight [10]. A particular trajectory
is illustrated in Fig. 5(e) for the case of parallel fields without
the Coulomb interaction (red dashed line); it shares the same
initial ejection angle theta θ = 2.757 with a corresponding
trajectory including the Coulomb term (red solid line). Clearly,
we see that the electron paths extend to larger ρ when Coulomb
interaction is absent. Thus, the Coulomb field causes focusing,
which reduces the maximum radial extension ρmax, and it also
reduces the distance traveled by the electron between crossings
of the z axis, which are separated by one cyclotron time. In gen-
eral, the interplay between the Coulomb interaction and par-
allel fields leads to more complex trajectories. Some of them
become chaotic [21,27], where a large number of trajectories
encircle the nucleus many times. For comparison, a simple tra-

jectory as depicted by the blue solid line is given at an ejection
angle θ = 2.707, which circles around the nucleus only once.

To observe the focusing effects of the magnetic field at
the previous experimental condition of electric field of F =
808 V/cm [3], we have to apply a strong magnetic field up
to several tesla. The focusing effects of the magnetic field are
also presented for lower magnetic fields if we choose states
close to the Stark saddle point at lower electric field as well,
where the magnetic-field-induced interaction is comparable to
that of the electric field, for example, at F = 15 V/m with the
corresponding magnetic field about B = 0.02 T [19], where
the focusing effects are revealed in a space scale of tens of μm.

IV. CONCLUSION

We have performed theoretical calculations to study the
dependence of the resonant energy positions, ejected electron
spatial distributions, and the dependence of their interference
patterns on the magnetic-field strength, for a hydrogen atom
in parallel electric and magnetic fields. Red and blue states
in a pure electric field are coupled to each other by the
magnetic field. Owing to the quadratic diamagnetic term in
the Hamiltonian, their energy maps show rich structures of
anticrossings. Red states occupy larger spatial volumes where
electrons are more easily affected by the applied magnetic
field in comparison to the more tightly confined blue states. In
contrast to the case of a pure electric field, the number of dark
fringes on the detector does not directly reveal the transverse
nodal structure of resonances in parallel fields, particularly at
stronger magnetic field.
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