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Autoionization in time-dependent density-functional theory
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We compute the exact exchange-correlation potential of the time-dependent density-functional theory (TDDFT)
for the correlated process of autoionization. The potential develops barriers which regulate the autoionization rate.
TDDFT employing known and practicable exchange-correlation potentials does not capture any autoionization
dynamics. Approximate exchange-correlation potentials capturing such dynamics would necessarily require
memory effects and are unlikely to be developed, as will be illustrated.
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I. INTRODUCTION

Exact dynamical properties of a multielectron system
can be obtained via solving the time-dependent Schrödinger
equation (TDSE). Due to the “exponential wall” [1], it is
computationally very challenging to solve this equation. In
fact, in the case of intense laser fields where the numerical grids
need to be large, a solution of the TDSE for a three-electron
system seems to be the maximum to date [2]. One possible
way to overcome the exponential wall is the time-dependent
density-functional theory (TDDFT) [3–5]. In this theory
the interacting multiparticle system is mapped to a unique
system of noninteracting particles with the same ground-state
density. The observables are constructed as functionals of
the single-particle density, which in turn is obtained via a
solution of the nonlinear single-particle equations known as
the time-dependent Kohn-Sham (KS) equations. The solution
of the time-dependent KS equations is the single-particle
orbitals from which the single-particle density can be con-
structed. The essential ingredient in the KS construction is the
Hartree exchange-correlation (Hxc) potential. In many cases
an adiabatic approximation to the xc potential is sufficient.
However, with currently available approximations highly
correlated processes like single-photon double ionization,
autoionization, charge transfer, and resonant interactions (Rabi
floppings [6,7]) are not properly incorporated.

In this work we focus on the description of autoionization
in TDDFT. This process in recent years has attracted a lot of
theoretical and experimental attention [8–11]. Autoionization
occurs due to interaction between a discrete state and the
continuum states leading to the emission of one or more
electrons. One of the simplest systems exhibiting these states is
the helium atom. In the helium atom certain discrete states are
embedded in the continuum; these states are known as doubly
excited states. Due to the electron-electron interaction these
discrete states couple to the continuum, leading to emission
of an electron. Previous studies of this process within TDDFT
have concentrated on the linear-response regime [12]. It is
well known that doubly excited states can only be described
in a TDDFT treatment if the exchange-correlation kernel
is frequency dependent [3]. In this work we calculate the
exact exchange-correlation potential for this process beyond
the linear-response regime from the solution of the TDSE.
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Exact studies such as this have led to the development of
better exchange-correlation potentials in TDDFT for quite
a few correlated process [13,14]. Such studies often reveal
the essential features that any exchange-correlation potential
should possess to be able to describe a correlated process
correctly [13–16].

This paper is structured as follows. In Sec. II we review
the construction of the exact KS potential from the solution of
the TDSE. In Sec. III we investigate the decay dynamics of
autoionizing states by solving the TDSE. In Sec. IV we map the
solution of the TDSE to construct the exact KS Hamiltonian
and the orbital. Furthermore we construct a superposition of the
two states and compute the decay dynamics within TDDFT.
The features observed in the exchange-correlation potential
will shed light on how such a correlated process may be
described within TDDFT. We conclude in Sec. VI. .

Atomic units � = me = |e| = 4πε0 = 1 are used through-
out unless stated otherwise.

II. BASIC THEORY

Consider a system of N interacting electrons governed by
the Hamiltonian

Ĥ (t) = T̂ + V̂ee + V̂ (t), (1)

with, in position-space representation, the kinetic energy
operator

T̂ =
N∑

i=1

−1

2

∂2

∂x2
i

, (2)

the interaction potential

V̂ee = 1

2

N∑
i �=j

vee(|xi − xj |), (3)

and the external potential

V̂ (t) =
N∑

i=1

v(xi,t). (4)

We assume the interaction to be Coulombic. In one-
dimensional models the Coulomb interaction is usually
smoothed by a softening parameter ε > 0,

vee(|xi − xj |) = 1√
(xi − xj )2 + ε

. (5)
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We further concentrate on external potentials consisting of the
interaction with a (static) nucleus of charge Z and a laser field
E(t) in dipole approximation, i.e.,

v(xi,t) = − Z√
x2

i + ε

+ xiE(t). (6)

The field-free part of the Hamiltonian can be defined as

Ĥ0 = Ĥ (t = 0). (7)

The eigenstates and eigenenergies of the laser field-free
system are obtained via the solution of the time-independent
Schrödinger equation

Ĥ0�(x1σ1 · · · xNσN ) = E�(x1σ1 · · · xNσN ). (8)

Here �(x1σ1 · · · xNσN ) is an antisymmetric N -particle eigen-
function of the space and spin variables xi,σi , and E is its
eigenenergy. In order to obtain �(x1σ1 · · · xNσN,t) for t > 0
one may solve the TDSE,

i∂t�(x1σ1 · · · xNσN,t) = Ĥ (t)�(x1σ1 · · · xNσN,t), (9)

for a fixed initial state �0(x1σ1 · · · xNσN ). The norm N (t) of
the wave function is defined as N (t) = 〈�(t)|�(t)〉.

Now we turn our attention to the noninteracting KS system
that, by construction, yields the same single-particle density
n(x,t) as the interacting system. For simplicity, we assume that
we are dealing with spin-neutral systems. The KS Hamiltonian
then reads

ĤKS([n]; t) = −1

2

∂2

∂x2
+ v(x,t) + vHxc([n]; x,t), (10)

where v(x,t) is the external potential (6) and vHxc([n]; x,t) is
the Hxc potential, which is a functional of the single-particle
density n(x,t) (for notational simplicity we do not indicate
the dependence on the initial states). The two potential terms
combined are called the KS potential, i.e.,

vKS([n]; x,t) = v(x,t) + vHxc([n]; x,t). (11)

In what follows we assume that the external laser field
is monochromatic with a period ω1. The time-dependent KS
equation reads

i∂t	p(x,t) = ĤKS([n]; t)	p(x,t), (12)

where 	p(x,t) is the pth KS orbital for the KS particle with
initial state 	p(x,0). The time-dependent one-particle density
n(x,t) then is

n(x,t) =
N∑

p=1

|	p(x,t)|2. (13)

In order to construct the exact xc potential from the solution
of the TDSE we employ a widely used numerically exactly
solvable one-dimensional model helium atom [6,13,17]. In this
model both electrons move along only the laser polarization
direction, and the Coulomb interaction is replaced by a soft-
core potential, as introduced before.

The TDSE Hamiltonian of the model system thus corre-
sponds to the Hamiltonian (1) with N = 2 and Z = 2. The
smoothing parameter was ε = 1, as, e.g., in [6].
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FIG. 1. Schematic illustration of the numerical grid. Also shown
are the demarcated regions which separate the bound-state atom
(white region) from the ionized atom (as labeled).

The initial TDSE state is chosen to be the spin-singlet
ground state of the interacting system

�0(x1σ1,x2σ2) = �0(x1,x2)
1√
2

(|↑1〉|↓2〉 − |↓1〉|↑2〉). (14)

Since the Hamiltonian is spin independent, the system remains
also during the dipole interaction with a laser field in a
spin-singlet configuration, and we can concentrate on only
the symmetric spatial part �0(x1,x2) of the wave function.
The TDSE (9) is solved numerically on a two-dimensional
numerical grid, as shown in Fig. 1, with electron coordinates
x1 and x2 using the Crank-Nicolson propagator to obtain the
time-dependent spatial wave function �(x1,x2,t). The grid is
divided into various regions which demarcate the bound-state
atom from the singly and the doubly ionized atoms. In the white
box, both the electrons are close to the nucleus at the origin and
thus describe the neutral helium atom. In the yellow regions
one of the electron is far from the nucleus, while the second one
is still close to it. Hence probability density in this region de-
scribes He+. In the blue regions both the electrons are far from
the nucleus. Probability density in this region describes He2+.

The ground-state energy of this model helium atom is Eg =
−2.238, and the first excited spin singlet is at Ee = −1.705.
The linear-response spectra shown in Fig. 2 are calculated
according to [18]. The dominant peak is associated with
the transition between the ground state and the first excited
spin singlet at ω = Eg − Ee. Transitions to the doubly excited
states can also be seen above the single-ionization threshold.
Knowing the ground-state energy, the energy of the doubly
excited states can be determined.

Once we have obtained �(x1,x2,t) by solving the TDSE (9),
we can construct the exact KS orbital and the potential follow-
ing Refs. [13,19]. In the two-electron spin-singlet case the KS
wave function consists of only one spatial orbital 	(x,t), i.e.,

	(x1σ1,x2σ2,t) = 	(x1,t)	(x2,t)
1√
2

(|↑1〉|↓2〉

− |↓1〉|↑2〉).
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FIG. 2. Linear-response spectrum of the model helium atom
obtained from the TDSE. The vertical arrow indicates the single-
ionization threshold.

The KS orbital can be written as

	(x,t) =
√

n(x,t)/2 eiS(x,t), (15)

where n(x,t) is the exact particle density and S(x,t) is the
exact phase of the KS orbital. The expression for the phase in
terms of density is given by the continuity equation as [19,20]

−∂x[n(x,t)∂xS(x,t)] = ∂tn(x,t). (16)

Equation (12) can be inverted to write the KS potential in
terms of the KS orbital as [19]

vKS(x,t) = i∂t	(x,t) + 1
2∂2

x	(x,t)

	(x,t)

= 1

2

∂2
x

√
n(x,t)√

n(x,t)
− ∂tS(x,t) − 1

2
[∂xS(x,t)]2. (17)

The imaginary part of the potential is zero due to the
continuity equation (16). The density n(x,t) and the phase
S(x,t) are computed from �(x1,x2,t) [13], and with the
above construction we obtain the exact KS potential. Such
a straightforward construction is possible only if we have a
single spatial orbital. In the general case of several KS orbitals
one would need to employ a computationally more demanding
fixed-point method, as demonstrated in Refs. [21,22].

Numerical considerations

It is necessary to choose the grid parameters appropriately
to ensure we obtain converged results. To obtain a good spatial
resolution we choose the grid spacing in both dimensions to
be 0.1, and the time step is chosen to be 0.025 to ensure
convergence using the Crank-Nicolson propagator. The time
step has to be smaller than the chosen spatial resolution to
guarantee convergence, as has been documented in Ref. [23].
As a test we perform imaginary-time propagation [24] with
the above parameters to obtain the ground state of our model
helium atom for a numerical grid of 400 grid points in both
the dimensions and then do a real-time propagation with zero
field intensity and compare the ground-state population at the
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FIG. 3. The lowest autoionizing-state wave function AI1 (real
part), corresponding to Ec = −0.884. The extended outgoing wave is
a feature of such doubly excited states.

end of the real-time propagation with the initial ground-state
population after a simulation time of 10 000 real time steps.
We find that for the above parameters we obtain a difference
between the initial ground-state population and the ground-
state population at the end of the real-time propagation that is
of the O(10−9), which ensures the stability of the propagation.
Since we study the decay of autoionizing states by solving the
exact TDSE, such a convergence test is essential to validate
the results presented in this paper.

III. DYNAMICAL WAVE-PACKET EVOLUTION
FROM THE TDSE SOLUTION

To study the autoionization dynamics, we select three
autoionizing states. The first one is the lowest-lying spin-
singlet state EAI1 = −0.884 just above the single-ionization
threshold. The second state is the second lowest-lying spin-
singlet state EAI2 = −0.816. The third state is a higher-lying
spin-singlet autoionizing state with EAI3 = −0.538 which may
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FIG. 4. The lowest autoionizing-state wave function AI2 (real
part), corresponding to Ec = −0.816. The extended outgoing wave is
a feature of such doubly excited states.
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FIG. 5. The autoionizing-state wave function AI3 (real part)
above the second ionization threshold, corresponding to Ec =
−0.538.

decay to a state with an ion in the ground state plus a “fast”
electron or to a state with the ion in an excited state plus a
“slower” electron. We compute these autoionizing states via
the spectral method [25]. The two lowest-lying autoionizing
states are shown in Figs. 3 and 4. One of the degenerate states
of the higher-lying autoionizing state is shown in Fig. 5.

To study the decay dynamics we start with the ground state
and resonantly couple it to the autoionizing state AI1. The
laser pulse is a trapezoidal laser pulse with two-cycle ramp
up and down and 96 cycles with a constant period. After the
laser pulse is switched off, the wave function at the end of
the laser pulse is propagated further with only the field-free
part of the Hamiltonian (see Sec. II). In Fig. 6 we plot the
wave packets in a single-ionization channel at different time
instances and observe that the center of the wave packet moves
with momentum kAI1 of the emitted electron. The kinetic

energy of the emitted electron
k2

AI1
2 is dictated by the energy

conservation,

EAI1 = EHe+
g

+ k2
AI1

2
. (18)

In the above equation the bound ionic state can only be the
ground state, as marked. The first wave packet seen is produced
via both autoionization and photoionization, while the trailing
wave packet is produced exclusively by autoionization. The
remaining bound electron is seen to be in the nodeless ground
ionic state.

To study the decay dynamics of the highest-lying autoion-
izing state considered AI3, we again start from the ground state
and couple it to the autoionizing state AI3. The laser pulse is
a trapezoidal laser pulse with two-cycle ramp up and down
and 96 cycles with a constant period. After the laser pulse
is switched off, the wave function is propagated further with
only the field-free part of the Hamiltonian as done previously
for the autoionizing state AI1. We see that after the decay
the remaining bound electron may be either in the nodeless
ground ionic state or the nodal first excited ionic state, as seen
in Fig. 7. This follows from the following energy conservation

100

−5

−5

−5

−5

−5

x (a.u.)
y 

(a
.u

.)
y 

(a
.u

.)
y 

(a
.u

.)
y 

(a
.u

.)
y 

(a
.u

.)

5

5

5

5

5

600500400300200

t=15

t=45

t=90

t=930

Absorbing
boundary

t=135

FIG. 6. Logarithmic plot of the probability densities in the single-
ionization channel at different time instants (in a.u.) after the laser has
been switched off. Vertical red lines indicate the classically expected
position of its wave packet with momentum kAI1 . Also indicated is
the position of the absorbing boundary.
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FIG. 8. The exact KS potential (red) and the corresponding orbital (black), computed from the initial autoionizing state AI1. The exact KS
potential and orbital are shown at different time instances, as labeled. See the Supplemental Material for a movie [26].

equation:

EAI3 = EHe+
g/ex

+ k2
AI3

2
. (19)

The above equation implies that the bound ionic state can now
be either the ground or the excited state of the ion, which gives
two possible kAI3 of the emitted electron.

The center of the wave packets moves with these expected
possible kAI3 . For longer times only the probability density
representing the slow photoelectron and the remaining bound
electron in the excited state remains.

Numerical considerations

In order to determine the appropriate box size to obtain
the initial autoionizing states we first accurately determine
the “target energy” of the state from the linear-response
spectrum computed by kicking the ground state (Fig. 2). The
target energy for the first autoionizing state is the sum of
Eg = −2.238 and the excitation frequency of EAI1 = 1.356
(read from the linear-response spectrum). Once we know the
target energy of the state, the spectral method is invoked with a
grid size of 2000 grid points in each direction and a grid spacing

of 0.3. The spectral method converges to the “target energy”
value for up to five decimal places for such a sufficiently large
grid. If the grid size is smaller than we chose, the value of
the energy becomes less accurate as we lose parts of the wave
function near the boundary. If we make the grid bigger, the
energy of the wave function changes only after the fifth decimal
place. This gives a criterion for choosing the appropriate box
size for the initial simulation to obtain the autoionizing states

To study the decay of these states we regrid the wave
function on a grid with a grid size of 4000–5000 grid points
in each direction with the same grid spacing as before. This
allows for sufficient simulation time to obtain the decay
dynamics before the probability density reaches the grid
boundaries.

IV. MAPPING THE SOLUTION TO THE KS SYSTEM

Having studied the process by solving the TDSE, we now
investigate the TDDFT perspective. With just one spatial
orbital it is interesting to see how such a correlated process
of autoionization can be reproduced in TDDFT because the
orbital, via entering the exchange-correlation potential, has
to govern its own decay. We start with the autoionizing state
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FIG. 9. The exact KS potential (red) and the corresponding orbital (black), computed for resonant laser coupling of the ground and the
autoionizing state AI1. The exact KS potential and orbital are shown at different time instances, as labeled. See the Supplemental Material for
a movie [26].

AI1, computed via the spectral method, and determine the
exact KS potential and orbital via the previously defined
technique described in Sec. II. In order to account for temporal
and spatial loss of the density reaching the boundaries, we
modify the exact KS density by including the lost parts of
the probability density in the TDSE simulation because of
the absorbing boundaries. Otherwise, the reconstructed exact
exchange-correlation potential would be incorrect. The loss
terms can be computed from the grid geometry as shown
earlier in Fig. 1. The total temporal loss is 1 − N (t), with
N (t) being the TDSE norm defined in Sec. II. The absorbed
probability density describes the He+ ground state as this is
the only state found in the single-ionization channels in the
TDSE simulations, as shown in Fig. 6. The exact KS density
is then given by

ncorr(x,t) = n(x,t) + [1 − N (t)]nHe+ . (20)

The exact KS potential is then computed with this density.
The potential displays features which explain how the density
decays. The essential feature is the barrier which the potential
develops and through which the corresponding orbital decays
via tunneling. Outside the barrier the orbital is a plane wave
with wave vector kAI1 , determined via the energy conservation
equation (18). The height and the width of the barrier govern

the decay rate, while the binding well in the center adjusts
for the correct kAI1 . The exact potential and the orbital for the
autoionizing state AI1 at different time instances are shown in
Fig. 8. Due to our density corrector step we are able to see
the orbital asymptotically approaching the He+ ground-state
shape.

The dynamics of autoionization can also be studied via
resonant laser coupling of the ground and autoionizing states.
From the solution of the TDSE we compute the exact KS
potential and orbital while the laser pulse is on. In Fig. 9 we
see that the KS potential is simply the ground-state potential of
the helium atom. With population transfer to the autoionizing
state, the KS potential starts developing barriers. The height
and width of the barrier are dynamically adjusted so that the
KS orbital exhibits the correct decay dynamics. This allows
the orbital to tunnel out with a proper decay rate.

Superposition of autoionizing states

For a superposition of two autoionizing states the KS
potential has to control the emission of the photoelectron
with two possible different wave vectors. In order to see
how this is achieved by just a single spatial KS orbital in
its corresponding exchange-correlation potential, we consider
the lowest autoionizing state AI1 and the second lowest
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−0.816+0.884 | = 0.88.

autoionizing state AI2. An equal superposition of the two
states is created, and the superposed state is propagated
with the field-free part of the Hamiltonian (see Sec. II) as
before [27]. The outgoing density of the orbital oscillates with
the momentum kAI2 − kAI1 in space and oscillates with the
energy EAI2 − EAI1 in time. The density, plotted on a log scale
as a function of space and time in Fig. 10, exhibits oblique
lines whose slope is the ratio of the momentum difference
to the energy difference. The exact KS potential for such a
superposition of autoionizing states is shown in Fig. 11. The
potential also oscillates with the respective frequencies.

The above results can be explained if we model the outgoing
KS orbital as two decaying plane waves superimposed on each
other. This assumption is justified as the second electron is

FIG. 11. Surface plot of the exact KS potential for an equal
superposition of states AI2 and AI1. The potential oscillates in time
with EAI2 − EAI1 and in space with kAI2 − kAI1 . Since the oscillation
in space is slow, only the oblique lines of Fig. 10 are visible in the
space-time plane.

in the same bound state for both superimposed autoionizing
states. The outgoing density n(x,t) in one of the single-
ionization channels can then be written as

n(x,t) =
∣∣∣∣ exp

[
i(kAI1x + EAI1 t) − 
AI1

2
t

]

+ exp

[
i(kAI2x + EAI2 t) − 
AI2

2
t

]∣∣∣∣
2

= exp(−
AI1 t) + exp(−
AI2 t)

+ 2 exp

(
−
AI1 + 
AI2

2
t

)

× cos[(kAI2 − kAI1 )x + (EAI2 − EAI1 )t]. (21)

Here 
AI1 ,
AI2 are the decay widths of the autoionizing states
AI1 and AI2, respectively. From such an expression it is clear
that the density plotted on the log scale would have oblique
lines with the slope given by

kAI2 −kAI1
EAI2 −EAI1

.
Hence for a superposition of two autoionizing states we

obtain an oscillating barrier where the temporal oscillations
result from the energy difference of the superposed state and
the spatial oscillations result from the momentum difference
of the emitted electron.

V. CONSTRUCTING APPROXIMATE
EXCHANGE-CORRELATION POTENTIALS

As demonstrated above, describing autoionization correctly
requires exchange-correlation potentials which develop barri-
ers to regulate autoionization. The barrier parameters depend
on the momentum of the emitted electron, which in turn
depends on the energy of the autoionizing state. Modeling
this process within the realm of DFT would require creating
potentials which mimic such barriers; the barrier parameters
such as height and width can be determined by requiring the
energy of the computed state to match the experimental results.
However, a TDDFT study with the laser excitation is unlikely
to succeed with such a modeling approach and would require
development of memory-dependent exchange-correlation po-
tentials, which would be computationally demanding and
hence not practicable [28].

VI. CONCLUSIONS

We did a reconstruction of the exact exchange-correlation
potentials for the highly correlated case of autoionization for
TDDFT. We found that accurately describing this process
requires construction of exchange-correlation potentials which
have barriers to regulate the autoionization process. The barrier
parameters, such as height and width, depend on the energy
of the state. This implies that any approximate exchange-
correlation potential would need to accurately reproduce very
system-specific features so as to have the correct barrier
parameters which ensure the correct decay rate of a particular
state. This prohibits in practice the construction of universal
approximations to exchange-correlation potentials for the
process of autoionization. A more promising route seems to
switch to a more differential basic variable instead of a single
electron density, for instance, time-dependent reduced density
matrix theory [29].
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