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Core correlation effects in multiconfiguration calculations of isotope shifts in Mg I
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The present work reports results from systematic multiconfiguration Dirac-Hartree-Fock calculations of isotope
shifts for several well-known transitions in neutral magnesium. Relativistic normal and specific mass shift factors
as well as the electronic probability density at the origin are calculated. Combining these electronic quantities
with available nuclear data, energy and transition level shifts are determined for the 26Mg -24Mg pair of isotopes.
Different models for electron correlation are adopted. It is shown that, although valence and core-valence models
provide accurate values for the isotope shifts, the inclusion of core-core excitations in the computational strategy
significantly improves the accuracy of the transition energies and normal mass shift factors.
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I. INTRODUCTION

When the effects of the finite mass and the extended spatial
charge distribution of the nucleus are taken into account in a
Hamiltonian describing an atomic system, the isotopes of an
element have different electronic energy levels [1]. The isotope
shift (IS) of spectral lines, which consists of the mass shift
(MS) and the field shift (FS), plays a key role for extracting
the changes in the mean-square charge radius of the atomic
nucleus [2–4]. For a given atomic transition k with frequency
νk , it is assumed that the electronic response of the atom to
variations of the nuclear mass and charge distribution can be
described by only two factors: the mass shift factor, �Kk,MS,
and the field shift factor, Fk , respectively. The observed IS,
δν

A,A′
k , between any pair of isotopes with mass numbers A

and A′ is related to the difference in nuclear masses and in
mean-square charge radii, δ〈r2〉A,A′

[1,2].
We perform ab initio calculations of IS electronic factors

using the multiconfiguration Dirac-Hartree-Fock (MCDHF)
method. This method is implemented in the RIS3 (relativistic
isotope shift) module [1], designed for the revised version of
the GRASP2K program package [5]. The adopted computational
scheme is based on the estimation of the expectation values of
the one- and two-body recoil Hamiltonian for a given isotope,
including relativistic corrections derived by Shabaev [6,7],
combined with the calculation of the total electron densities
at the origin. Different correlation models are explored in a
systematic way to determine a reliable computational strategy.
This strategy is applied on neutral magnesium (Mg I), which
is one of the simplest and best-studied two-valence-electron
atoms. As such, it is often used as a test ground for different
methods of atomic calculations. In this paper we show that
we can accurately calculate the isotope shift of some well-
known transitions in Mg I, where experimental [8–12] and
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theoretical values [13–15] are available for the 26Mg -24Mg
pair of isotopes.

In Sec. II, the principles of the MCDHF method are
summarized. In Sec. III, the relativistic expressions of the MS
and FS factors are recalled. Section IV enumerates the studied
transitions in Mg I and presents the active space expansion
strategy adopted for the electron correlation model. In Sec. V,
numerical results of the MS and FS factors are reported for
each of the studied transitions, as well as transition energy
shifts for the 26Mg -24Mg pair of isotopes. Section VI reports
concluding remarks.

II. NUMERICAL METHOD

The MCDHF method [16], as implemented in the GRASP2K

program package [5,17], is the fully relativistic counterpart of
the nonrelativistic multiconfiguration Hartree-Fock (MCHF)
method [18]. The MCDHF method is employed to obtain wave
functions that are referred to as atomic state functions (ASFs),
i.e., approximate eigenfunctions of the Dirac-Coulomb Hamil-
tonian given by

HDC =
N∑

i=1

[cαi · pi + (βi − 1)c2 + V (ri)] +
N∑

i<j

1

rij

, (1)

where V (ri) is the monopole part of the electron-nucleus
interaction, c is the speed of light, and α and β are the 4×4
Dirac matrices. An ASF is given as an expansion over jj -
coupled configuration state functions (CSFs), �(γν�JMJ ),
with the same parity �, total angular momentum J , and
Jz-projection MJ quantum numbers:

|	(γ �JMJ )〉 =
NCSFs∑
ν=1

cν |�(γν �JMJ )〉. (2)

In the MCDHF method the radial functions, used to
construct the CSFs, and the expansion coefficients cν are
determined variationally so as to leave the energy functional

E =
NCSFs∑
μ,ν

cμcν〈�(γμ �JMJ )|HDC|�(γν �JMJ )〉 (3)
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stationary with respect to their variations. The resulting
coupled radial equations are solved iteratively in the self-
consistent field (SCF) procedure. Once radial functions have
been determined, a configuration interaction (CI) calculation
is performed over the set of configuration states, providing the
expansion coefficients for building the potentials of the next
iteration. The SCF and CI coupled processes are repeated until
convergence of the total wave function (2) is reached.

III. ISOTOPE SHIFT THEORY

The main ideas of the IS theory are outlined here. More
details can be found in the works by Shabaev [6,7] and Palmer
[19], who pioneered the theory of the relativistic mass shift
used in the present work. Gaidamauskas et al. [20] derived the
tensorial form of the relativistic recoil operator, implemented
in RIS3 [1].

A. Mass shift

The finite mass of the nucleus gives rise to a recoil effect,
called the mass shift (MS). The nuclear recoil corrections
within the (αZ)4m2/M approximation [6,7] are obtained by
evaluating the expectation values of the one- and two-body
recoil Hamiltonian for a given isotope,

HMS = 1

2M

N∑
i,j

(
pi · pj − αZ

ri

(
αi + (αi · r i)r i

r2
i

)
· pj

)
,

(4)

where M stands for the mass of the nucleus. Separating the
one-body (i = j ) and two-body (i �= j ) terms that, respec-
tively, constitute the normal mass shift (NMS) and specific
mass shift (SMS) contributions, the Hamiltonian (4) can be
written

HMS = HNMS + HSMS. (5)

The NMS and SMS mass-independent K factors are defined
by the following expressions:

KNMS ≡ M〈	|HNMS|	〉, (6)

and

KSMS ≡ M〈	|HSMS|	〉. (7)

For a transition IS, one needs to consider the variation of the
mass shift factor from one level to another. The corresponding
line frequency isotope MS between two isotopes, A and A′, is
written as the sum of the NMS and SMS contributions,

δν
A,A′
k,MS ≡ νA

k,MS − νA′
k,MS = δν

A,A′
k,NMS + δν

A,A′
k,SMS, (8)

with

δν
A,A′
k,MS =

(
1

M
− 1

M ′

)
�Kk,MS

h
=

(
1

M
− 1

M ′

)
�K̃k,MS.

(9)

Here �Kk,MS = (Ku
MS − Kl

MS) is the difference of the KMS =
KNMS + KSMS factors of the upper (u) and lower (l) lev-
els involved in the transition k. For the �K̃ factors the
unit GHz u is often used in the literature. As far as the

conversion factors are concerned, we use �Kk,MS [meEh] =
3609.4824 �K̃k,MS [GHz u].

B. Field shift

Neglecting terms of higher order than δ〈r2〉 in the Seltzer
moment [21]

λA,A′ = δ〈r2〉A,A′ + b1δ〈r4〉A,A′ + b2δ〈r6〉A,A′ + · · · , (10)

the line frequency shift in the transition k arising from
the difference in nuclear charge distributions between two
isotopes, A and A′, can be written as [22–24]

δν
A,A′
k,FS ≡ νA

k,FS − νA′
k,FS = Fk δ〈r2〉A,A′

. (11)

In the expression above, δ〈r2〉A,A′ ≡ 〈r2〉A − 〈r2〉A′
, and Fk is

the line electronic factor given by

Fk = 2π

3h
Z

(
e2

4πε0

)
�|	(0)|2k, (12)

which is proportional to the change of the total electronic
probability density at the origin between level l and level u,

�|	(0)|2k = �ρe
k (0) = ρe

u(0) − ρe
l (0). (13)

C. Total isotope shift

The total line frequency shift is obtained by merely adding
the MS, (8), and FS, (11), contributions:

δν
A,A′
k =

δν
A,A′
k,MS︷ ︸︸ ︷

δν
A,A′
k,NMS + δν

A,A′
k,SMS +δν

A,A′
k,FS

=
(

1

M
− 1

M ′

)
�K̃k,MS + Fk δ〈r2〉A,A′

. (14)

IV. ACTIVE SPACE EXPANSION

The transitions in Mg I considered in the present
work are the following (see Fig. 1): 3s2 1S0 → 3s3p 3

P
o
1

(457.2 nm), 3s2 1S0 → 3s3p 1
P

o
1 (285.3 nm), 3s3p 3

P
o
1 →

J = 0 J = 1 J = 2
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3p2 3P0
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1
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FIG. 1. Schematic diagram of the Mg I transitions.
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3s4s 3S1 (517.4 nm), 3s3p 3
P

o
1 → 3p2 3

P0 (278.2 nm),
3s3p 3

P
o
1 → 3s3d 3

D1 (383.3 nm), 3s3p 3
P

o
1 → 3s4d 3

D1

(309.4 nm), and 3s3p 1
P

o
1 → 3s4d 1

D2 (553.0 nm).
To effectively capture electron correlation, CSFs of a

particular symmetry (J ) and parity (�) are generated through
excitations within an active set of orbitals occupied in the
reference configurations and unoccupied virtual orbitals. From
hardware and software limitations, it is impossible to use com-
plete active space (CAS) wave functions that would include all
CSFs with the appropriate J and � for a given orbital active
set. Hence the CSF expansions have to be constrained so that
major correlation excitations are taken into account [4].

Single (S) and double (D) substitutions are performed
on a multireference (MR) set, which contains the CSFs
that have large expansion coefficients and account for the
major correlation effects. These SD-MR substitutions take
into account valence-valence (VV), core-valence (CV), as well
as core-core (CC) correlations. The VV correlation model
only allows SD substitutions from valence orbitals, while
the VV+CV correlation model considers SrD (single and
restricted double) substitutions from core and valence orbitals,
limiting the excitations to a maximum of one hole in the core.
By contrast, the VV+CV+CC correlation model allows all
SD substitutions from core and valence orbitals.

Within this approach, a common orbital basis set is
chosen for the lower and upper states of each transition. The
reference states are obtained using a valence-CAS procedure:
SD substitutions are performed within the n = 3,4 valence
orbitals, also including the 5s or both 5s and 6s orbitals in
the active space for some transitions (see Table I). The 5s and
6s orbitals are added to account for states belonging to lower
configurations with the same J and � in the optimization of
the energy functional.

An SCF procedure is then applied to the resulting CSFs,
providing the orbital set and the expansion coefficients. Due

to limited computer resources, such a valence-CAS multiref-
erence set would be too large for subsequent calculations
when the active orbital set increases. Hence, for reducing the
size of the MR set, only the CSFs whose squared expansion
coefficients are larger than a given MR cutoff are kept, i.e.,
c2
ν > εMR. For each transition, the εMR values and the resulting

MR sets are listed in Table I, for the lower and upper states.
The 1s orbital is kept closed in all subsequent calculations;

i.e., no substitution from this orbital is allowed. Tests show that
opening the 1s orbital does not affect the MS and FS factors
to any notable extent. Only orbitals occupied in the single-
configuration Dirac-Hartree-Fock (DHF) approximation are
treated as spectroscopic, and the occupied reference orbitals
are frozen in all subsequent calculations. The J levels belong-
ing to a given term are optimized simultaneously with standard
weights through the extended optimal level (EOL) scheme [25]
and the set of virtual orbitals is increased layer by layer.

For a given transition, the optimization procedure is
summarized as follows:

(1) Perform simultaneous calculations for the lower and
upper states of the transition, using an MR set consisting
of CSFs with the form 2s22p6nln′l′2S+1LJ with n,n′ = 3,4
(+5s or 5s,6s) and l,l′ = s,p,d,f . Optimize all orbitals
simultaneously. These CSFs account for a fair amount of the
VV correlation.

(2) Keep the orbitals fixed from step 1, and optimize an
orbital basis layer by layer up to n = 8h for both states of the
transition, described by CSFs with respective J� symmetries.
These CSFs are obtained by SD-MR substitutions with the
restriction that there is at most one excitation from the 2s22p6

core.
(3) Perform a CI calculation on the CSFs expansion with

the J� symmetry of both states, describing VV, CV, and CC
correlation obtained by SD-MR substitutions to the orbital
basis from step 2.

TABLE I. Reference configurations for the lower and upper states of the studied transitions in Mg I. The MR cutoff values, εMR, determine
the set of CSFs in the MR space. NCSFs represents the number of CSFs describing each MR space.

Transition εMR J � Reference configurations NCSFs

3s2 1S0 → 3s3p 3
P

o
1 0.01 0+ [Ne]{3s2,3s4s,3p2,3p4p,3d2,4s2,4p2} 11

1− [Ne]{3s3p,3s4p,3p3d,3p4s,3d4p,4s4p} 14

3s2 1S0 → 3s3p 1
P

o
1 0.01 0+ [Ne]{3s2,3s4s,3p2,3p4p,3d2,3d4d,4s2,4p2} 12

1− [Ne]{3s3p,3s4p,3p3d,3p4s,3p4d,3d4p,3d4f,4s4p} 18

3s3p 3
P

o
1 → 3s4s 3S1 0.005 1− [Ne]{3s3p,3s4p,3p3d,3d4p,3d4f,4s4p,3p5s,4p5s} 18

1+ [Ne]{3s4s,3p4p,3d4d,3s5s,4s5s} 10

3s3p 3
P

o
1 → 3p2 3

P0 0.01 1− [Ne]{3s3p,3s4p,3p3d,3d4p,4s4p} 10

0+ [Ne]{3s2,3s4s,3s5s,3s6s,3p2,3p4p,3d2,4s2,4s5s,4s6s,4p2,4f 2,5s6s,5s2,6s2} 19

3s3p 3
P

o
1 → 3s3d 3D1 0.01 1− [Ne]{3s3p,3p3d,3p4s,3p4d,3d4p,4s4p,4p4d} 15

1+ [Ne]{3s3d,3p4p,3p4f,3d4s,4s4d,4p4f } 9

3s3p 3
P

o
1 → 3s4d 3D1 0.01 1− [Ne]{3s3p,3p3d,3p4d,3d4p,3d4f,4s4p,4p4d,3p5s,3p6s,4p6s} 19

1+ [Ne]{3s3d,3s4s,3s4d,3s5s,3p4p,3p4f,3d4s,3d4d,3p2,3d2,4s4d,4s5s,4p4f,4p2, 23

4f 2,3s6s,3d6s,4s6s,4d6s,5s6s}
3s3p 1

P
o
1 → 3s4d 1D2 0.025 1− [Ne]{3s3p,3s4p,3p3d,3p4s,3p4d,3d4p} 12

2+ [Ne]{3s3d,3s4d,3p2,3p4p,3p4f } 11
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(4) Keep the orbitals up to 8h fixed from step 2 and
optimize one additional layer of orbitals using CC substitutions
from the Mg2+ 2s22p6 (Z = 12) core. The orbitals of this
additional layer target CC correlation and are therefore
contracted.

(5) Perform a CI calculation on the CSFs expansion with
the J� symmetry of both states of the transition, describing
VV, CV, and CC correlation obtained by SD-MR substitutions
to the orbital basis from step 4 (n = 8h+ the additional layer).

Following the procedure in steps 1 and 2 or steps 1–5,
respectively, yields results labeled “CV” or “CC” in Tables III
and IV.

The CC effects are more balanced with a common orbital
basis for describing both upper and lower states, resulting in
more accurate transition energies, as mentioned in Ref. [13].

The CSF expansions become significantly large when CC
correlations are taken into account, counting up to 2 × 106

CSFs. Hence, applying an SCF procedure to such an amount
of CSFs takes too much computing time. This justifies the use
of the CI method at that stage.

The effect of adding the Breit interaction to the Dirac-
Coulomb Hamiltonian, (1), is found to be much smaller than
the uncertainty in the transition IS factors with respect to
the correlation model. This interaction has therefore been
neglected in the procedure.

V. NUMERICAL RESULTS

In this section, MS and FS electronic factors, �K̃k,MS and
Fk , as well as total IS, δν

26,24
k , given by

δν
26,24
k =

(
1

M26
− 1

M24

)
�K̃k,MS + Fk δ〈r2〉26,24 (15)

of the 26Mg -24Mg pair of isotopes are calculated for the studied
transitions in Mg I.

Nuclear masses (M) are calculated by subtracting the mass
of the electrons from the atomic mass (Matom), and by adding
the binding energy (Bel), using the formula

M(A,Z) = Matom(A,Z) − Zme + Bel(Z), (16)

where the total electronic binding energy (in eV) is estimated
using [26,27]

Bel(Z) = 14.4381Z2.39 + 1.55468 × 10−6Z5.35. (17)

Atomic masses are provided in Ref. [28]. The resulting values
of the nuclear masses are respectively

M26 = 25.97601589 u (18)

and

M24 = 23.97846462 u. (19)

The NMS factor, �K̃k,NMS, can be approximated through
the scaling law

�K̃k,NMS ≈ −meν
expt
k , (20)

where me is the mass of the electron and ν
expt
k is the

experimental transition energy of transition k, available in the
NIST database [29]. The transition NMS is then deduced from
Eq. (20) using expressions (8) and (9), i.e.,

δν
26,24
k,NMS ≈

(
me

M24
− me

M26

)
ν

expt
k . (21)

The reliability of the FS values obtained with the ab initio
electronic Fk factor, (12), is a function of the accuracy of the
calculations, but also of the level of confidence on the nuclear
data δ〈r2〉A,A′

. Values compiled by Angeli and Marinova [30]
provide the mean-square charge radii difference between 26Mg
and 24Mg:

δ〈r2〉26,24 ≡ 〈r2〉26 − 〈r2〉24 = −0.1419 fm2. (22)

Let us first study the convergence of the level MS factors,
KNMS and KSMS (in meEh), and the electronic probability
density at the origin, ρe(0) (in a−3

0 ), of a given transition as
a function of the increasing active space. Table II displays
the values for the 3s2 1S0 → 3s3p 1

P
o
1 transition, with an MR

cutoff εMR equal to 0.01. Within each correlation model, the
active space is extended until convergence of the differential
results �u

l is obtained.
For KNMS, adding the n = 5 layer of orbitals optimized on

VV and CV correlations (denoted as “CV 5g” in Table II)
slightly shifts the value for the lower level, 3s2 1S0, while

TABLE II. Level MS factors, KNMS and KSMS (in meEh), and the electronic probability density at the origin, ρe(0) (in a−3
0 ), as functions of

the increasing active space for the 3s2 1S0 → 3s3p 1
P

o
1 transition in Mg I. �u

l stands for the difference between the values of the upper level
and the lower level. Results are obtained with an MR cutoff εMR = 0.01.

KNMS (meEh) KSMS (meEh) ρe(0) (a−3
0 )

Active space Notation Lower Upper �u
l Lower Upper �u

l Lower Upper �u
l

VV model
4s4p4d4f VV 4f 199.6791 199.4764 −0.2027 −27.5167 −27.4115 0.1052 1157.2594 1156.4404 −0.8190

VV+CV model
5s5p5d5f 5g CV 5g 199.6023 199.4798 −0.1225 −27.3690 −27.3370 0.0320 1157.5654 1156.5885 −0.9769
6s6p6d6f 6g6h CV 6h 199.6306 199.4951 −0.1355 −27.3645 −27.3266 0.0379 1157.6171 1156.6106 −1.0065
7s7p7d7f 7g7h CV 7h 199.6337 199.4974 −0.1363 −27.3600 −27.3288 0.0312 1157.6394 1156.6151 −1.0243
8s8p8d8f 8g8h CV 8h 199.6338 199.4974 −0.1364 −27.3518 −27.3239 0.0279 1157.6481 1156.6246 −1.0235

VV+CV+CC model
8s8p8d8f 8g8h CC 8h 199.9113 199.7546 −0.1567 −24.3327 −24.2797 0.0530 1157.6349 1156.6514 −0.9835
9s9p9d9f 9g9h CC 9h 199.9401 199.7829 −0.1572 −24.3200 −24.2668 0.0532 1157.6521 1156.6665 −0.9856
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the value for the upper level, 3s3p 1
P

o
1 , remains nearly

constant. However, this small variation leads to a significant
modification (40%) of the differential value, �KNMS. The
convergence of the results is achieved by adding the successive
layers within the VV+CV model, when the active space
includes the n = 8 correlation layer (denoted as “CV 8h”).
Adding CC correlations through the CI computation described
in step 3 of Sec. IV (denoted as “CC 8h”) shifts both
level values and hence does not drastically modify �KNMS

(15%). The convergence is obtained for �KNMS within the
VV+CV+CC model, with the procedure of steps 4 and 5
(denoted as “CC 9h”).

The situation is different for KSMS. Adding the n = 5
layer in the active space (CV 5g) modifies both level and
differential values. The convergence for �KSMS within the
VV+CV model is slower than for �KNMS. It is only obtained
when the n = 9 correlation layer is included, where �KSMS =
0.0275 meEh. It is indeed well known that the SMS factor
is more sensitive to correlation effects than the NMS factor,
as expected from the two-body nature of the SMS operator.
However, the inclusion of this last VV+CV correlation layer
does not affect the results when CC correlations are added and
hence is not considered in this work. The procedure of step 3
(CC 8h) leads to a drastic change in the level values, and also in
the �KSMS value (90%). Within the VV+CV+CC model, the
procedure of steps 4 and 5 (CC 9h) leads to the convergence of
�KSMS.

The convergence is smoother for ρe(0) compared with
KSMS, as expected from the one-body nature of the density
operator, like the NMS operator. The �ρe(0) value converges
within the VV+CV model (CV 8h). Adding CC correlations
in step 3 (CC 8h) does not significantly affect both level
and differential values. Within the VV+CV+CC model, the
procedure of steps 4 and 5 (CC 9h) leads to the convergence
of �ρe(0).

A look at both the MS and FS factors displayed in Table II
shows that small variations in the level values due to correlation
effects can lead to a significant variation in the differential
values, �u

l . This illustrates how sensitive these electronic
factors are, and hence how challenging it is to obtain reliable
values with such a computational approach. This observation
is general for all other transitions studied in this work.

Let us now study the impact of the MR cutoff εMR value,
i.e., the size of the MR set, on the accuracy of the transition
energy, �E (in cm−1), as well as of the MS factors, �K̃NMS and
�K̃SMS (in GHz u), and the FS factor, F (in MHz/fm2). Fig. 2
displays the convergence plots for the 3s2 1S0 → 3s3p 1

P
o
1

transition, as a function of the increasing active space. Two
εMR values are considered: 0.05 (dashed lines) and 0.01
(solid lines). For εMR = 0.01, the MR set of both upper
and lower states of this transition is given in Table I, and
the MS and FS results (given in other units) are displayed
in Table II. For εMR = 0.05, the reference configurations
are [Ne]{3s2,3p2,3p4p} for the lower state (five CSFs) and
[Ne]{3s3p,3s4p,3p3d,3p4s,3d4p} for the upper state (nine
CSFs). The size of these MR sets is thus much smaller. The
results of �E are compared with the NIST Atomic Spectra
Database values [29], while those of �K̃NMS and �K̃SMS are
respectively compared with the scaling law (20) and with
benchmark values from Berengut et al. [15], in excellent

agreement with observation (see Table IV). These reference
values are represented by straight lines in Fig. 2.

Within the VV model (VV 4f ), the values using εMR =
0.05 and 0.01 are the same for each property. Indeed, the
computation is performed on the full set of CSFs, before
selecting two εMR values leading to different MR sets. Within
the VV+CV model (from CV 5g to CV 8h), the behavior of
both lines is nearly the same.

Significant differences occur when CC correlations are
added (CC 8h and CC 9h). The CC 9h value of �E is
35 179 cm−1 with εMR = 0.05 and 35 063 cm−1 with εMR =
0.01, which is closer to the NIST value of 35 051 cm−1.
The same observation holds for �K̃NMS. The CC 9h value
is −661 GHz u with εMR = 0.05 and −566 GHz u with εMR =
0.01, the latter being closer to the scaling law result of
−576 GHz u. Equation (20), although only strictly valid in the
nonrelativistic framework, is used as a reference value since
the relativistic effects are expected to be small for Z = 12. The
relativistic corrections to �K̃NMS can be deduced with RIS3 by
computing the expectation values of the nonrelativistic part
of the recoil Hamiltonian (4), which provides −576 GHz u,
reproducing the scaling law result. The relativistic corrections
are thus rather small (2%).

The situation is different for �K̃SMS. The CC 9h value
with εMR = 0.01 (192 GHz u) is slightly higher than the one
with εMR = 0.05 (178 GHz u). To discriminate between the
two results, they are compared with the values from Berengut
et al. [15]. In Ref. [15], �K̃NMS is evaluated with the scaling
law (20), and �K̃SMS is obtained by the finite-field scaling
method. In this technique, the rescaled nonrelativistic SMS
operator is added to the relativistic many-particle Hamiltonian

Hλ = H0 + λHSMS = H0 + λ
∑
i<j

pi · pj . (23)

The eigenvalue problem for Hamiltonian (23) is solved for
various λ using a combination of the CI method and many-
body perturbation theory (MBPT). Then the level KSMS factor
is evaluated as

KSMS = lim
λ→0

dE

dλ
. (24)

The value of �K̃SMS provided by Ref. [15] is 134 GHz u,
closer to the result obtained with the higher MR cutoff. This
illustrates again the challenge of providing reliable values of
�K̃SMS. For the SMS factor, the relativistic corrections are
small (2%), as expected.

For the FS factor, F , the addition of CC correlations leads
to two different values at the CC 9h stage: −58 MHz/fm2

for εMR = 0.01, against −63 MHz/fm2 for εMR = 0.05. Their
relative difference can be used to provide an upper bound of
the uncertainty on the F factor, equal to 8%. This value can
be further used in a King plot technique, as the uncertainty on
the slope of the straight line, for instance.

The same computation has been performed with an ex-
tended MR set. It led to the conclusion that lowering the
value of εMR beyond 0.01 does not improve the accuracy
of the results. The obtained values with εMR = 0.01 are thus
stable with respect to supplementary correlation effects in the
computational procedure. This property holds for all the other
transitions studied in this work.
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FIG. 2. Transition energy, �E (in cm−1), MS factors, �K̃NMS and �K̃SMS (in GHz u), and FS factor, F (in MHz/fm2), as functions of the
increasing active space for the 3s2 1S0 → 3s3p 1S

o
1 transition in Mg I. The correlation models are labeled VV, CV, and CC, and (nl)max denotes

the maximal n and l values of the orbitals in the active set. Results are obtained with two MR cutoff values εMR: 0.05 (dashed lines) and 0.01
(solid lines). Comparison of �E with the NIST value [29], of �K̃NMS with the scaling law from Eq. (20), and of �K̃SMS with the benchmark
value from Ref. [15].

A common observation of the plots displayed in Fig. 2
shows that, although the convergence of the properties is
reached within the VV+CV model, the obtained values at
that stage are not in excellent agreement with experimental

data. This emphasizes the need to include CC excitations in
the computational procedure in order to provide more accurate
results. This observation is also general for all other transitions
studied in this work.

TABLE III. Transition energies, �E (in cm−1), MS factors, �K̃NMS and �K̃SMS (in GHz u), and FS factors, F (in MHz/fm2), of the
studied transitions in Mg I. Comparison of �E with values from the NIST database [29] and theoretical results [15]. �K̃NMS and �K̃SMS are
respectively compared with values from the scaling law (20) (Scal.) and with values from Ref. [15].

�E (cm−1) �K̃NMS (GHz u) �K̃SMS (GHz u) F (MHz/fm2)

Transition CV CC NIST [29] Ref. [15] CV CC Scal. (20) CV CC Ref. [15] CV CC

3s2 1S0 → 3s3p 3
P

o
1 21 970 21 780 21 870 21 794 −277 −354 −360 −544 −417 −491 −77 −73

3s2 1S0 → 3s3p 1
P

o
1 35 292 35 063 35 051 35 050 −492 −567 −576 101 192 134 −60 −58

3s3p 3
P

o
1 → 3s4s 3S1 19 474 19 311 19 327 19 332 −325 −315 −318 453 416 442 40 39

3s3p 3
P

o
1 → 3p2 3

P0 36 084 35 857 35 943 35 912 −501 −570 −591 −17 97 27 −100 −95

3s3p 3
P

o
1 → 3s3d 3D1 26 324 26 069 26 087 26 085 −421 −443 −429 408 403 414 26 24

3s3p 3
P

o
1 → 3s4d 3D1 32 535 32 173 32 322 32 317 −504 −505 −532 402 415 403 29 27

3s3p 1
P

o
1 → 3s4d 1D2 18 245 17 882 18 084 17 987 −251 −269 −297 −412 −319 −373 −5 −7
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TABLE IV. Total IS, NMS, SMS, and FS (in MHz), between 26Mg and 24Mg of the studied transitions in Mg I. Comparison of NMS with
values from the scaling law (21) (Scal.). Comparison of IS and SMS with values extracted from experiments and theoretical results [15], where
the FS contribution is ignored (20–30 MHz).

IS (MHz) NMS (MHz) SMS (MHz) FS (MHz)

Transition CV CC Expt. Ref. [15] CV CC Scal. (21) CV CC Expt. Ref. [15] CV CC

3s2 1S0 → 3s3p 3
P

o
1 2643 2482 2683(0)a 2726 888 1135 1153 1744 1337 1530a 1573 11 10

3s2 1S0 → 3s3p 1
P

o
1 1262 1210 1414(8)b 1420 1577 1814 1848 −324 −612 −434b −428 9 8

3s3p 3
P

o
1 → 3s4s 3S1 −418 −330 −390(5)c −397 1041 1009 1019 −1453 −1333 −1409c −1416 −6 −6

3s3p 3
P

o
1 → 3p2 3

P0 1674 1529 1810(80)d 1809 1606 1827 1895 54 −311 −85d −86 14 13

3s3p 3
P

o
1 → 3s3d 3

D1 37 125 61(3)e 49 1349 1420 1375 −1308 −1292 −1314e −1326 −4 −3

3s3p 3
P

o
1 → 3s4d 3

D1 324 287 420(20)d 413 1616 1620 1704 −1288 −1329 −1284d −1291 −4 −4

3s3p 1
P

o
1 → 3s4d 1

D2 2124 1883 2107(15)c 2148 804 862 953 1321 1022 1154c 1195 1 1

aReference [8].
bReference [9].
cReference [10].
dReference [11].
eReference [12].

Table III displays the transition energies, �E (in cm−1), MS
factors, �K̃NMS and �K̃SMS (in GHz u), and FS factors, F (in
MHz/fm2), of the studied transitions in Mg I. As mentioned
in Sec. IV, the labels CV and CC respectively correspond to
the computational procedure in steps 1 and 2 or in steps 1–5.

The values of �E are compared with NIST data [29] and
benchmark results from Berengut et al. [15]. The correction
brought by the inclusion of CC correlations is clear. At the CV
stage all transition energies are overestimated. In contrast, at
the CC stage they decrease and become very close to the NIST
values. The relative error lies between 0.03% for the 3s2 1S0 →
3s3p 1

P
o
1 and 1.12% for the 3s3p 1

P
o
1 → 3s4d 1D2 transition,

while the calculation performed in Ref. [15] provides relative
errors within 0.4% for all considered transitions. The same
observation holds for �K̃NMS. The values are overestimated at
the CV stage and become very close to the scaling law results
(21) at the CC stage.

Similarly to the study of the 3s2 1S0 → 3s3p 1
P

o
1 transition

in Fig. 2, the results of �K̃SMS for the other transitions at the
CC stage are not in better agreement with Ref. [15] than the
one obtained at the CV stage. They are even less accurate for all
considered transitions. These differences represent the major
source of discrepancies between this work and experimental
values of total IS in Mg I, as highlighted in Table IV.

By contrast, the value of the F factor is not significantly
affected by the addition of CC correlations. It varies by a few
MHz/fm2 from the CV to the CC stage.

Table IV displays the values of the total IS, NMS, SMS, and
FS (in MHz) between 26Mg and 24Mg of the studied transitions
in Mg I. The NMS and SMS contributions are obtained
by multiplying �K̃NMS and �K̃SMS by the factor (1/M26 −
1/M24), using Eqs. (18) and (19). The FS contributions are
obtained by multiplying F by δ〈r2〉26,24, using Eq. (22). The
total IS is given by Eq. (15).

The conclusions for the isotope parameters above also hold
for the NMS, SMS, and FS energies, since they are obtained by
multiplying the corresponding electronic factors displayed in
Table III by nuclear constants. The NMS results are compared

with the scaling law values from Eq. (21), while the SMS
results are compared with values extracted from experiments
[8–12] and theoretical results of Ref. [15]. The FS contribution
is ignored in Ref. [15] for simplicity, since the authors found it
to be approximately 20–30 MHz. Indeed, the FS value is less
than the experimental uncertainty in most transitions and is of
the order of the error in their SMS calculations. The present
results agree with the order of magnitude, but the range of
values for the FS is found to be from −6 to +14 MHz instead.

When considering the total IS, it is worth observing that
the CV values are in better agreement with observation than
the CC ones, for all the studied transitions. Indeed, the errors
made on both NMS and SMS within the VV+CV model seem
to “accidentally” cancel, providing more accurate values for
the total IS. By contrast, within the VV+CV+CC model the
NMS values are closer to the scaling law results, but the SMS
values are not improved in comparison. Summing up NMS
and SMS leads thus to less accurate results for the total IS.

Compared to the values from Ref. [15], the total IS is in
less good agreement with observation for all studied transi-
tions, whether CC correlations are included or not. Indeed,
the MBPT+CI method is known to be the most accurate
computational technique for one- and two-valence-electron
atoms. Nevertheless, these results show that CC effects need
to be accounted for in the computational strategy in order to
improve the values of �E and �K̃NMS for each of the studied
transitions in Mg I.

VI. CONCLUSION

The present work describes an ab initio method for the
relativistic calculation of the IS in many-electron atoms using
the MCDHF approach. The accuracy of the computational
procedure is tested by estimating the energy shifts of the
26Mg -24Mg pair of isotopes, for several well-known transi-
tions in Mg I.

Different models for electron correlation are adopted.
Within each model, the convergence of the level MS factors and
the electronic probability density at the origin, as a function
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of the increasing active space, is studied for the 3s2 1S0 →
3s3p 1

P
o
1 transition. It is shown that small variations in the

level values due to correlation effects can lead to a significant
variation in the differential values, highlighting the challenge
in providing accurate results for the SMS factors with this
computational approach. The impact of the MR cutoff value
on the accuracy of the transition energy and the MS and FS
electronic factors is investigated as a function of the increasing
active space, for the same transition. It leads to the conclusion
that extending the MR set beyond a certain MR cutoff value
does not improve the accuracy of the results.

The study of the electronic factors for other transitions in
Mg I shows that CC correlation needs to be accounted for in the
computational strategy in order to obtain accurate values for
the transition energies and the NMS factors. The convergence
of the results when including an additional orbital layer
optimized on CC substitutions from the Mg2+ core is highly
satisfactory. By contrast, in comparison with benchmark
calculations from Berengut et al. [15], the accuracy of the SMS
factor values is not improved when CC contributions are added.

Total IS, NMS, SMS, and FS are computed between 26Mg
and 24Mg for the studied transitions in Mg I. The agreement
of the numerical results is found to be good for all transitions.
It is surprisingly better for the VV+CV model, although the
transition energies and the NMS factors are less accurate than
in the VV+CV+CC model. In the former, the errors made on
NMS and SMS cancel each other out “accidentally,” providing

more accurate values for the total IS. Nevertheless, for both
correlation models, the present accuracy is in particular high
enough for the purposes of resolving systematic errors in the
search for the fine-structure constant variation, and for studies
of the isotopic evolution of the universe [15].

A possible way to improve the accuracy of the results
is the use of the partitioned correlation function interaction
(PCFI) approach [31]. It is based on the idea of relaxing
the orthonormality restriction on the orbital basis, and
breaking down the very large calculations in the traditional
multiconfiguration methods into a series of smaller parallel
calculations. This method is very flexible for targeting different
electron correlation effects. CC effects in IS factors could be
then treated more accurately and efficiently with the use of this
technique. Additionally, electron correlation effects beyond
the SD-MR model (such as triple and quadruple excitations)
can be included perturbatively. Work is being done in these
directions.
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