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We investigate when Taylor expansions can be used to prove the Runge-Gross theorem, which is at the
foundation of time-dependent density-functional theory (TDDFT). We start with a general analysis of the
conditions for the Runge-Gross argument, especially the time differentiability of the density. The latter should
be questioned in the presence of singular (e.g., Coulomb) potentials. Then we show that a singular potential
in a one-body operator considerably decreases the class of time-dependent external potentials to which the
original argument can be applied. A two-body singularity has an even stronger impact and an external potential
is essentially incompatible with it. For the Coulomb interaction and all reasonable initial many-body states, the
Taylor expansion only exists to a finite order, except for constant external potentials. Therefore, high-order Taylor
expansions are not the right tool to study atoms and molecules in TDDFT.
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Density-functional theory (DFT) is one of the pillars of
modern quantum chemistry and condensed matter physics. Its
time-independent form has been studied in depth and its virtues
and limitations are rather well understood [1–3]. On the other
hand, time-dependent density-functional theory (TDDFT) is
more recent and certainly less well understood.

One of the most important steps in the construction of
TDDFT is a result by Runge and Gross [4,5] which says
that the external potential V (t,x) in a many-body system is
completely determined (up to a constant) by the one-particle
density ρ(t,x). More precisely, if two potentials V1(t,x) and
V2(t,x) give rise to the same one-particle density ρ(t,x) for
all times t , then V1(t,x) = V2(t,x) + C(t). The applicability
of this result for Coulomb systems is still under debate and
our purpose in this article is to discuss in more detail the
possible problems that can arise with Coulombic or more
general singular potentials.

The original argument of Runge and Gross relies on the
assumption that the external potentials as well as the many-
body body wave function �(t) are all time analytic, which
means that they can be expanded in a convergent Taylor series
in powers of t . If two potentials V1(t,x) and V2(t,x) give rise
to the same ρ(t,x), it was argued that each coefficient of tk in
the two Taylor series of ∇V1(t,x) and ∇V2(t,x) must be the
same. The convergence of these power series to ∇V1(t,x) and
∇V2(t,x) then implies that V1(t,x) = V2(t,x) + C(t).

It has recently been noticed [6–8] that the time analyticity
of the wave function fails in many simple examples, even for
time-analytic potentials. This is not surprising, since the time
regularity of the solution �(t,x) to Schrödinger’s equation
is known to be intimately linked to the space regularity
of the initial state �0(x), as we will recall. If this initial
state �0(x) is not smooth enough with respect to x, then
the resulting solution will not be smooth in t . Conversely,
even for a very smooth initial state �0(x), nonsmooth (e.g.,
Coulomb) potentials can create singularities that propagate
in time and give a Schrödinger solution that is not smooth
in t . These examples clearly violate the assumptions used in

the Runge-Gross approach and it is an open question whether
potentials are characterized by the density in those cases. This
is of course a fundamental problem for Coulomb potentials as
in atoms and molecules.

Our purpose in this work is to discuss in detail how this
effect arises and what role it plays for Coulomb potentials.

An important question, rarely discussed in the literature,
is to find reasonable assumptions on the potentials and initial
state �0 under which the Runge-Gross approach, based on
Taylor expansions, is applicable. As explained above, this
requires a better understanding of the link between the
properties of �0(x) and those of V (t,x) that will generate
a solution �(t,x) that is analytic, or at least smooth, with
respect to time. This link is naturally expressed in terms of the
spectral theory of the underlying many-body Hamiltonian and
it is rather subtle in the presence of singular potentials. We will
introduce a precise framework taking care of these questions
in Secs. I and II.

We then analyze in detail three different situations. In
the case of smooth external potentials and interactions, we
explain for which �0(x) and V (t,x) the original Runge-Gross
argument works out and we give a complete, mathematically
rigorous, proof in this setting in Sec. III.

We then look at singular potentials. In Sec. IV A we
treat two examples of one-particle systems that illustrate
how a singularity in the potential considerably reduces
the set of allowed time-dependent potentials. A two-body
singularity turns out to be even more delicate and an ex-
ternal potential is essentially incompatible with it. Indeed,
except for constant external potentials, the many-body wave
function will in general not be smooth in time for a singular
interaction.

The Coulomb interaction suffers from these difficulties.
In Sec. IV B we determine exactly how many time derivatives
make sense in this case, and derive a corresponding finite-order
Runge-Gross theorem. This is not the result that one might
have hoped for, but this is certainly the best that can be obtained
with an argument based on Taylor expansions.
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Another important piece of TDDFT is van Leeuwen’s
construction [9] of an external time-dependent potential V (t,x)
that produces a given density ρ(t,x). His argument is also
based on power series expansions in time and thus suffers from
the same regularity issues. Several recent works [10–14] have
aimed at justifying the Runge-Gross and van Leeuwen results
avoiding the use of Taylor expansions. This is an important and
interesting program which has not yet reached a completely
satisfactory level of mathematical rigor. We hope that our work
will clarify the situation and stimulate further research.

I. THE SETTING

In this section we would like to discuss a general setting,
based on physical considerations, for the Runge-Gross theo-
rem. We consider a system of N particles (fermions or bosons)
interacting through a potential w(x − y) and submitted to a
fixed external potential V0(x). For atoms and molecules one
should consider Coulomb potentials but the situation is kept
general for the moment. For simplicity of the exposition, we
will discard the spin variable but everything applies mutatis
mutandis if the particles have an internal degree of freedom.
In a time-dependent external potential V (t,x), the N -body
Schrödinger Hamiltonian is

HV =
N∑

j=1

−�xj
+ V0(xj ) + V (t,xj ) +

∑
1�j<k�N

w(xj − xk)

and the corresponding time-dependent Schrödinger evolution
equation is {

i ∂
∂t

�(t,X) = HV �(t,X),
�(0,X) = �0(X),

(1)

where xj ∈ R3 and X = (x1, . . . ,xN ). We are using units
such that 2m = � = 1, and also 4πε0 = 1. For atoms and
molecules, w(x − y) = 1/|x − y| and the Coulomb potential
− ∑M

m=1 Zm/|x − rm| of the nuclei can be either included in
V0, if the nuclei are fixed, or in V (t,x) if they move. Without
the potential V (t,x), the Hamiltonian becomes

H0 =
N∑

j=1

−�xj
+ V0(xj ) +

∑
1�j<k�N

w(xj − xk).

We recall that the density of the N -particle solution is defined
by

ρ(t,x) = N

∫
R3(N−1)

|�(t,x,x2, . . . ,xN )|2 dx2 · · · dxN .

For the Runge-Gross theorem, we have to specify a class of
initial conditions I = {�0’s} as well as a class of considered
external potentials V = {V (t,x)’s} (defined on a given time
interval [0,tmax)). The goal is to find the sets I and V for
which the following theorem is valid.

Runge-Gross’ uniqueness. Let Vj (t,x), j = 1,2, be two
potentials in the class V and let �j (t,x1, . . . ,xN ) be the
corresponding solutions to (1), with the same initial state
�0 ∈ I. If the associated densities satisfy ρ1(t,x) = ρ2(t,x) for
all t ∈ [0,tmax) and all x ∈ R3, then V1(t,x) = V2(t,x) + C(t).

Depending on the physical context, the set V could be
chosen very small, for instance it could consist of the Coulomb

potential generated by one moving nucleus, with the position
r(t) of this nucleus being the only parameter:

V =
{
− Z

|x − r(t)| , r(t) ∈ R3

}
.

It could also be very large and contain a whole class of smooth
functions of the time and space variables. In general it is
desirable to have both sets I and V as large as possible.
However they cannot be chosen independently. Uniqueness
might hold for a very large set V provided that I is very small,
and conversely. Furthermore, the choice of I and V could (and
will) highly depend on the properties of the potentials w and
V0. Since in practice the exact wave function �0 is unknown,
we believe that it is appropriate to chooseI as large as possible.

We think that the following reasonable conditions should
be imposed:

(H1) If the initial datum �0(X) is in I and V (t,x) is a
potential in V , then the wave function �(t,X), solution to the
Schrödinger equation (1), must be in I for all later times t .

(H2) The constant potentials V (t,x) = C(t) all belong to
V .

(H3) If V (t,x) is in V , then the time-independent potential
V (t0,x) is in V as well, for every t0 ∈ [0,tmax).

(H4) If V (x) ∈ V is time independent, then all the eigen-
functions of HV are in I.
Condition (H1) is here to be able to apply the Runge-Gross
argument at later times t0 > 0, with new initial state �(t0,X).
There is no reason to give t = 0 a special role. On the
other hand, (H2) covers the case when no external field is
applied to the system (V = 0). By a gauge transformation,
all the constants C(t) must then be allowed in V . It is often
assumed that the evolution before the considered time t = 0
was governed by a fixed time-independent potential, which is
only changed at positive times. It is then natural to assume,
as in (H3), that time-independent potentials are in V as well.
Finally, the assumption (H4) is here to make sure that the
usual time-independent DFT is covered by the theory. Indeed,
in applications �0 will often be the ground state of the potential
V (0,x), and V (t,x) would then be chosen in order to bring the
system to another interesting state.

We remark that I depends on the number of particles N ,
whereas we could also demand that V is independent of N , if
needed. This may of course result in a smaller set, depending
on the situation.

To our knowledge the choice of the sets V and I has
never been discussed in the literature. This is not a question
of purely mathematical interest since the applicability of the
Runge-Gross theorem to physical systems relies on these sets
not being too small. In the following we will give several
examples that will clarify the respective roles of I and V . In
the next section we start by discussing for which choices of I
the wave function is smooth in time, for a time-independent
potential V (x), before addressing the more general case of
time-dependent potentials V (t,x).

II. TIME REGULARITY OF SOLUTIONS TO THE
SCHRÖDINGER EQUATION

In this section we would like to recall when a solution �(t)
of Schrödinger’s equation depends smoothly on the time t .
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Based on these results, we propose an abstract definition of
the sets I and V , which provides a smooth-in-time solution
�, and for which the original Runge-Gross argument is thus
applicable. These sets will be made more explicit in particular
examples in the following sections.

We start by discussing the case of time-independent
potentials that must all belong to V by condition (H2). We
then turn to the general time-dependent case.

A. The time-independent case

Let V (x) be a time-independent potential that makes
HV a self-adjoint operator (more precisely, we assume that
the potential energy is infinitesimally H0 bounded, see the
discussion below). Then the solution to Schrödinger’s equation
(1) exists for any state �0,

∫
R3N |�0|2 = 1, and can be

expressed in the abstract form

�(t,X) = (e−itHV �0)(X).

The operator e−itHV is unitary and it is defined using
the so-called functional calculus for self-adjoint operators
[15]. In general e−itHV �0 is not given by the power series∑

k�0(−itHV )k�0/k!. The reason is that, for most �0’s,
(HV )k�0 does not make sense. Indeed, if the series converges,
then etHV �0 = ∑

k�0(tHV )k�0/k! is also convergent and
gives a solution to the “backward heat equation”

∂

∂t
� − HV � = 0,

which is well known to be ill posed for most initial states �0.
The set of functions � for which HV � is square integrable

is called the domain of HV and is often denoted by D(HV ).
For instance, if T = −� is the kinetic energy operator,
then ψ ∈ D(T ) if and only if ‖T ψ‖2 = ∫ |�ψ(x)|2 dx =∫ |k|4|ψ̂(k)|2 dk is finite, where ψ̂(k) is the Fourier transform
of ψ(x).

When looking at the power series, it is natural to think that
�(t) = exp(−itHV )�0 will be k times differentiable in t , if
and only if (HV )k�0 is square integrable, and that then

∂k

∂tk
�(t,X) = (−i)k[e−itHV (HV )k�0](X).

This intuitive result is true [[16], Theorem VIII.7], but one has
to be very careful with how (HV )k is defined.

Before discussing the definition of (HV )k , we re-
mark that t �→ �(t,X) is time analytic if and only if∑

k�0 ‖(HV )k�0‖Rk/k! is finite for some R > 0, and this is
the only case for which �(t,X) can be reconstructed from its
Taylor series

�(t,X) =
∑
k�0

(−iHV )k�0(X)

k!
t k,

for |t | � R. Such states �0 are called analytic vectors of HV ,
a concept that was introduced by Nelson in [17] and played an
important role in quantum field theory.

The meaning of the operator (HV )k , from now on denoted
Hk

V , is again determined by the functional calculus. In more
practical terms, Hk

V �0 is defined by recursively calculating
HV �0, HV (HV �0), etc., which must all be square-integrable

functions. The domain of Hk
V is, therefore,

D
(
Hk

V

) = {� ∈ D(HV ) : HV � ∈ D(HV ),

HV (HV �) ∈ D(HV ), . . . , H k−1
V � ∈ D(HV )}.

(2)

The space D(Hk
V ) can be shown to be invariant under the flow

exp(−itHV ). It contains all the eigenfunctions of HV , since
HV � = λ� ∈ D(HV ).

The operator Hk
V cannot be fully understood without

identifying precisely its domain D(Hk
V ). But computing the

domain D(Hk
V ) can sometimes be a rather difficult task. For

instance, for the hydrogen atom which will be considered in
more detail in Sec. IV A, the domain D(h) of h = −� − 1/|x|
is the same as D(−�). However, for sufficiently large k the
domain D(hk) becomes different from D(−�k). It contains
additional boundary conditions on the derivatives of ψ at
x = 0. After applying h too many times, the resulting wave
function hk−1ψ will be singular at x = 0 for a smooth ψ .

The operator Hk
V can therefore not easily be understood by

looking at the formula for HV . For singular potentials there
are usually many consistent choices of boundary conditions
for the expression obtained by calculating the kth power of
HV . Only one of these characterizes the domain of Hk

V , that is,
the correct boundary conditions arising from the constraints
that H

j

V �0 ∈ D(HV ) for j = 1, . . . ,k − 1.
Let us clarify this by an example. In [6] the authors

considered the one-dimensional state ψ0(x) = κe−|x|. This
state is not in the domain D(T ) of the free kinetic energy
operator T = −d2/dx2. Indeed, functions in D(T ) can be
shown to be differentiable with a continuous derivative and ψ0

does not have a continuous derivative. In particular, ψ(t) =
exp(−itT )ψ0 is not differentiable in time. On the other hand,
(d2/dx2)kψ0 = ψ

(2k)
0 = ψ0 has a meaning outside of zero for

all k � 1, but the latter expression cannot be the formula of
T kψ0 since ψ0 /∈ D(T k). This is why ψ(t) = exp(−itT )ψ0

does not coincide with the series
∑

k�0 ψ
(2k)
0 (−it)k/k! =

κe−it−|x|, as was observed by the authors of [6]. The deeper
reason for this discrepancy is that D(T ) contains the boundary
condition ψ ′(0−) = ψ ′(0+), whereas the equation −ψ ′′

0 =
ψ0 holds with the different boundary condition ψ ′(0+) −
ψ ′(0−) = −2ψ(0).

Let us now return to the question of choosing the sets I
and V . In order to be able to apply the original Runge-Gross
argument which relies on the time differentiability of �(t), the
previous discussion tells us that we should at least choose a
set I that satisfies

I ⊂ D
(
Hk

V

)
for all time-independent potentials V (x) ∈ V and all k � 1.
Doing so will imply that �(t,X) is infinitely differentiable in
t , for any �0 ∈ I. If analyticity is to be required, thenI must be
included in the set of analytic vectors of HV for all V (x). Now
the simplest choice is to take I as the intersection of all these
spaces but I could then be extremely small. More severely,
this set would not be invariant under the flows corresponding
to all the possible HV ’s, violating our condition (H1), if the
domains D(Hk

V ) are truly different when V (x) is varied. For
this reason, it is natural to restrict ourselves to the potentials
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V (x) that preserve the domain of Hk
0 for all k:

D
(
Hk

V

) = D
(
Hk

0

)
, ∀k � 1. (3)

For such a potential, and any �0 in

I =
⋂
k�1

D
(
Hk

0

)
, (4)

the solution �(t) is differentiable infinitely often in time, and
�(t) stays in I for all later times t > 0.

In this way, the choice of the �0’s which give a time-
differentiable solution �(t) has led us to the constraint (3) on
the set of potentials V . The property (3) is however not so easy
to check for a given potential V (x). Fortunately, there is an
equivalent formulation which we are going to discuss now.

Let us recall that
∑N

j=1 V (xj ) is bounded relative to H0,
with infinitesimal bound, if∫
R3N

∣∣∣∣ N∑
j=1

V (xj )�(X)

∣∣∣∣2

dX � ε2
∫
R3N

|(H0 + Cε)�(X)|2dX,

(5)
for every ε > 0 and � ∈ D(H0) (see [[15], Sec. 1.4]). This is
a famous condition, satisfied for Coulomb potentials as was
shown by Kato in the 1950s [18].

Lemma 1 (Condition on V (x)). Assume that H0 is bounded
below and that the time-independent potential V (x) satisfies
(5). Then V (x) satisfies the constraint (3) if and only if for every
� ∈ D(Hk

0 ), the function
∑N

j=1 V (xj )�(X) is in D(Hk−1
0 ) for

every k � 1. In other words, the multiplication operator by∑N
j=1 V (xj ) maps D(Hk

0 ) to D(Hk−1
0 ).

Proof. Assume first that (3) is satisfied. Then HV =
H0 + ∑N

j=1 V (xj ) maps, by definition of these domains,

D(Hk
V ) = D(Hk

0 ) to D(Hk−1
V ) = D(Hk−1

0 ). Obviously H0 also
has this property, so HV − H0 = ∑N

j=1 V (xj ) maps D(Hk
0 ) to

D(Hk−1
0 ), for every k � 1.

For the converse implication, we recall that the infinites-
imal relative bound (5) ensures that HV is self-adjoint on
the domain D(HV ) = D(H0) (see [[15], Theorem 1.4.2]).
Now assume that

∑N
j=1 V (xj ) maps D(H 2k+1

0 ) to D(H 2k
0 ).

This map is then automatically continuous by the closed
graph theorem [[16], Theorem III.12], because continuity
from D(H0) to the space L2(R3N ) of square-integrable
functions [assumption (5)] implies that the graph of its
restriction is closed in D(H 2k+1

0 ) × D(H 2k
0 ). Consequently,∑N

j=1 V (xj )(H0 + Cε)−1 maps D(H 2k
0 ) continuously to itself.

On the other hand, (5) means that
∑N

j=1 V (xj )(H0 + Cε)−1 is

norm bounded by ε on L2(R3N ). By the theory of interpolation
[[19], Prop. 9, Chap. IX.4] it is therefore bounded by a quantity
proportional to

√
ε on D(Hk

0 ). After choosing ε sufficiently
small, the same argument as for the Kato-Rellich theorem
(that we used for k = 0) applies [[15], Sec. 1.4], and shows
that D(Hk

V ) = D(Hk
0 ). �

If the domain D(Hk
0 ) contains specific boundary conditions

at the singularities of the potentials w and V0, then the
lemma says that multiplying by the function

∑N
j=1 V (xj ) must

preserve these conditions. As we will show in Sec. IV, this is
a very restrictive condition.

B. The time-dependent case

For a time-dependent potential V (t,x), the time derivatives
of �(t) will clearly involve time derivatives of V . Therefore,
in view of the discussion of the previous section, a natural
condition on V (t,x) is to assume that

∑N
j=1 ∂�

t V (t,xj ) exists
and satisfies the condition of Lemma 1, that is∫

R3N

∣∣∣∣Hk−1
0

N∑
j=1

∂�
t V (t,xj )�(X)

∣∣∣∣2

dX

� Ck,�,tmax

∫
R3N

∣∣(Hk
0 �

)
(X)

∣∣2 + |�(X)|2dX, (6)

for every k � 1, every � � 0, every t ∈ [0,tmax), and every
� ∈ D(Hk

0 ). Additionally, we have the condition (5) that∑N
j=1 V (t,xj ) should be infinitesimally bounded with respect

to H0. This now defines us a set

V = {V (t,x) satisfying (5) and (6)}. (7)

For these choices of I in (4) and V in (7), it remains to
check if the conditions (H1)–(H4) are satisfied. (H2) and
(H3) follow directly from the definition of V . Using that
eigenfunctions belong to D(Hk

V ) = D(Hk
0 ) for all k � 1,

(H4) follows immediately. Only (H1) needs a more careful
treatment. The following result shows that it indeed holds.

Theorem 1 (Regularity of solutions to the time-dependent
Schrödinger equation). Let �0 ∈ I and V (t,x) ∈ V . Then the
solution �(t,X) to Schrödinger’s equation (1) belongs to I
for every t ∈ [0,tmax). It is differentiable in t infinitely many
times, and all its t derivatives also belong to I.

Proof. It was proved by Kato [[20], Theorem 4] that if
the domain D(HV (t0)) = D(H0) is independent of t0 ∈ [0,tmax)
and ∂tHV = ∑N

j=1 ∂tV (t,xj ) is a continuous map from D(H0)
to the Hilbert space of square-integrable functions, then the
solution �(t,X) to Schrödinger’s equation (1) exists, and it
belongs to D(H0) if the initial condition �0(X) is an element
of D(H0).

In our case, the conditions on the domain and the initial
condition are implied by the choices of V and I. Continuity of
∂tHV is exactly the statement of condition (6) with � = k = 1.
We thus have �(t,X) ∈ D(H0) for t ∈ [0,tmax).

If we consider D(H0) as a Hilbert space, the domain of
HV (t0) on this space is exactly given by D(H 2

0 ) [see Eq. (2)].
Using that �0(X) ∈ D(H 2

0 ) and condition (6) (with � = 1,
k = 2) we can apply Kato’s result in this setting, and find that
�(t,X) is an element of D(H 2

0 ) for all t ∈ [0,tmax). Hence
HV �(t,X) is an element of D(H0). To prove that HV �(t,X)
is differentiable in time one uses (6) again. This shows that
�(t,X) has two time derivatives, and repeating this argument
shows that it has infinitely many. �

In this section we have defined the sets I and V such as to
be able to take as many time derivatives as we like, and the
original proof of Runge and Gross will apply. Of course, the
main question is to identify more precisely the sets I and V in
order to understand which physical systems are covered. It is
the potentials w and V0 appearing in the definition of H0 that
will determine the properties of these sets.

We remark that the exact same construction can be applied
to obtain a �(t) which has only m time derivatives. In this case,
I = D(Hm

0 ) and the conditions (6) only have to be verified for
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k + � � m + 1. We will come back to this generalization later
in Sec. IV B, when treating Coulomb interactions.

III. THE SMOOTH CASE

In this section we study the case when w and V0 are smooth,
and identify explicitly the two sets I and V . We will see that
the corresponding wave function �(t) is also smooth, and that
the original Runge-Gross method can be followed without any
danger.

We first consider the kinetic energy operator T =∑N
j=1 −�xj

. Using the Fourier transform, one sees that a
square-integrable function � belongs to D(T k) if and only if∫
R3N |K|4k|�̂(K)|2 dK is finite. Said differently, a function will

be in all the domains D(T k) with k � 1, if its Fourier transform
decays faster than any polynomial. By the theory of Sobolev
[21,22], this turns out to imply that � has infinitely many
space derivatives. On the other hand, � will be an analytic
vector of T if its Fourier transform decays exponentially and
this implies that it is a real-analytic function of X.

We now assume that V0 and w are smooth functions, that
is, they are differentiable infinitely many times and their
derivatives are all uniformly bounded on R3. Under this
condition, one can show that the domain of Hk

0 is equal to
that of T k . The argument is exactly the same as in the proof of
Lemma 1. Therefore, the set I defined in (4) is just the space
of square-integrable, fermionic or bosonic, functions whose
Fourier transform decays faster than any polynomial.

The set V defined in (7) consists of the potentials V (t,x)
such that

∑N
j=1 ∂�

t V (t,xj ) maps I into itself, for every �.
This shows that ∂�

t V must be smooth. Using the translation
invariance of T , V (t,x) and its derivatives can also be shown
to be uniformly bounded on R3. Therefore, Theorem 1 can be
rephrased in the more explicit form:

Theorem 2 (Regularity for smooth potentials). Assume
that V0 and w are differentiable infinitely often in space
and that their derivatives are all uniformly bounded on R3.
Assume also that V (t,x) is differentiable infinitely often in
space-time and its derivatives are bounded uniformly with
respect to x for every t . Then, for every �0 ∈ I, the solution
�(t,X) to (1) is smooth in space-time and ∂�

t �(t,X) belongs
to I for all � � 0 and all t ∈ [0,tmax).

Based on this result, we can now give a complete proof of
the Runge-Gross theorem in the smooth case.

Theorem 3 (Runge-Gross for smooth potentials). Let �0,
V0, w, and V = Vm, m = 1,2 be as in Theorem 2. Let �m(t,X)
be the solution to (1) with V = Vm and let ρm(x) be its
density. If ρ1(t,x) = ρ2(t,x) =: ρ(t,x) for all t ∈ [0,tmax) and
all x ∈ R3, then

ρ(0,x) ∇ ∂�

∂t�
(V1 − V2)(0,x) = 0 (8)

for all � � 0 and all x ∈ R3. If the nodal set {x ∈ R3 :
ρ(0,x) = 0} has zero volume, then

∂�

∂t�
(V1 − V2)(0,x) = c�

for all � � 0 and all x ∈ R3.

If in addition V1(t,x) − V2(t,x) is analytic in t for every
fixed x ∈ R3, then

V1(t,x) − V2(t,x) = C(t) =
∑
��0

c�

�!
t�.

We emphasize that only the time analyticity of V1 − V2

is required in order to get the Runge-Gross result. It is not
needed that �(t) is itself time analytic, as is sometimes stated
in the literature. We now sketch a proof of the theorem. The
reasoning is essentially the same as in [4], although we do not
use the current density j(t,x).

Proof of Theorem 3 Let ϕ(x) be an arbitrary (differentiable
and bounded) function. We clearly have∫

R3
ρm(t,x)ϕ(x)dx = N〈�m(t)|ϕ(x1)�m(t)〉.

The second time derivative of this equation is given by

d2

dt2

∫
R3

ρm(t,x)ϕ(x)dx

= −N〈�m(t)|[H0,[H0,ϕ(x1)]]�m(t)〉
+ N〈�m(t)|[Vm(t,x1),[�x1 ,ϕ(x1)]]�m(t)〉.

Since �m(t = 0,X) = �0(X), the first term does not depend
on m at time t = 0. A simple computation gives

[Vm(t,x1),[�x1 ,ϕ(x1)]] = −2∇Vm(t,x1) · ∇ϕ(x1).

Assuming that ρ1(t,x) = ρ2(t,x) then yields

0 = d2

dt2

∫
R3

(ρ1 − ρ2)(t,x) ϕ(x) dx

∣∣∣∣
t=0

= −2N

∫
R3

ρ(0,x)∇ϕ(x) · ∇[V1(0,x) − V2(0,x)] dx.

Choosing now ϕ(x) = V1(0,x) − V2(0,x), we obtain∫
R3

ρ(0,x)|∇(V1 − V2)(0,x)|2 dx = 0. (9)

Because ρ(0,x) � 0 we then find that ∇(V1 − V2)(0,x) must
be zero at every point where ρ(0,x) does not vanish, which
implies (8) for � = 0. This proves that V1(0,x) − V2(0,x) is
constant on each connected component of the set {ρ(0,x) > 0}.
If ρ(0,x) never vanishes, then clearly V1(0,x) − V2(0,x) = c0.
In fact, this also holds if the nodal set {ρ(0,x) = 0} has zero
volume, since V1(0,x) − V2(0,x) is continuous by assumption.

To obtain (8) for � = 1 we take the third time derivative of
〈�m(t)|ϕ(x1)�m(t)〉 at t = 0, which yields

d3

dt3

∫
R3

ρm(t,x)ϕ(x)dx|t=0

= −Ni〈�0|[H0,[H0,[H0,ϕ(x1)]]]�0〉

− Ni

N∑
j=1

〈�0|[Vm(0,xj ),[H0,[H0,ϕ(x1)]]]�0〉

+ Ni〈�0|[H0,[Vm(0,x1),[�x1 ,ϕ(x1)]]]�0〉

− 2N

∫
R3

ρ(0,x)∇ϕ(x) · ∇ ∂

∂t
Vm(0,x) dx. (10)
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The operator H0 and its (iterated) commutators with ϕ(x1)
and Vm(0,xj ) are differential operators, that is, they can be
written in the form

D =
∑

0�|j1|,...,|jN |�M

fj1,...,jN
(x1, . . . ,xN ) ∂j1

x1
· · · ∂jN

xN
, (11)

with smooth coefficient functions fj1,...,jN
(x1, . . . ,xN ).

We now make the following observation: If D1,D2,D3 are
such differential operators, then

〈�0|D1[V1(0,xj ),D2]D3�0〉 = 〈�0|D1[V2(0,xj ),D2]D3�0〉,
(12)

for any j = 1, . . . ,N . As commuting V1(xj ) with a differential
operator yields a derivative of V1(xj ) multiplied (from the left
and right) by differential operators, it suffices to show that

〈D̃1�0|∇(V1 − V2)(0,xj )D̃2�0〉 = 0 (13)

for any such differential operators D̃1,D̃2. By (9) and conti-
nuity of V (0,x), the open set of points where ∇(V1 − V2)(0,x)
is nonzero is contained in the nodal set of ρ(0,x). Because we
are considering either fermions or bosons, ρ(0,x) = 0 implies
that �0(x1, . . . ,xN ) = 0 if xj = x for some j = 1, . . . ,N .
Therefore, D̃1�0(X) = D̃2�0(X) = 0 on the open set where
∇(V1 − V2)(0,xj ) does not vanish, so (13) holds.

Now, using the observation (12) we may replace V1(0,x) by
V2(0,x) in all the commutator expressions arising in the third
time derivative (10). When taking the difference, these terms
then cancel and only the last term remains:

0 = d3

dt3

∫
R3

(ρ1 − ρ2)ϕ(t,x) dx

∣∣∣∣
t=0

= −2N

∫
R3

ρ(0,x)∇ϕ(x) · ∇ ∂

∂t
(V1 − V2)(0,x) dx.

This gives (8) with � = 1 by choosing ϕ(x) =
∂
∂t

(V1 − V2)(0,x). From this we deduce that an equation
like (12) also holds for the time derivatives ∂

∂t
V1(0,x),

∂
∂t

V2(0,x), and this allows us to obtain (8) for � = 2, and
recursively for all �.

If the nodal set of ρ(0,x) has zero volume, then ∂�

∂t�
(V1 −

V2)(0,x) equals some constant c�. Finally, if V1(t,x) − V2(t,x)
is analytic in t , then the Taylor series∑

��0

c�

�!
t� = V1(t,x) − V2(t,x)

converges, and is clearly independent of x. �

IV. SINGULAR POTENTIALS

A. Singular potentials in one-body operators

In this section we consider the case N = 1 with a singular
potential V0. By looking at two examples [first V0(x) = λδ(x)
in 1D, and second the hydrogen atom], we find that all
the derivatives of the potentials V (t,x) in V must vanish at
the singularities of V0. In other words, these potentials are
so flat that they hardly influence the dynamics close to the
singularities. We see that the presence of a singular potential
V0 has considerably reduced the set V .

1. A delta potential in 1D

We now study the case of

H0 = − d2

dx2
+ λδ(x), (14)

with x ∈ R. The domain of H0 is the set of square-integrable
functions ψ(x) such that.1∫ ∞

0
|ψ ′′(x)|2 dx and

∫ 0

−∞
|ψ ′′(x)|2 dx are finite,

ψ(0−) = ψ(0+),

ψ ′(0+) − ψ ′(0−) = λψ(0).

Theorem 4 (Potentials for a delta interaction). Assume
that λ = 0 and let V (x) a be real-valued, measurable function
on R. Then, V satisfies condition (3) if and only if V has
infinitely many continuous and bounded derivatives on R and
at the origin satisfies

dk

dxk
V (0) = 0, for all k � 1.

With our definition (7), the set V of allowed potentials then
only contains functions V (t,x) that are smooth in space-time
and satisfy (∂k/∂xk)V (t,0) = 0 for every t ∈ [0,tmax) and k �
1.

Proof. Suppose V is smooth, with bounded derivatives that
all equal zero at x = 0. By Lemma 1, the validity of condition
(3) is equivalent to the statement that V ψ ∈ D(Hk−1

0 ) for every
ψ ∈ D(Hk

0 ). With the given conditions on V , it is clear that V ψ

has 2k square-integrable derivatives [on (0,∞) and (−∞,0)]
if ψ does. Also, (V ψ)(j )(0) = V (0)ψ (j )(0) for all j < 2k, so
V ψ satisfies the same boundary conditions as ψ at x = 0. This
shows that V ψ ∈ D(Hk

0 ) for every ψ ∈ D(Hk
0 ) and thus that

(3) holds.
Now assume condition (3) holds. Since functions in D(Hk

0 )
are differentiable away from zero, one easily deduces that V

is too. Boundedness of these derivatives follows from the fact
that V , viewed as an operator, is continuous (cf. the proof of
Lemma 1). From the boundary conditions it is clear that the
derivatives of ψ must have well-defined limits from the left
and right at zero, and this again translates to V .

A function ψ ∈ I, which is in D(Hk
0 ) for every k, must

fulfill infinitely many boundary conditions of the form

ψ (2j )(0−) = ψ (2j )(0+) ,

ψ (2j+1)(0+) − ψ (2j+1)(0−) = λψ (2j )(0).
(15)

Then V ψ must satisfy the same conditions, for every ψ that
satisfies (15). As we will now see, this implies that V (k)(0) = 0
for every k � 1. Consider the conditions (15) for V ψ and
j = 0. Using continuity of ψ at zero, the first condition yields
continuity of V . In view of the boundary condition for ψ ′, the

1Here ψ ′′ denotes the weak derivative (cf. [22]) of ψ on the
respective interval. Evaluation of a function at 0± stands for its limit
at zero from the right (0+) respectively left (0−). These limits exist
for ψ and ψ ′, given that ψ ′′ is square integrable [[22], Theorem 8.2].
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second condition implies

0 = (V ψ)′(0+) − (V ψ)′(0−) − λ(V ψ)(0)

= ψ(0)[V ′(0+) − V ′(0−)],

so V ′ is also continuous at zero. Now let j � 1 and assume we
have continuity of V (k) at x = 0 for k � 2j − 1 and V (k)(0) =
0 for 0 < k < 2j − 1. Then

(V ψ)(2j )(0+) = V (0)ψ (2j )(0) + V (2j )(0+)ψ(0)

+ 2jV (2j−1)(0)ψ ′(0+).

Using the boundary condition for ψ ′, the continuity of
(V ψ)(2j ), which is the first condition in (15), gives

2jλV (2j−1)(0) = V (2j )(0−) − V (2j )(0+). (16)

Now take ψ satisfying (15) with 0 = ψ(0) = ψ ′(0) but
ψ ′′(0) = 0. Then

(V ψ)(2j+2)(0+) =
(

2j + 2

2

)
V (2j )(0+)ψ ′′(0)

+
(

2j + 2

3

)
V (2j−1)(0)ψ (3)(0+)

+V (0)ψ (2j+2)(0)

and continuity of (V ψ)(2j+2) at x = 0 implies

2j

3
λV (2j−1)(0) = V (2j )(0−) − V (2j )(0+).

Together with (16) this shows that V (2j−1)(0) = 0, and that
V (2j ) is continuous at x = 0. With this information we can use
the second condition in (15), with arbitrary ψ ∈ I, to obtain

2jλV (2j )(0) = V (2j+1)(0−) − V (2j+1)(0+).

The same calculation for (V ψ)(2j+3)(0+) − (V ψ)(2j+3)(0−),
with 0 = ψ(0) = ψ ′(0), gives

λ
2j (2j + 1)

3(2j + 3)
V (2j )(0) = V (2j+1)(0−) − V (2j+1)(0+),

and this implies that V (2j )(0) = 0 and V (2j+1) is continuous at
x = 0. We can thus conclude that V (k)(0) = 0, for all k � 1,
by induction. �

2. The hydrogen atom

In this section we extend the previous 1D considerations to
the case of the 3D hydrogen atom in radial external potentials.
The corresponding operator is

H0 = −� − 1

|x| .

The equivalent of Theorem 4 is the following.
Theorem 5 (Radial potentials for the hydrogen atom). Let

V = V (r) be a smooth radial potential which satisfies the
condition (3) for the hydrogen atom. Then at the origin V

satisfies

dk

drk
V (0) = 0, for all k � 1.

The proof goes along the same lines as that of the
corresponding implication in Theorem 4, but the calculations

are more tedious and thus given in Appendix A. The converse
implication as in Theorem 4 also holds in this case, and a
similar result is probably true for a nonradial potential, but we
have not pursued in this direction.

One could think that V is so small because we chose I
too large. However, the proofs of Theorems 4 and 5 teach
us that this effect occurs whenever I contains functions with
some nonvanishing derivatives at the singularity. This property
holds for eigenfunctions of H0, and the proof in Appendix A
uses this for the first two eigenfunctions only.

The set V characterized by Theorems 4 and 5 is a subset
of the one we considered in Sec. III, because it contains the
additional hypothesis that derivatives must vanish at x = 0
(r = 0 for hydrogen). For this set one can prove a Runge-Gross
uniqueness theorem for N = 1, or N � 1 with w = 0, along
the same lines as Theorem 3. We omit the details, as this
theorem for noninteracting systems and a small set V seems to
be of limited interest.

B. The two-body Coulomb interaction

In the previous section we have considered singular one-
body operators and we have discovered that the set V only
contains functions that are very flat at the singularity. In the
two-body case, the situation is even worse. There is essentially
no way for an external potential to avoid the singularity of the
two-body electronic repulsion. For the singlet state helium
atom, we are actually able to prove that only constants remain
in V , even if we only assume that D(Hk

V ) = D(Hk
0 ) for k � 4.

Theorem 6 (Potentials for two electrons). Let

H0 = −�x1 − �x2 + 1

|x1 − x2|
be the Hamiltonian for two particles, restricted to permutation-
symmetric, square-integrable functions. Let V (x) be an exter-
nal potential that has six continuous bounded derivatives. If
D(H 4

V ) = D(H 4
0 ), then V is constant.

The idea is to work in relative and center of mass
coordinates and to use arguments as in the one-body case,
in the direction v = x1 − x2. We can then prove that

�v[V (u + v/2) + V (u − v/2)]|v=0 = 1
2�V (u) = 0

for all u ∈ R3, and this implies that V is constant. The details
of the proof are given in Appendix B below. A similar result
holds for triplet states but we will not treat this in detail.
Also, we believe that the same result holds for N electrons in
appropriate symmetry classes.

This shows that high-order Taylor expansions cannot be
employed for Coulomb systems, and a different route has to
be found. By a closer investigation of the time derivatives, we
can get a weaker Runge-Gross theorem that is still somewhat
reasonable for practical purposes. More precisely, for smooth
external potentials we can show that the first four time
derivatives of V1 − V2 are constant if the densities match.

Theorem 6 suggests that it is not possible to differentiate
ρ(t,x) more than three times at t = 0. We are going to use
a trick that will allow us to differentiate it five times (but
probably not more). The trick is to take a smooth test function
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ϕ and to differentiate∫
R3

ρ(t,x) ϕ(x) dx,

as was used in the proof of the Runge-Gross theorem in Sec.
III. This means that we are viewing the t derivatives of ρ(t,x)
as distributions, or generalized functions.

Theorem 7 (Finite-order Runge-Gross for Coulomb sys-
tems). Assume that w(x − y) = |x − y|−1 is the Coulomb
repulsion and that V0 is a fixed external potential that has
six bounded space derivatives. Let

H0 =
N∑

j=1

−�xj
+ V0(xj ) +

∑
1�j<k�N

1

|xj − xk|

be the corresponding Hamiltonian for N particles, restricted
to square-integrable functions that are symmetric (antisym-
metric) under permutation of the particles. Let finally �0 ∈
D(H 4

0 ).
Assume that V1(t,x) and V2(t,x) are two potentials with

six bounded space-time derivatives. Then the corresponding
densities ρ1(t,x) and ρ2(t,x) have five (six in the antisymmetric
case) time derivatives in the sense that

fm(t) =
∫
R3

ρm(t,x) ϕ(x) dx

is differentiable for every smooth ϕ(x).
If ρ1(t,x) = ρ2(t,x) for all t ∈ [0,tmax) and all x ∈ R3, then

ρ(0,x) ∇ ∂�

∂t�
(V1 − V2)(0,x) = 0

for all � � 3 (� � 4 in the antisymmetric case).
Due to its rather technical nature, we present the proof of

this result in Appendix C.

V. DISCUSSION AND OUTLOOK

In this paper we have analyzed in detail the method of
Taylor expansions for the Runge-Gross theorem. We have
introduced an abstract setting, based on two sets: I for the
initial conditions �0’s and V for the time-dependent external
potentials V (t,x). The choice of these sets guarantees that
the density ρ(t,x) is differentiable in time infinitely often and
then the original Runge-Gross approach works well. The main
question is to identify these two sets in practical situations.

Assuming that the potentials V0 and w are smooth, we
found in Sec. III that the sets I and V also consist of smooth
and bounded functions, without further restrictions. This is
the correct mathematical setting for the original Runge-Gross
theorem.

We then studied the case of singular potentials, as is relevant
for physical applications. We found that singularities have
very different consequences for N = 1 and N � 2. In the one-
particle case, the class of allowed potentials V (t,x) is reduced
to those that avoid the singularities, in the sense that all of
their derivatives vanish there. This is a very small set, whose
physical interest is debatable.

On the other hand, a singularity in the two-body potential
cannot be avoided by an external potential. For the Coulomb
interaction, the sole constraint on I and V that one can

differentiate many times in t already imposes that the external
potential is constant, without knowing anything about the
density. Therefore, high-order Taylor expansions are not the
right tool to study atoms and molecules in TDDFT. As we have
shown in Theorem 7, low-order expansions in t can be used,
but of course they yield only limited information.

A natural strategy to avoid Taylor expansions is to use the
density ρ(t,x) for all times and not just at t = 0. One way to
make V (t,x) appear in an equation is to differentiate ρ(t,x)
only twice. This is possible for Coulomb interactions as we
have shown in Theorem 7. This gives an implicit equation for
V (t,x) [10–14]. Unfortunately, this equation involves space
derivatives of �(t,X) of higher order which are difficult
to control. Hence standard techniques of functional analysis
cannot be used in this context and new ideas are needed.
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APPENDIX A: PROOF OF THEOREM 5

To prove this theorem it is sufficient to consider radial
functions ψ that are elements of D(Hk

0 ) for every k. As is well
known, multiplication by r is a unitary map from radial square-
integrable functions on R3 to square-integrable functions on
[0,∞). Under this transformation, the operator H0 becomes

h0 = − d2

dr2
− 1

r
,

with domain D(h0) given by square-integrable functions ψ(r)
for which ∫ ∞

0
|ψ ′′(r)|2dr is finite,

ψ(0) = 0.

Thus, if ψ is in D(hk
0) it must satisfy hk−1

0 ψ(0) = 0. Now
assume that V (r) is a potential that maps D(hk+1

0 ) to D(hk
0)

for every k. For k = 2 this implies, using that ψ(0) = 0 and
h0ψ(0) = 0,

0 = h0V ψ(0) = ([h0,V ]ψ)(0) = −2V ′(0)ψ ′(0),

and thus V ′(0) = 0. Now let

ψ(r) = 16
3 r[e−r/2 − (1 − r/4)e−r/4].

This is just a multiple of the difference of the ground state of h0

and the first excited state, so it is certainly an analytic vector of
h0. Observe also that ψ ′(0) = ψ ′′(0) = 0, but ψ (3)(0) = 1 and
(h0ψ)′(0) = −1 are different from zero. Now since V ψ(r)
and V h0ψ(r) are elements of D(hk

0), V (r) must satisfy the
following equations, for every k � 0:(

hk+1
0 V ψ

)
(0) = 0,

(
hk

0V h0ψ
)
(0) = 0. (A1)
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This is an infinite system of linear equations for the derivatives
of V at r = 0. We will exploit that this system is triangular in
the pairs (A1). That is, we prove that V (j )(0) = 0 by induction.
Assume that we already know that V (j )(0) = 0 for 1 � j �
2k − 3, as we do for k = 2. Then Eqs. (A1) depend only on the
values of V (2k−2)(0) and V (2k−1)(0), and (A1) can be written as
A[V (2k−1)(0),V (2k−2)(0)] = 0, for some 2 × 2 matrix A, that
we will now determine. We will show that det(A) = 0, and so
the derivatives of V need to be zero.

To obtain A from Eqs. (A1) first note that if f (r) is a smooth
function with Taylor expansion at zero given by

f (r) = ar2n−1 + br2n + O(r2n+1), (A2)

then, assuming n � 2, −h0f has Taylor expansion,

−h0f (r) = ãr2n−3 + b̃r2n−2 + O(r2n−1),

with (̃a,̃b) = Tn(a,b), using the 2 × 2 matrix

Tn =
(

(2n − 1)(2n − 2) 0
1 2n(2n − 1)

)
.

Also, in the case n = 1, we evaluate

−h0f (0) = (1,2) · (a,b).

Thus, if f is given by (A2) for some n, then

hn
0f (0) = (−1)n[T ∗

n · · · T ∗
2 (1,2)] · (a,b). (A3)

One easily checks that

T ∗
n · · · T ∗

2 (1,2) =
⎛⎝(2n − 1)!

n∑
j=1

1

2j − 1
,(2n)!

⎞⎠ (A4)

by recursion.
Now, by the induction hypothesis, V ψ(r) has a Taylor

expansion of the form

V ψ(r) = v

3!(2k − 2)!
r2k+1 +

(
u

3!(2k − 1)!
− 4

3

v

4!(2k − 2)!

)
× r2k+2 + O(r2k+3),

where (v,u) = [V (2k−2)(0),V (2k−1)(0)]. Using this, together
with formula (A4) for n = k + 1, the left-hand side of the first
equation in (A1) becomes [after multiplication by (−1)k+1]

v

⎧⎨⎩
(

2k + 1

3

) k+1∑
j=1

1

2j − 1
− 4

3

(
2k + 2

4

)⎫⎬⎭ + u

(
2k + 2

3

)
.

Similarly, the second equation in (A1) yields

−v(2k − 1)

⎧⎨⎩k −
k∑

j=1

1

2j − 1

⎫⎬⎭ + u2k = 0.

The determinant of this system simplifies to

(
2k + 1

3

)⎧⎨⎩2

3
k(k + 1) + 2k

2k + 1
− 2

k∑
j=1

1

2j − 1

⎫⎬⎭
�

(
2k + 1

3

){
2

3
k(k + 1) + 2k

2k + 1
− 2k

}
.

This is strictly positive for k � 2, so we find that V (2k−2)(0) =
V (2k−1)(0) = 0 is the only solution to (A1). This completes the
proof. �

APPENDIX B: PROOF OF THEOREM 6

We express the operator HV with respect to the relative
coordinate v = x1 − x2 and center of mass coordinate u =
1
2 (x1 + x2):

HV = −1

2
�u − 2�v + 1

|v| + V

(
u + 1

2
v
)

+ V

(
u − 1

2
v
)

.

For simplicity we will denote

W (u,v) = V

(
u + 1

2
v
)

+ V

(
u − 1

2
v
)

.

The domain of HV equals that of the pure kinetic energy
operator D(HV ) = D(T ) = D(H0), as follows from the cri-
terion discussed in Lemma 1. Although an element ψ(u,v)
of this space need not be continuous, it can be restricted to
the hyperplane v = 0 using the theory of Sobolev, yielding a
square integrable function of u (see [[19], Theorem IX.38]).
As a consequence, ψ(u,v) satisfies

lim
v→0

|v| ψ(u,v) = 0. (B1)

If V is not constant, this property will lead to a contradiction
to D(H 4

0 ) = D(H 4
V ), because the latter implies that H 3

V Wψ ∈
D(T ), but this diverges at v = 0 leading to a nonzero limit in
(B1).

We now give the details of this argument. First, we will
see that with the given conditions on V , D(Hk) = D(Hk

0 )
holds for k = 2,3. For k = 2 we need to show that ψ ∈
D(T ) satisfies H0ψ ∈ D(H0) = D(T ) if and only if HV ψ ∈
D(HV ) = D(T ). This follows from the fact that W has two
bounded derivatives and thus maps D(T ) = D(H0) to itself.

The domain of the third power is given by those ψ for
which HV ψ ∈ D(H 2

V ) = D(H 2
0 ). An element ψ of D(H 3

0 ) is
thus in D(H 3

V ) if H 2
0 Wψ(u,v) is square integrable. Because

D(H 2
0 ) = D(H 2

V ) and W maps D(H0) to itself, we know that
H0WH0ψ(u,v) and WH 2

0 ψ(u,v) are square integrable. Thus
we need to show that

[H0,[H0,W ]]ψ =
[
H0,

[
− 2�v − 1

2
�u,W

]]
ψ

=
[

− 2�v − 1

2
�u,

[
− 2�v − 1

2
�u,W

]]
ψ

− 4(∇vW ) · v
|v|3 ψ

is square integrable, for ψ ∈ D(H 3
0 ). For the first term this

follows from the differentiability of W and the fact that
ψ ∈ D(T ) has two square-integrable derivatives. For the
second term, note that (∇vW )(u,0) = 0, so (∇vW ) · v/|v|3
diverges like 1/|v|, i.e., like the Coulomb potential, which is
well defined on D(T ). This shows that D(H 3

0 ) ⊂ D(H 3
V ) (the

converse inclusion is shown in the same way and plays no role
in our argument).

Now let ψ(u,v) ∈ D(H 4
0 ) be a function of the form

f (u)g(v) with smooth f (u) and g(v) = e|v|/4 for |v| < 1. This
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is clearly a possible choice, as g(v) is an eigenfunction of
−2�v + 1/|v| for |v| < 1, where the singularity lies. We will
see that all the functions of this type are in D(H 4

V ) only if V is
constant. Assume that this function ψ(u,v) is also an element
of D(H 4

V ). We then have HV ψ ∈ D(H 3
V ) = D(H 3

0 ) and can
argue as in the previous step that

[H0,[H0,W ]]ψ = [H0,[−2�v − 1
2�u,W ]]ψ ∈ D(T ).

Since the chosen ψ(u,v) is smooth in the variable u, it is easy
to see that terms in this commutator that involve derivatives in
this variable satisfy (B1). We deduce that

lim
v→0

|v|
[

− 2�v + 1

|v| ,[−2�v,W (u,v)]

]
ψ(u,v) = 0

must hold. This commutator evaluates to

4(��W )ψ + 16(∇�W ) · ∇ψ + 16 Tr[H(W )H(ψ)]

−4(∇W ) · v
|v|3 ψ,

where all the derivatives are taken only in the variable v and
H denotes the Hessian. If we choose a unit vector ω such that
v = |v|ω, the limit v → 0 certainly remains unchanged if we
average over this variable. The first two terms disappear in the
limit because ψ , ∇ψ , and the derivatives of W are bounded.
We conclude that

lim
|v|→0

|v|
4π

∫ (
4 Tr[H(W )H(ψ)] − (∇W ) · v

|v|3 ψ

)
dω = 0.

(B2)
To calculate the integral of the second term, we perform a
Taylor expansion of ∇W (u,v) at v = 0 (where it vanishes),
and find

lim
|v|→0

|v|
4π

∫
(∇W ) · v

|v|3 ψ(u,v)dω

= lim
|v|→0

1

4π

∫
ψ(u,v)

∇W (u,v)

|v| · ω dω

= ψ(u,0)

4π

∫
ω · H(W )(u,0)ω dω

= 1

3
f (u)�vW (u,0),

where we have used that

1

4π

∫
ωiωj dω = 1

3
δij .

For the first term in (B2) we use the explicit form

H(ψ)ij = f (u)e|v|/4

(
vivj

16|v|2 − vivj

4|v|3 + δij

4|v|
)

to obtain

lim
|v|→0

|v|
4π

∫
4 Tr[H(W )H(ψ)]dω

= f (u)�vW (u,0) − lim
|v|→0

f (u)

4π

∫
ω · H(W )(u,v)ω dω

= 2

3
f (u)�vW (u,0).

Since �vW (u,0) = 1
2�V (u) this adds up to the conclusion

that

lim
|v|→0

|v|
4π

∫ (
H 2

0 Wψ
)
(u,v) dω = 2

3
f (u)�V (u) = 0.

Since the function f (u) was arbitrary, this means that V must
be harmonic. Since it was also assumed to be bounded, V is
constant. �

APPENDIX C: PROOF OF THEOREM 7

In this Appendix we prove Theorem 7 by studying precisely
for which k we have D(Hk

0 ) = D(Hk
V ). From Theorem 6 we

know that this does not hold for k � 4. To obtain sharper
results, we will use the concept of the domain of a half-integer
power of an operator. For the case we treat here, the following
may serve as a definition. The domain D(T 1/2) consists of
those square-integrable �(X) for which∫

R3N

|∇X�(X)|2dX =
∫
R3N

|K|2|�̂(K)|2dK

is finite. We have D(T 1/2) = D(H 1/2
0 ) = D(H 1/2

V ) and define
recursively D(Hk+1/2

0 ) to be those � ∈ D(H 1/2
0 ) such that

H0� ∈ D(Hj+1/2
0 ) for every j < k, and analogously for HV .

Lemma 2. Let H0 be the Hamiltonian with Coulomb
interaction w(x − y) = 1/|x − y| of Theorem 7 and let V (x)
be a function with four bounded derivatives on R3. If � is
symmetric or antisymmetric, then( N∑

j=1

[H0,[H0,V (xj )]]�
)

(x1, . . . ,xN ) (C1)

is square integrable for every � ∈ D(H0) and we have
D(H 3

0 ) = D(H 3
V ).

If � is antisymmetric, we additionally have that |xi −
xj |−2�(x1, . . . ,xN ) is square integrable and � ∈ D(T 3/2) for
every � ∈ D(H 3/2

0 ), as well as D(H 7/2
0 ) = D(H 7/2

V ).
This lemma tells us that for a sufficiently smooth potential

V (x), we have in the symmetric case D(H 3
0 ) = D(H 3

V ). In
Theorem 6 we have shown that D(H 4

0 ) = D(H 4
V ), except

if V is constant. However, the same proof also shows
that D(H 7/2

0 ) = D(H 7/2
V ). In the antisymmetric case, we

have D(H 7/2
0 ) = D(H 7/2

V ) and a reasoning similar to that of
Theorem 6 shows that D(H 4

0 ) = D(H 4
V ) as well.

Proof. First, calculate the commutator

N∑
j=1

[H0,[H0,V (xj )]]

=
N∑

j=1

⎛⎝ N∑
k=1

[−�xk
+ V0(xk),[−�xj

,V (xj )]]

+
∑

1��<k�N

[|x� − xk|−1,[−�xj
,V (xj )]]

⎞⎠. (C2)

When the first term acts on �(X) the result is square integrable,
because � ∈ D(T ) has two square-integrable derivatives. The
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second commutator equals

[|x� − xk|−1,[−�xj
,V (xj )]]

= 2 ∇xj
|x� − xk|−1 · ∇xj

V (xj )

= ∇xj
V (xj ) ·

(
δj�

x� − xk

|x� − xk|3 − δjk

x� − xk

|x� − xk|3
)

.

Taking the sum over j then gives

x� − xk

|x� − xk|3 · [∇V (x�) − ∇V (xk)].

Since V (x) has bounded second derivatives, the function
above is smaller in modulus than |x� − xk|−1 times a bounded
function. This implies that � ∈ D(T ) multiplied by this
function is square integrable. Thus the action of (C2) on
� ∈ D(H 3

0 ) yields a square-integrable function, which implies
� ∈ D(H 3

V ) as argued in the proof of Theorem 6. It is obvious
from these calculations that the same holds for the double
commutator of

∑N
j=1 V (xj ) with HV and we conclude that

D(H 3
0 ) = D(H 3

V ).
Now let �(X) be antisymmetric, so that it vanishes if

xi = xj . We will show that then |xi − xj |−2�(X) is square
integrable for � ∈ D(T ). To see why this implies that
any � ∈ D(H 3/2

0 ) is an element of D(T 3/2), first write
T = H0 − ∑N

j=1 V0(xj ) − ∑
1�j<k�N |xj − xk|−1. Then note

that H0� ∈ D(T 1/2), by definition, and
∑N

j=1 V0(xj )� ∈
D(T 1/2), by regularity of V0(x). We are left with the interaction
term, and it remains to check that the partial derivatives of∑

1�j<k�N |xj − xk|−1�(X) are square integrable. The deriva-
tives of �(X) define elements of D(T 1/2), and multiplication
by |xj − xk|−1 yields a square-integrable function (see [[19],
p. 169]). Finally, if a derivative acts on |xj − xk|−1, the
resulting term is bounded in modulus by a constant times
|xj − xk|−2�(X).

Now, back to the square integrability of |xi − xj |−2�(X).
We will prove this by showing an inequality for a function
f (y) of the relative coordinate y = xi − xj , which can then
be integrated over the remaining coordinates to obtain square
integrability of |xi − xj |−2�(X). Using antisymmetry, we may

write f (y) = y
2

∫ 1
−1(∇f )(ty)dt , and the Minkowski inequality

[[21], Theorem 2.4] gives∫
R3

|f (y)|2
|y|4 dy �

∫
R3

1

4|y|2
∣∣∣∣∫ 1

−1
(∇f )(ty)dt

∣∣∣∣2

dy

�
[∫ 1

−1

(∫
R3

|(∇f )(ty)|2
4|y|2 dy

)1/2

dt

]2

.

Hardy’s inequality [[19], p. 169] implies∫
R3

|(∇f )(ty)|2
4|y|2 dy �

3∑
k,�=1

∫
R3

t2|(∂yk
∂y�

f )(ty)|2dy.

Changing variables z = ty and performing the t integral then
gives ∫

R3

|f (y)|2
|y|4 dy � 4

∫
R3

3∑
k,�=1

|(∂yk
∂y�

f )(z)|2dz.

This shows that |y|−2f (y) is square integrable if f (y) has
two square-integrable derivatives, and thus |xi − xj |−2�(X)
is square integrable for � ∈ D(T ).

To prove the inclusion of D(H 7/2
0 ) in D(H 7/2

V ), it remains
to show that H 2

0 HV � ∈ D(T 1/2) for all � ∈ D(H 7/2
0 ). By the

arguments in the proof of Theorem 6 this is equivalent to
showing that

∇xi

N∑
j=1

[H0,[H0,V (xj )]]�(X) (C3)

is square integrable for any i � N . From the formulas for the
commutator we see that the only nontrivial terms are

∇x�

x� − xk

|x� − xk|3 · [∇V (x�) − ∇V (xk)]�(X),

but these can be controlled by combining all the bounds we
have just discussed. Again, the argument for the converse
inclusion is the same. �

Coming back to the proof of Theorem 7, we first need to
show that

f (t) =
∫
R3

ρ(t,x) ϕ(x) dx

= N〈�(t)|ϕ(x1)�(t)〉
has five (six if �0 is antisymmetric) derivatives for V (t,x)
satisfying the conditions on Vm, m = 1,2 of Theorem 7.
Since �0 ∈ D(H 4

0 ), Lemma 2 implies that �0 ∈ D(H 3
V ), so

we immediately have existence of three derivatives of f (t).
Using the (anti)symmetry of �0, the third derivative equals

d3

dt3
f (t) = N〈�(t)| − [V̇ (t,x1),[H0,ϕ(x1)]]�(t)〉

+ i

N∑
j=1

{〈HV �(t)| − [HV ,[HV ,ϕ(xj )]]�(t)〉

− 〈�(t)| − [HV ,[HV ,ϕ(xj )]]HV �(t)〉}.
Let A denote the operator

A = −
N∑

j=1

[HV ,[HV ,ϕ(xj )]] = −
N∑

j=1

[HV ,[H0,ϕ(xj )]].

A is a symmetric operator, so we can write

d3

dt3
f (t) = − 2 Im[〈HV �(t)|A�(t)〉]

− 2N〈�(t)|[(∇V̇ (x1) · ∇ϕ(x1)]�(t)〉. (C4)

Equation (C1) (with V = ϕ), together with differentiability
of V , implies that A maps functions in D(T ) to square-
integrable functions. The same obviously holds for the first
four time derivatives of A. This shows that A�(t) has
two time derivatives which are square-integrable functions.
Consequently, the expression (C4) can be differentiated twice
in time, and f (t) five times.

Those terms in the fifth derivative of f (t) that involve a time
derivative of V are once again differentiable, by the argument
above. Using the symmetry of A, the remaining terms can be
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brought into the form

2 Im
[〈
H 3

V �(t)
∣∣A�(t)

〉 − 3
〈
H 2

V �(t)
∣∣AHV �(t)

〉]
. (C5)

The second term is clearly differentiable because �(t) ∈
D(H 3

0 ). To treat the first term of (C5), note that, if �0 is
antisymmetric, A�0 is an element of D(T 1/2) = D(H 1/2

V ) by
(C3) and we can write〈

H 3
V �(t)

∣∣A�0
〉

= 〈
(T + 1)−1/2H 3

V �(t)
∣∣(T + 1)1/2A�0

〉
.

The function (T + 1)−1/2H 3
V �(t) is differentiable in t with

square-integrable derivative, as follows from the argument of
Theorem 1 applied to the domain D(H 7/2

0 ) of HV (t) in the
Hilbert space D(H 5/2

0 ). Using this, one easily sees that the
difference quotient for (C5) has a limit, in the same way one
proves the product rule for the derivative. This shows that (C5)
is differentiable, and hence the sixth derivative of f (t) can be
taken.

We have thus shown that we can take the first five (six)
derivatives that were used in the proof of Theorem 3 and
we can follow that proof up to this order. The argument
goes through essentially unchanged, though there are some
subtleties regarding the regularity of the functions involved
that we comment on below.

First of all, it is important to remark that ρ(0,x) is a
continuous function, although �0 might not be, because the
evaluation of �0(x1, . . . ,xN ) at x1 = x is a square-integrable
function of x2, . . . ,xN that depends continuously on x (this
follows from [[19], Theorem IX.38]). Hence, the connected
components of the set {ρ(0,x) > 0} are open, and∫

ρ(0,x)|∇(V1 − V2)|2(x)dx = 0

implies that V1(x) − V2(x) is constant on every component.
Finally we need to show that for k � 3 (k � 4 in the

fermionic case)

dk+2

dtk+2
[f1(t) − f2(t)]|t=0

= −2N
〈
�0

∣∣[∇∂k
t (V1 − V2)(x1)

∣∣
t=0 · ∇ϕ(x1)

]
�0

〉
,

where fm(t) denotes the function f (t) with V = Vm, using
that for l < k,∫

R3

∣∣∇∂�
t (V1 − V2)

∣∣ρ(0,x)dx = 0.

In the proof of Theorem 3 this was shown using smoothness
of �0, which is no longer given. We will now discuss how to
adapt these arguments for the fermionic case and k = 4, which
is the most difficult case.

The term with no “explicit” time derivatives in f (6)
m , i.e., the

term without time derivatives on Vm, is [cf. (C5)]

gm(t) := 2 Re
{〈

H 4
Vm

�
∣∣Am�

〉 − 4
〈
H 3

Vm
�

∣∣AmHVm
�

〉
+ 3

〈
H 2

Vm
�

∣∣AmH 2
Vm

�
〉}

.

Here Am denotes the operator A with V = Vm and the term
〈H 4

Vm
�|Am�〉 has to be understood in the sense of the pairing

between Am�(t) ∈ D(T 1/2) and the distribution H 4
Vm

�(t), as

was done in showing existence of the sixth derivative above.
The other pairings are standard scalar products.

We will only analyze gm in detail and show that g1(0) −
g2(0) = 0. The other terms in f (6) have explicit time deriva-
tives and therefore fewer operators. Therefore all scalar
products are immediately understandable as integrals and
also the algebra is slightly simpler—due to the fewer factors.
However, the basic idea of the calculation is the same.

Write W = V2 − V1 and observe that since∫
ρ(0,x)|∇W |(x)dx = 0, we have

N∑
j=1

|∇W |(xj )�0 = 0.

Actually, even more is true, namely

N∑
j=1

(∣∣|∇W |(xj )Hs
V1

�0

∣∣ + ∣∣|∇W |(xj )∇Hs
V1

�0

∣∣) = 0. (C6)

with s ∈ {1,2,3}. Of course, a similar identity holds for V2,
and one can even have mixed products of the two operators.
As in the the proof of Theorem 3, these identities follow from
the fact that HV1 is a local operator, so that Hs

V1
�0 = 0 on the

open set where ∇W does not vanish. Here we used that Hs
V1

�0

(and ∇Hs
V1

�0) defines a function (in contrast to a distribution).
Similarly to (C6) we have

A1� = A2� (C7)

and

[W,Am]� = 0, (C8)

for � = �0 or
∏k

s=1 HVjs
�0, with k � 3 and js ∈ {1,2}. The

equality (C7) allows us to replace A2 by A1—which we
abbreviate by A—everywhere in g2(0). Notice also that using
(C6) we get for k � 4,

Hk
V2

�0 = (
HV1 + W

)k
�0 =

∑
j�k

(
k

j

)
WjH

k−j

V1
�0.

Therefore,

g2(0) − g1(0)

= 2 Re
{
4
〈
WH 3

V1
�0

∣∣A�0
〉 + 6

〈
W 2H 2

V1
�0

∣∣A�0
〉

+ 4
〈
W 3HV1�0

∣∣A�0
〉 + 〈

W 4�0|A�0
〉

− 4
〈(
H 3

V1
+ 3WH 2

V1
+ 3W 2HV1 + W 3

)
�0

∣∣AW�0
〉

− 4
〈(

3WH 2
V1

+ 3W 2HV1 + W 3
)
�0

∣∣AHV1�0
〉

+ 3
〈(

2WHV1 + W 2
)
�0

∣∣A(
H 2

V1
+ 2WHV1 + W 2

)
�0

〉
+ 3

〈
H 2

V1
�0

∣∣A(
2WHV1 + W 2

)
�0

〉}
.

At this point notice that all involved vectors belong to the
Hilbert space L2, i.e., there are no distributions anymore.
A tedious calculation shows that this term vanishes. Let us
only argue that the terms with four powers of W cancel, the
argument for the others being similar (notice though, that for
the other powers of W , we use the fact that we take the real
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part to reach the conclusion). That is we will prove that

0 = Re{〈W 4�0|A�0〉 − 4〈W 3�0|AW�0〉
+ 3〈W 2�0|AW 2�0〉}.

But this is easy, since using (C8) we get

〈W 4�0|A�0〉 − 4〈W 3�0|AW�0〉 + 3〈W 2�0|AW 2�0〉
= (1 − 4 + 3)〈W 2�0|AW 2�0〉 = 0.

This concludes the proof of Theorem 7. �
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