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We have employed both the Z-vector method and the expectation-value approach in the relativistic coupled-
cluster framework to calculate the scalar-pseudoscalar (S-PS) P,T -odd interaction constant Ws and the effective
electric field Eeff experienced by the unpaired electron in the ground electronic state of RaF. Further, the magnetic
hyperfine structure constants of 223Ra in RaF and 223Ra + are also calculated and compared with the experimental
values wherever available to judge the extent of the accuracy obtained with the employed methods. The outcome
of our study reveals that the Z-vector method is superior to the expectation-value approach in terms of accuracy
obtained for the calculation of ground-state property. The Z-vector calculation shows that RaF has a high Eeff

(52.5 GV/cm) and Ws (141.2 kHz), which makes it a potential candidate for the electric dipole moment of the
electron (eEDM) experiment. An estimation of uncertainty associated with our final results is made, and it is
found that it lies below 10%.
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I. INTRODUCTION

The ongoing accelerator-based experiments in the search
for new physics could solve some of the unanswered problems
of fundamental physics like matter-antimatter asymmetry. A
complement to these high-energy experiments is the search
for violation in spatial inversion (P) and time-reversal (T )
symmetries in nuclei, atoms, or molecules in the low-energy
domain using nonaccelerator experiments [1–7]. One such
P,T -violating interaction results in the electric dipole moment
of the electron (eEDM) [8–11]. The eEDM predicted by
the standard model (SM) of elementary particle physics is
too small (<10−38 e cm) [12] to be observed by current
experiments. However, many extensions of the SM predict the
value of eEDM to be in the range of 10−26–10−29 e cm [13],
and the sensitivity of the modern eEDM experiment also lies in
the same range. Until now, the experiment done by the ACME
collaboration [11] using ThO has yielded the best upper bound
limit of eEDM. The high sensitivity of the modern eEDM
experiment is mainly due to the fact that heavy paramagnetic
diatomic molecules offer a very high internal effective electric
field Eeff , which enhances the eEDM effects [14,15]. In the
experiment, both eEDM and the coupling interaction between
the scalar-hadronic current and the pseudoscalar electronic
current contribute to the P,T -odd frequency shift. Therefore,
it is impossible to decouple the individual contribution from
these two effects in a single experiment. However, it is possible
to untwine these two contributions from each other, and
an independent limit on the value of eEDM de and scalar-
pseudoscalar (S-PS) coupling constant ks can be obtained
by using data from two different experiments, as suggested
by Dzuba et al. [16]. Therefore, accurate values of Eeff and
the S-PS P,T -odd interaction constant Ws are needed since
these two quantities cannot be measured by means of any
experiment. Therefore, one has to rely on an accurate ab initio
theory that can simultaneously take care of the effects of
relativity and electron correlation for the calculation of these
quantities.

The best way to include the effects of special relativ-
ity in the electronic structure calculations is to solve the
Dirac-Hartree-Fock (DHF) equation in the four-component
framework. The DHF method considers an average electron-
electron interaction and thus misses the correlation between
electrons having the same spin. On the other hand, the
single-reference coupled-cluster (SRCC) method is the most
preferred many-body theory to incorporate the dynamic part
of the electron correlation. The calculation of properties in
the SRCC framework can be done either numerically or
analytically. In the numerical method [also known as the
finite-field (FF) method], the coupled-cluster amplitudes are
functions of the external field parameters [17], and thus, for the
calculations of each property, a separate set of CC calculations
is needed. The error associated with the FF method is also
dependent on the method of calculation, i.e., the number of
data points considered for the numerical differentiation. On
the contrary, in the analytical method, the CC amplitudes
are independent of the external field of perturbation, and
therefore, one needs to solve only one set of CC equations
to calculate any number of properties. The normal CC
(NCC) method, being nonvariational, does not satisfy the
generalized Hellmann-Feynman (GHF) theorem, and thus,
the expectation value and the energy derivative approach are
two different formalisms to calculate first-order properties.
However, the energy derivative in the NCC framework is
the corresponding expectation value plus some additional
terms, which make it closer to the property value obtained
in the full configuration interaction (FCI) method. Thus,
the property value obtained in the energy-derivative method
is much more reliable than the corresponding expectation-
value method. Another disadvantage of the expectation-value
method is that it leads to a nonterminating series, and any
truncation further introduces an additional error. The Z-vector
method [18,19] (an energy-derivative method), on the other
hand, leads to a naturally terminating series at any level
of approximation. The higher-order derivative in the NCC
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framework can be calculated by using the Lagrange multiplier
method [20], and for the first-order energy derivative, it leads
to equations identical to those of the Z-vector method. It is
worth noting that there are alternative options like expectation-
value CC (XCC) [21,22], unitary CC (UCC) [23,24], and
extended CC (ECC) [25–27] to solve the SRCC equation. All
these methods are known in the literature as the variational
coupled-cluster (VCC) method [28]. These VCC methods
are well established in the nonrelativistic framework but
are not very popular in the relativistic domain; a few are
documented in the literature, such as relativistic UCC by Sur
et al. [29,30], which is applicable only for the purpose of
atomic calculations. Recently, Sasmal et al. implemented ECC
in the four-component relativistic domain to calculate the mag-
netic hyperfine structure (HFS) constants of both atoms and
molecules in their open-shell ground-state configuration [31].
Because the ECC method is variational, it satisfies the GHF
theorem; therefore, the expectation value and the energy-
derivative approach are identical to each other. However, in
the ECC method amplitude equations for the excitation and
deexcitation operators are coupled to each other, whereas in
the Z-vector method, the amplitude equations of the excitation
operator are decoupled from the amplitude equations of the
deexcitation operator. This accelerates the convergence in
the Z-vector method with a lower computational cost than
the ECC.

In this work, we have calculated Eeff and Ws of RaF in
its ground electronic (2�) state using the Z-vector method
in the CC framework. We also calculated these properties
in the expectation-value method to show the superiority of
the Z-vector method over the expectation-value method. We
have chosen the RaF molecule for the following reasons:
This molecule has been proposed for the P-odd and P,T -
odd experiment [32–34] due to its high Schiff moment,
Eeff , and Ws. The Eeff of the 2� state of RaF is even
higher than the ground state (2�) of YbF. Therefore, more
precise values of Eeff and Ws and their ratio are very
important for the eEDM experiment using this molecule.
RaF can be directly laser cooled as it has a high diagonal
Franck-Condon matrix element between the ground state
and first excited electronic state, and the corresponding
transition frequency lies in the visible region with a reasonable
lifetime [32].

This paper is organized as follows. A brief overview
of the expectation-value and the Z-vector methods in the
CC framework, including concise details of the properties
calculated in this work, is given in Sec. II. Computational
details are given in Sec. III. We present our calculated
results and discuss them in Sec. IV before making concluding
remarks. Atomic units are used consistently unless stated
otherwise.

II. THEORY

A. Expectation value and Z-vector method

The DHF wave function is the best description of the
ground state in a single-determinant theory, and thus, it is
used as a reference function for the correlation calculations
where the Dirac-Coulomb (DC) Hamiltonian is used, which is

given by

HDC =
∑

i

[
− c(�α · �∇)i + (β − 14)c2

+V nuc(ri) +
∑
j>i

1

rij

14

]
. (1)

Here, α and β are the usual Dirac matrices, c is the speed
of light, 14 is the 4×4 identity matrix, and the sum is
over all the electrons, which is denoted by i. The Gaussian
charge distribution is used as the nuclear potential function
V nuc(ri). The DHF method approximates the electron-electron
repulsion in an average way and thus misses the correlation
between same-spin electrons. In this article, we have used
the SRCC method to incorporate the dynamic part of the
electron correlation. The SRCC wave function is given
by |�cc〉 = eT |�0〉, where �0 is the DHF wave function
and T is the coupled-cluster excitation operator, which is
given by

T = T1 + T2 + · · · + TN =
N∑
n

Tn, (2)

with

Tm = 1

(m!)2

∑
ij ...ab...

t ab...
ij ... a†

aa
†
b . . . aj ai, (3)

where i,j (a,b) are the hole (particle) indices and tab···
ij ··· are

the cluster amplitudes corresponding to the cluster operator
Tm. In the coupled-cluster with single and double excitations
(CCSD) model, T = T1 + T2. The equations for T1 and T2 are
given by〈

�a
i

∣∣(HNeT )c|�0〉 = 0,
〈
�ab

ij

∣∣(HNeT )c|�0〉 = 0, (4)

where HN is the normal ordered (DC) Hamiltonian and the
subscript c means only the connected terms exist in the
contraction between HN and T . Size extensivity is ensured
by this connectedness.

Once the cluster amplitudes are solved, the expecta-
tion value of any property operator of interest 〈ON 〉 can
be calculated by the following expression, as given in
Refs. [35,36]:

〈ON 〉 = 〈�cc|ON |�cc〉
〈�cc|�cc〉 = 〈�0e

T † |ON |eT �0〉
〈�0|eT †

eT |�0〉
= 〈�0|(eT †

ONeT )c|�0〉. (5)

The above series is a nonterminating series. Since the
dominant contribution comes from the linear terms, the
linear approximation is the most favored choice. A detailed
diagrammatic expression considering only linear terms within
the CCSD approximation is given in Fig. 1, and the corre-
sponding algebraic equation is given in Eq. (6). We have used
Einstein’s summation convention; that is, the repeated indices
are summed over in the expression. The t amplitudes with
particle (hole) indices in the subscript (superscript) are the
corresponding amplitudes of the T † operator. It is interesting to
note that there is no possible diagram (or algebraic expression)
for T

†
2 O or OT2 since closed connected diagrams cannot be
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FIG. 1. Diagrams of the expectation-value approach using the
linear truncation scheme.

constructed by these two expressions.

〈O〉 = O(i,a)tai + t iaO(a,i) + t iaO(a,b)tbi − t iaO(j,i)taj

+ t
ij

abO(b,j )tai + t iaO(j,b)tab
ij

− 1
2 t

ij

abO(k,j )tab
ik + 1

2 t
ij

abO(b,c)tac
ij . (6)

The CC amplitudes are solved in a nonvariational way
[using Eq. (4)], and thus, the CC energy is not minimized
with respect to the determinantal coefficient and the molecular
orbital coefficient in the expansion of the many-electron
correlated wave function for a fixed nuclear geometry [17].
Therefore, the calculation of the CC energy derivative needs
to include the derivative of the energy with respect to these
two coefficients in addition to the derivative of these two
parameters with respect to the external field of perturbation.

However, the derivative terms associated with the deter-
minantal coefficient can be integrated by the introduction
of a perturbation-independent linear operator � [19]. �

is an antisymmetrized deexcitation operator whose second
quantized form is given by

� = �1 + �2 + · · · + �N =
N∑
n

�n, (7)

where

�m = 1

(m!)2

∑
ij ···ab···

λ
ij ···
ab···a

†
i a

†
j · · · abaa, (8)

where λ
ij ···
ab··· are the cluster amplitudes corresponding to the

operator �m. A detailed description of the � operator and the
amplitude equation is given in Ref. [19]. In the CCSD model,
� = �1 + �2. The explicit equations for the amplitudes of
the �1 and �2 operators are given by

〈�0|[�(HNeT )c]c
∣∣�a

i

〉 + 〈�0|(HNeT )c
∣∣�a

i

〉 = 0, (9)

〈�0|[�(HNeT )c]c
∣∣�ab

ij

〉 + 〈�0|(HNeT )c
∣∣�ab

ij

〉
+〈�0|(HNeT )c

∣∣�a
i

〉〈
�a

i

∣∣�∣∣�ab
ij

〉 = 0. (10)

It is interesting to note that the third term of Eq. (10) is of the
nature of the disconnected type and it eventually produces one
disconnected diagram in the �2 amplitude equation (for details
see Refs. [19,37]). Although the diagram is disconnected,
it does not have any closed parts. This ensures that the

OT1

Λ2OT2Λ1OT1T1

Λ2OT1T2

Λ1OT1 Λ1OT2Λ1O

FIG. 2. Diagrams of the energy derivative in the Z-vector method.

corresponding energy diagram is linked, which restores the
size extensivity. The energy derivative can be given as

	E′ = 〈�0|(ONeT )c|�0〉 + 〈�0|[�(ONeT )c]c|�0〉, (11)

where ON is the derivative of the normal ordered perturbed
Hamiltonian with respect to the external field of perturbation.
A detailed diagrammatic expression is given in Fig. 2, and the
corresponding algebraic equation is given by

	E′ = O(i,a)tai + λi
aO(a,i) + λi

aO(a,b)tbi + λi
aO(j,i)taj

+ λi
aO(j,b)tab

ij − λi
aO(j,b)tbi taj − 1

2λ
ij

abO(k,j )tab
ik

+ 1
2λ

ij

abO(b,c)tac
ij − 1

2λik
bcO(j,a)tai tbc

jk

− 1
2λjk

acO(i,b)tai tbc
jk . (12)

B. One-electron property operators

Eeff can be obtained by evaluating the following matrix
element:

Eeff = |Wd
| =
∣∣∣∣〈�
|

n∑
j

Hd (j )

de

|�
〉
∣∣∣∣, (13)

where 
 is the component of total angular momentum along
the molecular axis and �
 is the wave function corresponding
to the 
 state. n is the total number of electrons, and Hd is the
interaction Hamiltonian of de with the internal electric field
and is given by [38,39],

Hd = 2icdeγ
0γ 5p2, (14)

where γ are the usual Dirac matrices and p is the momentum
operator.

The matrix element of the scalar-pseudoscalar P,T -odd
interaction constant Ws is given by

Ws = 1


ks
〈�
|

n∑
j

HSP(j )|�
〉, (15)

where ks is the dimensionless electron-nucleus scalar-
pseudoscalar coupling constant, which is defined as Zks =
(Zks,p + Nks,n), where ks,p and ks,n are electron-proton and
electron-neutron coupling constants, respectively.
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The interaction Hamiltonian is defined as [40]

HSP = i
GF√

2
Zksγ

0γ 5ρN (r), (16)

where ρN (r) is the nuclear charge density normalized to unity
and GF is the Fermi constant. The calculation of the above
matrix elements depends on an accurate wave function in the
core (near-nuclear) region, and the standard way to determine
the accuracy of the electronic wave function in that region is
to compare the theoretically calculated HFS constant with the
experimental value. The magnetic hyperfine constant of the
J th electronic state of an atom is given by

AJ = �μk

IJ
〈�J |

n∑
i

( �αi × �ri

r3
i

)
|�J 〉, (17)

where �J is the wave function of the J th electronic state, I

is the nuclear spin quantum number, and �μk is the magnetic
moment of the nucleus k. For a diatomic molecule, The parallel
(A‖) and perpendicular (A⊥) magnetic hyperfine constants of
a diatomic molecule can be written as

A‖(⊥) = �μk

I

〈�
|

n∑
i

( �αi × �ri

r3
i

)
z(x/y)

|�
(−
)〉, (18)

where the value of 
 is 1/2 for the ground electronic state (2�)
of RaF.

III. COMPUTATIONAL DETAILS

A locally modified version of the DIRAC10 [41] program
package is used to solve the DHF equation and to construct the
one-body and two-body matrix elements and the one-electron
property integrals of interest. The finite size of a nucleus with
a Gaussian charge distribution is considered as the nuclear
model, where the nuclear parameters [42] are set to the
default values in DIRAC10. Small-component basis functions
are generated from the large component by applying the
restricted kinetic balance (RKB) [43] condition. The basis
functions are represented in a scalar basis, and unphysical

solutions are removed by means of the diagonalization of the
free-particle Hamiltonian. This generates the electronic and
positronic solutions in a 1:1 manner. In our calculations, we
have used the following uncontracted basis sets: in the triple
zeta (TZ) basis, dyall.cv3z [44] for Ra and cc-pCVTZ [45] for
F, and in the quadruple zeta (QZ) basis, dyall.cv4z [44] for Ra
and cc-pCVQZ [45] for F. In the TZ basis, three calculations
are done for the magnetic HFS constant of Ra+ by using 51,
69, and 87 correlated electrons, and these are denoted by A, B,
and C, respectively. In the QZ basis, three more calculations
are done by using 51, 69, and 87 correlated electrons, and
these are denoted by D, E, and F, respectively. The properties
of RaF are calculated using two different bases. In the TZ
basis, three calculations are done by using 61, 79, and 97
correlated electrons, and those are denoted by G, H, and I,
respectively, and similarly, in the QZ basis, the calculations
using 61, 79, and 97 correlated electrons are denoted by J, K,
and L, respectively. The bond length of RaF is taken as 4.23a0

(2.24 Å) [34] in all our calculations.

IV. RESULTS AND DISCUSSION

The aim of the present study is to exploit the RaF molecule
for the eEDM experiment and to provide more accurate values
of the P,T -odd interaction constants of RaF. Since there are
no experimental analogs of the P,T -odd interaction constants
like Eeff and Ws, the accuracy of these theoretically obtained
quantities can be assessed by comparing the theoretically
obtained HFS values with the corresponding experimental
values. Unfortunately, the experimental HFS results of Ra in
RaF are not available. Therefore, we compare the experimental
HFS value of 223Ra + [46,47] with the value obtained by theory
using the same basis of Ra as used for the calculation of RaF.

In Table I, we present the information regarding the
employed basis sets, the cutoff used for occupied and virtual
orbitals, and the number of active spinors for the correlation
calculation. We also compiled the correlation energy obtained
from second-order many-body perturbation theory [MBPT(2)]
and the CCSD method.

TABLE I. Cutoff used and correlation energy of the ground state of Ra+ and RaF in different basis sets.

Basis Cutoff (a.u.) Spinor Correlation energy (a.u.)

Name Nature Ra F Occupied Virtual Occupied Virtual MBPT(2) CCSD

Ra+

A TZ dyall.cv3z −30 500 51 323 −1.74841495 −1.57235409
B TZ dyall.cv3z −130 500 69 323 −2.42790147 −2.20700361
C TZ dyall.cv3z 500 87 323 −2.78897499 −2.55468917
D QZ dyall.cv4z −30 20 51 349 −1.43221422 −1.31515023
E QZ dyall.cv4z −130 20 69 349 −1.49747209 −1.37242346
F QZ dyall.cv4z 20 87 349 −1.50382815 −1.37827038

RaF
G TZ dyall.cv3z cc-pCVTZ −30 500 61 415 −2.09671991 −1.91684123
H TZ dyall.cv3z cc-pCVTZ −130 500 79 415 −2.77624243 −2.55153111
I TZ dyall.cv3z cc-pCVTZ 500 97 415 −3.13733209 −2.89923481
J QZ dyall.cv4z cc-pCVQZ −30 20 61 449 −1.76368821 −1.63988444
K QZ dyall.cv4z cc-pCVQZ −130 20 79 449 −1.82908547 −1.69728677
L QZ dyall.cv4z cc-pCVQZ 20 97 449 −1.83544557 −1.70314714
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TABLE II. Magnetic hyperfine coupling constant (in MHz) of
223Ra +.

Basis Expectation Z vector Expt. [46,47]

A 3458 3418
B 3504 3464
C 3547 3506 3404(2)
D 3434 3394
E 3448 3409
F 3453 3414

In Table II, we present the ground state (2S) magnetic HFS
constant value of 223Ra + using both expectation-value and
Z-vector methods. Our results are compared with the available
experimental value [46,47]. The deviations of the Z vector
and expectation values from the experiment are presented in
Fig. 3. It is clear that the deviations of the expectation-value
method are always greater than those of the Z-vector method.
This is expected because the Z vector is a better method than
the expectation-value method for the ground-state property;
in fact, the Z-vector value is the corresponding expectation
value plus some additional terms which make it closer to the
FCI property value. It is interesting to note that when we go
from the TZ to QZ basis with the same number of correlated
electrons (i.e., from A to D, B to E, and C to F), the relative
deviation of both the Z vector and expectation value decreases.
This is because QZ, in comparison to TZ, further improves the
configuration space by adding one higher angular momentum
basis function. It is also interesting to see that in the TZ basis,
if we go from A to B and B to C, the addition of 18 electrons
(4s + 3d + 4p and 1s-3p) changes the Z-vector HFS constant
by 46 and 42 MHz. Similarly, in the QZ basis, as we go from
D to E and E to F, the addition of 18 electrons changes the Z-
vector HFS constant by 15 and 5 MHz. From this observation,
we can note that the core polarization plays a definite role in the
correlation contribution of the HFS constant and the effect is
severe for lower basis sets. Further, the enlargement of the basis
set and the addition of core electrons have opposite effects in
the calculated HFS value of Ra+. However, The magnetic HFS
constant obtained in the all-electron Z-vector calculation using

FIG. 3. Comparison of relative deviations between the
expectation-value and Z-vector results of the magnetic HFS constant
of 223Ra +.

TABLE III. Molecular dipole moment μ and magnetic HFS
constants of 223Ra in RaF. Expect. = expectation value.

μ (D) A⊥ (MHz) A‖ (MHz)

Basis Expect. Z vector Expect. Z vector Expect. Z vector

G 3.7059 3.7220 2031 1987 2123 2078
H 3.7028 3.7207 2059 2014 2152 2107
I 3.7017 3.7201 2084 2038 2178 2132
J 3.8404 3.8474 2029 1982 2119 2072
K 3.8375 3.8459 2037 1991 2128 2082
L 3.8374 3.8459 2040 1993 2131 2085

the QZ basis (basis F) is very close to the experimental value
(δ% = 0.29).

The properties described by Eqs. (13), (15), and (18)
strongly depend on the electronic configuration of the given
(heavy) atom and are also known as atom-in-compound (AIC)
properties [48]. The accuracy of the theoretically calculated
AIC properties depends on the accurate evaluation of the
electron density near the atomic core region. From the accuracy
of our calculated HFS constant of Ra+ (δ% = 0.29), we can
note that the all-electron Z-vector calculation produces an
accurate wave function in the vicinity of the Ra nucleus, and
we also expect the same kind of accuracy for the RaF molecule.

We have calculated the molecular-frame dipole moment μ

of RaF and perpendicular (A⊥) and parallel (A‖) magnetic
HFS constants of 223Ra in RaF using both expectation-value
and Z-vector methods. The results are compiled in Table III.
From Table III, it is clear that inclusion of more core electrons
decreases the value of μ but increases the value of the magnetic
HFS constants of 223Ra in RaF. On the other hand, if we go
from the TZ to QZ basis, the μ value is increased, but the
magnetic HFS values are decreased. This observation shows
that the increase of correlation space by either the addition of
core electrons or higher angular momentum wave functions
has an opposite effect on the near-nuclear and outer-region
parts of the molecular wave function of RaF. We can also note
that the enlargement of the basis set and core electrons has
opposite effects in the properties of RaF.

In Table IV, we present the two P,T -odd interaction
constants, namely Eeff and Es. The Eeff value of RaF in the QZ
basis using the all-electron Z-vector calculation (basis L) is
52.5 GV/cm. This Eeff value of RaF is even higher than the Eeff

value of YbF in its ground state [49–54]. The Ws value of RaF

TABLE IV. P,T -odd interaction constants and their ratio of RaF.
Expect. = expectation value.

Ws (kHz) Eeff (GV/cm) R (1018 e−1 cm−1)

Basis Expect. Z vector Expect. Z vector Expect. Z vector

G 144.7 143.6 53.9 53.5 90.1 90.1
H 147.4 146.3 54.9 54.5 90.1 90.1
I 149.3 148.1 55.6 55.1 90.0 90.0
J 141.2 140.4 52.6 52.3 90.1 90.1
K 141.9 141.1 52.8 52.5 90.0 90.0
L 142.0 141.2 52.8 52.5 89.9 89.9
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using the Z-vector method in the same basis (QZ, all electron)
is 141.2 kHz. This high value of Ws suggests that the S-PS
interaction will also be responsible for a significant change in
the P,T -odd frequency shift in the eEDM experiment. These
results reveal the possibility of using RaF in a future eEDM
experiment. The ratio R of Eeff to Ws is also calculated as
this is a very important quantity to obtain the independent
limit of de and ks by using two independent experiments. Our
calculated value of R using the all-electron Z-vector method
in the QZ (L) basis is 89.9 in units of 1018 e−1 cm−1. Using this
ratio, the relation of independent de and ks with experimentally
determined d

expt
e becomes (for more details see Ref. [55])

de + 5.56×10−21ks = dexpt
e |

ks=0 , (19)

where d
expt
e |

ks=0 is the eEDM limit derived from the experimen-
tally measured P,T -odd frequency shift at the limit ks = 0.

The possible sources of error in our calculations are mainly
from four sources: (i) higher-order relativistic effects (espe-
cially the Breit-Gaunt interaction) and nonadiabatic effects, (ii)
incompleteness of the basis set, (iii) higher-order correlation
effects, and (iv) the cutoff used for the virtual orbitals. Now, the
AIC properties described here mainly depend on the electron
density of the valence electron in the nuclear region, and thus,
these types of properties are not very sensitive to the retardation
and magnetic effects described by the Breit interaction [56,57].
The error associated with the nonadiabatic effects is also
insignificant as the properties of a heavy diatomic molecule are
calculated here. The error associated with the incompleteness
of basis sets can be accessed by comparing our TZ and QZ
results. The difference in all-electron correlation results of Eeff

and Ws in the TZ and QZ bases is about 5%. The proper way
to estimate the error associated with a missing correlation is to
compare our results with the FCI or CCSD with partial triples
[CCSD(T)] values. However, these types of calculations are
very expensive and are beyond the scope of our present study.
From our experience, we can state that the error associated
with the missing higher-order correlation effects is about 3.5%.
Therefore, considering all other sources of error, it can be
assumed that the overall uncertainty in our final results is less
than 10%.

We compare our calculated results with other theoretically
obtained values in Table V. The first ab initio calculation of Ws

of RaF was performed by Isaev et al. [33]. They employed the
two-component zeroth-order regular approximation (ZORA)
generalized Hartree-Fock (GHF) method and obtained a value
of Ws of 150 kHz. They also obtained a value of Eeff of
45.5 GV/cm by using the ZORA-GHF value of Ws and the
approximate ratio between Eeff and Ws. Kudashov et al. [34]
employed two different methods to incorporate relativistic and
electron correlation effects: (i) the spin-orbit direct config-
uration interaction (SODCI) method and (ii) the relativistic
two-component Fock-space coupled-cluster approach (FS-
RCC) within single- and double-excitation approximation.

TABLE V. Comparison of magnetic HFS constant (223Ra), Ws,
and Eeff of RaF.

A⊥ A‖ Ws Eeff

Method (MHz) (MHz) kHz (GV/cm)

ZORA-GHF [33] 1860 1900 150 45.5
SODCI [34] 1720 1790 131 49.6
FS-RCC [34] 2020 2110 139 52.9
This work (QZ basis, all electron)
Expectation value 2040 2131 142.0 52.8
Z vector 1993 2085 141.2 52.5

However, it is worth remembering that the truncated CI is
not size extensive and thus cannot treat electron correlation
properly, especially for a heavy electronic system like RaF,
where the number of electrons is so large. In their FS-RCC
method, Kudashov et al. [34] calculated the properties of RaF
using the finite-field method, which is a numerical technique.
They corrected the error associated with their calculation
considering a higher-order correlation effect and basis set
with the addition of a partial triple in the CCSD model
[CCSD(T)] and using an enlarged basis set, respectively. On
the other hand, we have calculated the property values of RaF
via two analytical methods (expectation-value and Z-vector
methods) in the relativistic coupled-cluster framework within
the four-component formalism. We also calculated the Eeff and
Ws values directly by using Eqs. (13) and (15), respectively.

V. CONCLUSION

In conclusion, we have applied both the Z-vector and
expectation-value methods in the relativistic coupled-cluster
framework to calculate parallel and perpendicular magnetic
HFS constants of 223Ra in RaF and Eeff and Ws of RaF. We have
also calculated the magnetic HFS constant of 223Ra + to show
the reliability of our results. Our most reliable values of Eeff

and Ws of RaF are 52.5 GV/cm and 141.2 kHz, respectively,
with an estimated uncertainty of less than 10%. This shows that
RaF can be a potential candidate for the eEDM experiment.
We also showed that core electrons play a significant role, and
the effect is notable for lower basis sets. Our results also show
that the Z vector, being an energy derivative method, is much
more reliable than the expectation-value method.

ACKNOWLEDGMENTS

The authors acknowledge a grant from the CSIR 12th Five
Year Plan project on Multi-Scale Simulations of Material
(MSM) and the resources of the Center of Excellence in Sci-
entific Computing at CSIR-NCL. S.S. and H.P. acknowledge
support from the CSIR for their fellowship. S.P. acknowledges
funding from a J. C. Bose Fellowship grant of the Department
of Science and Technology (India).

[1] J. Ginges and V. Flambaum, Phys. Rep. 397, 63 (2004).
[2] P. Sandars, Phys. Lett. 14, 194 (1965).

[3] P. G. H. Sandars, Phys. Rev. Lett. 19, 1396 (1967).
[4] L. N. Labzovskii, Sov. Phys. JETP 48, 434 (1978).

062506-6

http://dx.doi.org/10.1016/j.physrep.2004.03.005
http://dx.doi.org/10.1016/j.physrep.2004.03.005
http://dx.doi.org/10.1016/j.physrep.2004.03.005
http://dx.doi.org/10.1016/j.physrep.2004.03.005
http://dx.doi.org/10.1016/0031-9163(65)90583-4
http://dx.doi.org/10.1016/0031-9163(65)90583-4
http://dx.doi.org/10.1016/0031-9163(65)90583-4
http://dx.doi.org/10.1016/0031-9163(65)90583-4
http://dx.doi.org/10.1103/PhysRevLett.19.1396
http://dx.doi.org/10.1103/PhysRevLett.19.1396
http://dx.doi.org/10.1103/PhysRevLett.19.1396
http://dx.doi.org/10.1103/PhysRevLett.19.1396


RELATIVISTIC COUPLED-CLUSTER STUDY OF RaF AS . . . PHYSICAL REVIEW A 93, 062506 (2016)

[5] L. M. Barkov, M. S. Zolotorev, and I. B. Khriplovich, Sov. Phys.
Usp. 23, 713 (1980).

[6] F. L. Shapiro, Sov. Phys. Usp. 11, 345 (1968).
[7] M. Pospelov and A. Ritz, Ann. Phys. (NY) 318, 119 (2005).
[8] W. Bernreuther and M. Suzuki, Rev. Mod. Phys. 63, 313 (1991).
[9] B. C. Regan, E. D. Commins, C. J. Schmidt, and D. DeMille,

Phys. Rev. Lett. 88, 071805 (2002).
[10] J. J. Hudson, D. M. Kara, I. J. Smallman, B. E. Sauer, M. R.

Tarbutt, and E. A. Hinds, Nature (London) 473, 493 (2011).
[11] J. Baron et al., Science 343, 269 (2014).
[12] I. B. Khriplovich and S. K. Lamoreaux, CP Violation without

Strangeness: The Electric Dipole Moments of Particles, Atoms,
and Molecules (Springer, London, 2011).

[13] E. D. Commins, Adv. At. Mol. Opt. Phys. 40, 1 (1999).
[14] O. Sushkov and V. Flambaum, J. Exp. Theor. Phys. 48, 608

(1978).
[15] V. V. Flambaum, Sov. J. Nucl. Phys. 24, 199 (1976).
[16] V. A. Dzuba, V. V. Flambaum, and C. Harabati, Phys. Rev. A

84, 052108 (2011).
[17] H. J. Monkhorst, Int. J. Quantum Chem. 12, 421 (1977).
[18] N. C. Handy and H. F. Schaefer, J. Chem. Phys. 81, 5031 (1984).
[19] E. A. Salter, G. W. Trucks, and R. J. Bartlett, J. Chem. Phys. 90,

1752 (1989).
[20] H. Koch, J. Hans, J. Poul, T. Helgaker, G. E. Scuseria, and H. F.

Schaefer III, J. Chem. Phys. 92, 4924 (1990).
[21] R. J. Bartlett and J. Noga, Chem. Phys. Lett. 150, 29 (1988).
[22] S. Pal, Theor. Chim. Acta 66, 151 (1984).
[23] R. J. Bartlett, S. A. Kucharski, and J. Noga, Chem. Phys. Lett.

155, 133 (1989).
[24] S. Pal, Theor. Chim. Acta 66, 207 (1984).
[25] J. Arponen, Ann. Phys. (NY) 151, 311 (1983).
[26] R. Bishop, J. Arponen, and P. Pajanne, Aspects of Many-Body

Effects in Molecules and Extended Systems (Springer, Berlin,
1989).

[27] S. Pal, Phys. Rev. A 34, 2682 (1986).
[28] P. G. Szalay, M. Nooijen, and R. J. Bartlett, J. Chem. Phys. 103,

281 (1995).
[29] C. Sur, R. K. Chaudhuri, B. K. Sahoo, B. P. Das, and D.

Mukherjee, J. Phys. B 41, 065001 (2008).
[30] C. Sur and R. K. Chaudhuri, Phys. Rev. A 76, 032503 (2007).
[31] S. Sasmal, H. Pathak, M. K. Nayak, N. Vaval, and S. Pal,

Phys. Rev. A 91, 022512 (2015).
[32] T. A. Isaev, S. Hoekstra, and R. Berger, Phys. Rev. A 82, 052521

(2010).

[33] T. Isaev and R. Berger, arXiv:1302.5682.
[34] A. D. Kudashov, A. N. Petrov, L. V. Skripnikov, N. S. Mosyagin,

T. A. Isaev, R. Berger, and A. V. Titov, Phys. Rev. A 90, 052513
(2014).

[35] J. Cizek, Correlation Effects in Atoms and Molecules, Advances
in Chemical Physics Vol. 14 (Wiley, New York, 1967).

[36] S. Pal, M. D. Prasad, and D. Mukherjee, Theor. Chim. Acta 62,
523 (1983).

[37] S. Sasmal, H. Pathak, M. K. Nayak, N. Vaval, and S. Pal,
Phys. Rev. A 91, 030503 (2015).

[38] M. G. Kozlov, V. Fomichev, Y. Y. Dmitriev, L. N. Labzovsky,
and A. V. Titov, J. Phys. B 20, 4939 (1987).

[39] A. V. Titov, N. S. Mosyagin, A. N. Petrov, T. A. Isaev, and
D. P. DeMille, Progr. Theor. Chem. Phys. 15, 253 (2006).

[40] L. R. Hunter, Science 252, 73 (1991).
[41] T. Saue et al., DIRAC, a relativistic ab initio electronic structure

program, release DIRAC10, 2010, http://www.diracprogram.org.
[42] L. Visscher and K. Dyall, At. Data Nucl. Data Tables 67, 207

(1997).
[43] K. Faegri, Jr. and K. G. Dyall, Introduction to Relativistic

Quantum Chemistry (Oxford University Press, New York,
2007).

[44] K. G. Dyall, J. Phys. Chem. A 113, 12638 (2009).
[45] T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
[46] K. Wendt, S. A. Ahmad, W. Klempt, R. Neugart, E. W. Otten,

and H. H. Stroke, Z. Phys. D 4, 227 (1987).
[47] W. Neu, R. Neugart, E. W. Otten, G. Passler, K. Wendt, B.

Fricke, E. Arnold, H. J. Kluge, and G. Ulm, Z. Phys. D 11, 105
(1988).

[48] A. V. Titov, Y. V. Lomachuk, and L. V. Skripnikov, Phys. Rev.
A 90, 052522 (2014).

[49] M. G. Kozlov and V. F. Ezhov, Phys. Rev. A 49, 4502 (1994).
[50] M. Kozlov, J. Phys. B 30, L607 (1997).
[51] A. V. Titov, N. S. Mosyagin, and V. F. Ezhov, Phys. Rev. Lett.

77, 5346 (1996).
[52] H. Quiney, H. Skaane, and I. Grant, J. Phys. B 31, L85 (1998).
[53] F. A. Parpia, J. Phys. B 31, 1409 (1998).
[54] N. Mosyagin, M. Kozlov, and A. Titov, J. Phys. B 31, L763

(1998).
[55] S. Sasmal, H. Pathak, M. K. Nayak, N. Vaval, and S. Pal,

J. Chem. Phys. 144, 124307 (2016).
[56] H. M. Quiney, J. K. Laerdahl, K. Fægri, Jr., and T. Saue,

Phys. Rev. A 57, 920 (1998).
[57] E. Lindroth, B. Lynn, and P. Sandars, J. Phys. B 22, 559 (1989).

062506-7

http://dx.doi.org/10.1070/PU1980v023n11ABEH005052
http://dx.doi.org/10.1070/PU1980v023n11ABEH005052
http://dx.doi.org/10.1070/PU1980v023n11ABEH005052
http://dx.doi.org/10.1070/PU1980v023n11ABEH005052
http://dx.doi.org/10.1070/PU1968v011n03ABEH003840
http://dx.doi.org/10.1070/PU1968v011n03ABEH003840
http://dx.doi.org/10.1070/PU1968v011n03ABEH003840
http://dx.doi.org/10.1070/PU1968v011n03ABEH003840
http://dx.doi.org/10.1016/j.aop.2005.04.002
http://dx.doi.org/10.1016/j.aop.2005.04.002
http://dx.doi.org/10.1016/j.aop.2005.04.002
http://dx.doi.org/10.1016/j.aop.2005.04.002
http://dx.doi.org/10.1103/RevModPhys.63.313
http://dx.doi.org/10.1103/RevModPhys.63.313
http://dx.doi.org/10.1103/RevModPhys.63.313
http://dx.doi.org/10.1103/RevModPhys.63.313
http://dx.doi.org/10.1103/PhysRevLett.88.071805
http://dx.doi.org/10.1103/PhysRevLett.88.071805
http://dx.doi.org/10.1103/PhysRevLett.88.071805
http://dx.doi.org/10.1103/PhysRevLett.88.071805
http://dx.doi.org/10.1038/nature10104
http://dx.doi.org/10.1038/nature10104
http://dx.doi.org/10.1038/nature10104
http://dx.doi.org/10.1038/nature10104
http://dx.doi.org/10.1126/science.1248213
http://dx.doi.org/10.1126/science.1248213
http://dx.doi.org/10.1126/science.1248213
http://dx.doi.org/10.1126/science.1248213
http://dx.doi.org/10.1016/S1049-250X(08)60110-X
http://dx.doi.org/10.1016/S1049-250X(08)60110-X
http://dx.doi.org/10.1016/S1049-250X(08)60110-X
http://dx.doi.org/10.1016/S1049-250X(08)60110-X
http://dx.doi.org/10.1103/PhysRevA.84.052108
http://dx.doi.org/10.1103/PhysRevA.84.052108
http://dx.doi.org/10.1103/PhysRevA.84.052108
http://dx.doi.org/10.1103/PhysRevA.84.052108
http://dx.doi.org/10.1002/qua.560120850
http://dx.doi.org/10.1002/qua.560120850
http://dx.doi.org/10.1002/qua.560120850
http://dx.doi.org/10.1002/qua.560120850
http://dx.doi.org/10.1063/1.447489
http://dx.doi.org/10.1063/1.447489
http://dx.doi.org/10.1063/1.447489
http://dx.doi.org/10.1063/1.447489
http://dx.doi.org/10.1063/1.456069
http://dx.doi.org/10.1063/1.456069
http://dx.doi.org/10.1063/1.456069
http://dx.doi.org/10.1063/1.456069
http://dx.doi.org/10.1063/1.457710
http://dx.doi.org/10.1063/1.457710
http://dx.doi.org/10.1063/1.457710
http://dx.doi.org/10.1063/1.457710
http://dx.doi.org/10.1016/0009-2614(88)80392-0
http://dx.doi.org/10.1016/0009-2614(88)80392-0
http://dx.doi.org/10.1016/0009-2614(88)80392-0
http://dx.doi.org/10.1016/0009-2614(88)80392-0
http://dx.doi.org/10.1007/BF00549665
http://dx.doi.org/10.1007/BF00549665
http://dx.doi.org/10.1007/BF00549665
http://dx.doi.org/10.1007/BF00549665
http://dx.doi.org/10.1016/S0009-2614(89)87372-5
http://dx.doi.org/10.1016/S0009-2614(89)87372-5
http://dx.doi.org/10.1016/S0009-2614(89)87372-5
http://dx.doi.org/10.1016/S0009-2614(89)87372-5
http://dx.doi.org/10.1007/BF00549670
http://dx.doi.org/10.1007/BF00549670
http://dx.doi.org/10.1007/BF00549670
http://dx.doi.org/10.1007/BF00549670
http://dx.doi.org/10.1016/0003-4916(83)90284-1
http://dx.doi.org/10.1016/0003-4916(83)90284-1
http://dx.doi.org/10.1016/0003-4916(83)90284-1
http://dx.doi.org/10.1016/0003-4916(83)90284-1
http://dx.doi.org/10.1103/PhysRevA.34.2682
http://dx.doi.org/10.1103/PhysRevA.34.2682
http://dx.doi.org/10.1103/PhysRevA.34.2682
http://dx.doi.org/10.1103/PhysRevA.34.2682
http://dx.doi.org/10.1063/1.469641
http://dx.doi.org/10.1063/1.469641
http://dx.doi.org/10.1063/1.469641
http://dx.doi.org/10.1063/1.469641
http://dx.doi.org/10.1088/0953-4075/41/6/065001
http://dx.doi.org/10.1088/0953-4075/41/6/065001
http://dx.doi.org/10.1088/0953-4075/41/6/065001
http://dx.doi.org/10.1088/0953-4075/41/6/065001
http://dx.doi.org/10.1103/PhysRevA.76.032503
http://dx.doi.org/10.1103/PhysRevA.76.032503
http://dx.doi.org/10.1103/PhysRevA.76.032503
http://dx.doi.org/10.1103/PhysRevA.76.032503
http://dx.doi.org/10.1103/PhysRevA.91.022512
http://dx.doi.org/10.1103/PhysRevA.91.022512
http://dx.doi.org/10.1103/PhysRevA.91.022512
http://dx.doi.org/10.1103/PhysRevA.91.022512
http://dx.doi.org/10.1103/PhysRevA.82.052521
http://dx.doi.org/10.1103/PhysRevA.82.052521
http://dx.doi.org/10.1103/PhysRevA.82.052521
http://dx.doi.org/10.1103/PhysRevA.82.052521
http://arxiv.org/abs/arXiv:1302.5682
http://dx.doi.org/10.1103/PhysRevA.90.052513
http://dx.doi.org/10.1103/PhysRevA.90.052513
http://dx.doi.org/10.1103/PhysRevA.90.052513
http://dx.doi.org/10.1103/PhysRevA.90.052513
http://dx.doi.org/10.1007/BF00557928
http://dx.doi.org/10.1007/BF00557928
http://dx.doi.org/10.1007/BF00557928
http://dx.doi.org/10.1007/BF00557928
http://dx.doi.org/10.1103/PhysRevA.91.030503
http://dx.doi.org/10.1103/PhysRevA.91.030503
http://dx.doi.org/10.1103/PhysRevA.91.030503
http://dx.doi.org/10.1103/PhysRevA.91.030503
http://dx.doi.org/10.1088/0022-3700/20/19/007
http://dx.doi.org/10.1088/0022-3700/20/19/007
http://dx.doi.org/10.1088/0022-3700/20/19/007
http://dx.doi.org/10.1088/0022-3700/20/19/007
http://dx.doi.org/10.1007/1-4020-4528-X12
http://dx.doi.org/10.1007/1-4020-4528-X12
http://dx.doi.org/10.1007/1-4020-4528-X12
http://dx.doi.org/10.1007/1-4020-4528-X12
http://dx.doi.org/10.1126/science.252.5002.73
http://dx.doi.org/10.1126/science.252.5002.73
http://dx.doi.org/10.1126/science.252.5002.73
http://dx.doi.org/10.1126/science.252.5002.73
http://www.diracprogram.org
http://dx.doi.org/10.1006/adnd.1997.0751
http://dx.doi.org/10.1006/adnd.1997.0751
http://dx.doi.org/10.1006/adnd.1997.0751
http://dx.doi.org/10.1006/adnd.1997.0751
http://dx.doi.org/10.1021/jp905057q
http://dx.doi.org/10.1021/jp905057q
http://dx.doi.org/10.1021/jp905057q
http://dx.doi.org/10.1021/jp905057q
http://dx.doi.org/10.1063/1.456153
http://dx.doi.org/10.1063/1.456153
http://dx.doi.org/10.1063/1.456153
http://dx.doi.org/10.1063/1.456153
http://dx.doi.org/10.1007/BF01436633
http://dx.doi.org/10.1007/BF01436633
http://dx.doi.org/10.1007/BF01436633
http://dx.doi.org/10.1007/BF01436633
http://dx.doi.org/10.1007/BF01444425
http://dx.doi.org/10.1007/BF01444425
http://dx.doi.org/10.1007/BF01444425
http://dx.doi.org/10.1007/BF01444425
http://dx.doi.org/10.1103/PhysRevA.90.052522
http://dx.doi.org/10.1103/PhysRevA.90.052522
http://dx.doi.org/10.1103/PhysRevA.90.052522
http://dx.doi.org/10.1103/PhysRevA.90.052522
http://dx.doi.org/10.1103/PhysRevA.49.4502
http://dx.doi.org/10.1103/PhysRevA.49.4502
http://dx.doi.org/10.1103/PhysRevA.49.4502
http://dx.doi.org/10.1103/PhysRevA.49.4502
http://dx.doi.org/10.1088/0953-4075/30/18/003
http://dx.doi.org/10.1088/0953-4075/30/18/003
http://dx.doi.org/10.1088/0953-4075/30/18/003
http://dx.doi.org/10.1088/0953-4075/30/18/003
http://dx.doi.org/10.1103/PhysRevLett.77.5346
http://dx.doi.org/10.1103/PhysRevLett.77.5346
http://dx.doi.org/10.1103/PhysRevLett.77.5346
http://dx.doi.org/10.1103/PhysRevLett.77.5346
http://dx.doi.org/10.1088/0953-4075/31/3/003
http://dx.doi.org/10.1088/0953-4075/31/3/003
http://dx.doi.org/10.1088/0953-4075/31/3/003
http://dx.doi.org/10.1088/0953-4075/31/3/003
http://dx.doi.org/10.1088/0953-4075/31/7/008
http://dx.doi.org/10.1088/0953-4075/31/7/008
http://dx.doi.org/10.1088/0953-4075/31/7/008
http://dx.doi.org/10.1088/0953-4075/31/7/008
http://dx.doi.org/10.1088/0953-4075/31/19/002
http://dx.doi.org/10.1088/0953-4075/31/19/002
http://dx.doi.org/10.1088/0953-4075/31/19/002
http://dx.doi.org/10.1088/0953-4075/31/19/002
http://dx.doi.org/10.1063/1.4944673
http://dx.doi.org/10.1063/1.4944673
http://dx.doi.org/10.1063/1.4944673
http://dx.doi.org/10.1063/1.4944673
http://dx.doi.org/10.1103/PhysRevA.57.920
http://dx.doi.org/10.1103/PhysRevA.57.920
http://dx.doi.org/10.1103/PhysRevA.57.920
http://dx.doi.org/10.1103/PhysRevA.57.920
http://dx.doi.org/10.1088/0953-4075/22/4/004
http://dx.doi.org/10.1088/0953-4075/22/4/004
http://dx.doi.org/10.1088/0953-4075/22/4/004
http://dx.doi.org/10.1088/0953-4075/22/4/004



