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Collisional shift and broadening of the transition lines in pionic helium
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(Received 16 April 2016; published 8 June 2016)

We calculate the density shift and broadening of selected dipole transition lines of pionic helium in gaseous
helium at low temperatures up to T = 12 K and pressure up to a few bars. In the approximation of binary
collisions the shift and broadening depend linearly on the density; we evaluate the slope of this linear dependence
for a few spectral lines of known experimental interest and also investigate its temperature dependence. We find
a blueshift of the resonance frequencies of the (n,l) = (16,15) → (16,14), (17,16) → (17,15), and (16,15) →
(17,14) unfavored transitions and a redshift for the favored one, (17,16) → (16,15). The results are intended to
significantly increase the efficiency of the laser spectroscopy investigations of pionic helium and help with the
interpretation of the experimental data.
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I. INTRODUCTION

Pionic helium is a three-body system composed of a
helium nucleus, an electron in a ground state, and a π−
in a highly excited Rydberg state with principal quantum
number n ∼ (m∗/me)1/2 ≈ 16, where me is the electron mass
and m∗ is the reduced mass of π− and the helium nucleus.
These states promptly deexcite via Auger transitions to
lower-lying states which have large overlap with the helium
nucleus and subsequently undergo fast nuclear absorption
for times less than a picosecond. However, a small fraction
of long-lived π− have been observed in bubble-chamber
experiments [1]. To explain this anomaly, Condo [2] suggested
that metastable atomic states of π− are formed in the
reaction

He + π− → [He+π−]nl + e−, (1)

in which the π− occupies states with high angular momentum
quantum number l ∼ n − 1 ≈ 15. These Rydberg states are
expected to retain nanosecond-scale lifetimes against nuclear
absorption and the electroweak decay π− → μ− + ν̄μ with
a lifetime of τπ− ≈ 26 ns. This is because in the nearly
circular states of He+π− the overlap of the pion with the
helium nucleus is minimized, whereas radiative deexcitation
and the decay via Auger transitions which subsequently lead
to fast nuclear absorption are strongly suppressed. An indirect
confirmation of Condo’s hypothesis has been obtained at
TRIUMF [3] in experiments with π− stopped in liquid helium;
it has been found that about 2% of the pions retain a lifetime
of 7 ns. A method for laser spectroscopy of metastable pionic
helium atoms in gaseous helium has been proposed [4,5].
When comparing experimental transition frequencies to three-
body QED calculations of pionic helium, the π− mass can
be determined with a fractional precision better than 10−6.
However, systematic effects such as collision-induced shift
and broadening (S&B) of the transition lines, as well as the
quenching of the metastable states, can prevent the experiment
from achieving this high precision. Thus a reliable theoretical
calculation for the density-dependent shift and width is needed
for the extrapolation of transition wavelengths at zero target
density.

II. COLLISIONAL SHIFT AND BROADENING
OF THE TRANSITION LINES

A. Prerequisites: The potential energy surface

The collisional shift and broadening of the laser stimulated
transition line (n,l) → (n′,l′) in pionic helium are obtained in
the impact approximation of the binary collision theory of the
spectral line shape [6–8].

This approach has already been applied in the calculations
of the density effects on the line shape in antiprotonic
helium [9–11] and produced theoretical results in agreement
with experiment [12] (see also [13] and references therein).

The success of these calculations was due to the use of a
highly accurate three-electron potential energy surface (PES)
for the description of the binary interaction of an exotic helium
atom with the atoms of the helium gas. The PES was evaluated
with ab initio quantum chemistry methods [14] for nearly 400
configurations of the three heavy constituents of the interacting
atoms (two helium nuclei and an antiproton or pion), selected
to match the typical interpaticle distances in the experimentally
interesting metastable states of exotic helium [15].

The configurations were parameterized with the length r of
the vector joining the heavy particles in the antiprotonic or
pionic atom, the length R of the vector joining its center of
mass with the nucleus of the ordinary helium atom, and the
angle θ between them.

Subsequently, the numerical values of the PES at these
∼400 grid points were fitted with smooth functions V (r,R,θ ).
Two such fits, referred to as D47 and HN1, have been widely used
in calculations; they have been shown to produce numerical
results for the S&B in antiprotonic helium that differ by less
than the overall numerical uncertainty.

Earlier attempts to use the same PES in the evaluation of the
S&B of the spectral lines in pionic helium failed [15] because
the typical distances r between the pion and the helium nucleus
in the pionic helium metastable states are outside the range
for which the PES has been calculated, and the two fits D47

and HN1 produce wrong values when used for extrapolation
of the PES. In the present work we carefully analyzed the
behavior of these fits and established that the problem can
be resolved by appropriately truncating the integration over r

in the expression for the effective state-dependent interatomic
potentials in terms of V (r,R,θ ) and the pionic helium atom
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wave function χnl(r),

Vnl(R) = 1

2

∫ ∞

0
dr

∫
dθ sin θχ2

nl(r)V (r,R,θ ) → Vnl(R)

= 1

2

∫ r2

r1

dr

∫
dθ sin θχ2

nl(r)V (r,R,θ ), (2)

while keeping under control at each step the induced numerical
uncertainties; the optimal values of the truncating parameters
were found to be r1 = 0.2 a.u., r2 = 1.3 a.u. The S&B of
the four transition lines in pionic helium of experimental
interest [4,16] were then evaluated by two alternative meth-
ods. Similar to the calculation of the S&B in antiprotonic
helium [10], the obtained results differ by up to 30% and should
be regarded as boundaries of the intervals of uncertainty of the
theoretical values of the density shift and broadening slopes in
pionic helium.

B. Impact approximation

In this approximation, the slope of the density and
temperature-dependent collisional broadening �f i(T ) and
shift ωf i(T ) are given by [7]

αf i(T ) = ∂�f i(T )

∂N
=

〈
π

Mk

∞∑
L=0

(2L + 1)2 sin2 ηf i,L(k)

〉
T

(3)

and

βf i(T ) = ∂ωf i(T )

∂N
= −

〈
π

Mk

∞∑
L=0

(2L + 1) sin 2ηf i,L(k)

〉
T

,

(4)

respectively, where N denotes the number density of the target
gas, the labels i and f stand for the set of quantum numbers
of the initial and final pionic atom states n,l and n′l′, and 〈·〉T
denotes the thermal average over the Maxwell distribution.
Both α and β are expressed in terms of the relative phase
shifts

ηf i,L(k) = δiL(k) − δf L(k). (5)

The partial wave phases δL(k) = δL(k,R → ∞) are obtained
from the asymptotic solution of the variable phase equa-
tion [17]

d

dR
δnlL(k,R) = −2MVnl(R)

k
[cos δnlL(k,R)jL(kR)

− sin δnlL(k,R)nL(kR)]2, (6)

subject to the boundary condition δnlL(k,0) = 0, where k =√
2ME is the wave number of relative motion for a given total

collision energy E, M is the reduced mass of the collision
system, {jL(z),nL(z)} are the Riccati-Bessel functions, and
Vnl(R) is defined in (2).

In Figs. 1(a) and 1(b) we show the scattering phase shifts
ηL(k) for the “favored” transition (17,16) → (16,15) and
for the “unfavored” one (16,15) → (16,14), respectively. For
the unfavored transition in Fig. 1(a), the scattering phases
are negative and are appreciably more than −π/2 over the
entire range of wave numbers, giving rise to a blueshift
of the transition frequency. For k < 0.5, the scattering of
s,p, and d-waves gives the dominant contribution to the
dipole transition line shape. A larger number of partial waves
is required to converge the line shift and width with the
increased wave number k. When k � 1, ηL(k) exhibits a
linear dependence on the wave number, showing that in this
regime the effective potentials act as repulsive hard spheres
with effective state-dependent radii and all phase shifts would
tend to zero in the high-energy limit with k � 1. Since the
phase shifts are small |ηL| � π/2 over the whole range of
wave numbers, the collisional broadening of the transition
line is negligible α ∼ ∑

L(2L + 1)η2
L compared to the line

shift β ∼ −∑
L(2L + 1)ηL. In contrast the scattering phases

are positive for the favored transition shown in Fig. 1(b),
resulting in a redshift of the line center because ηL(k) < π/2
for k > 0.1 a.u. Since the s-wave scattering phase shift η0 → π

near k → 0, the effective potential in the initial state V17,16(R)
supports a single bound state through the Levinson theorem.
Since the contribution of s-wave scattering becomes dominant
towards the threshold, this bound state dramatically affects
the transition line shape at very low speeds with k < 0.1 as
the center frequency undergoes a blueshift when η0 > π/2.
However, the thermally averaged shift and width are weakly

FIG. 1. The relative phase shifts ηf i,L of Eq. (5) for (a) the unfavored laser-stimulated dipole transition (16,15) → (16,14) in pionic
helium in gaseous helium and (b) the favored dipole transition (17,16) → (16,15). The different curves are labeled by the orbital angular
momentum L.
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TABLE I. Slope of the density shift and broadening are listed in the form β(T ) (α(T )) for selected transition lines in pionic helium and
temperatures T in the range 4–12 K, in units 10−21 GHz cm3. Listed are the numerical values obtained with Baranger’s method while accounting
for the anisotropic part of the potential energy surface [Eq. (7)] and in the approximation of central interatomic potentials [Eqs. (3) and (4)], as
well as with Anderson’s method [Eq. (12)], using either fit HN1 or D47 of the potential energy surface. The favored transition (17,16) → (16,15)
is redshifted, while all the unfavored transitions undergo a blue density-dependent shift.

Eq. (7) Eqs. (3) and (4) Eq. (12)

Transition T (K) HN1 HN1 D47 HN1 D47

(17,16) → (16,15) 4 −7.86(1.74) −7.75(1.67) −7.45(1.55) −8.33(1.68) −8.02(1.56)
6 −7.95(1.63) −7.84(1.52) −7.55(1.41) −8.61(1.74) −8.30(1.62)
8 −8.15(1.64) −8.06(1.53) −7.78(1.43) −8.93(1.81) −8.58(1.69)
10 −8.35(1.68) −8.28(1.57) −8.00(1.47) −9.18(1.88) −8.84(1.75)
12 −8.57(1.72) −8.50(1.62) −8.23(1.52) −9.48(1.95) −9.10(1.82)

(17,16) → (17,15) 4 6.48(0.85) 6.27(0.75) 6.41(0.78) 4.43(0.36) 4.70(0.40)
6 6.35(0.77) 6.16(0.66) 6.00(0.68) 4.52(0.34) 4.78(0.37)
8 6.20(0.73) 6.04(0.63) 6.16(0.64) 4.62(0.33) 4.83(0.35)
10 6.04(0.66) 5.92(0.58) 6.04(0.59) 4.65(0.31) 4.88(0.33)
12 5.93(0.60) 5.82(0.53) 5.94(0.54) 4.75(0.32) 4.93(0.32)

(16,15) → (16,14) 4 2.56(0.13) 2.53(0.12) 2.97(0.16) 2.07(0.08) 2.54(0.11)
6 2.53(0.11) 2.54(0.10) 2.93(0.14) 2.11(0.07) 2.58(0.10)
8 2.54(0.10) 2.52(0.10) 2.92(0.13) 2.16(0.07) 2.63(0.10)
10 2.56(0.10) 2.51(0.09) 2.93(0.12) 2.21(0.07) 2.66(0.09)
12 2.58(0.10) 2.53(0.09) 2.94(0.11) 2.24(0.30) 2.69(0.09)

(16,15) → (17,14) 4 17.84(8.91) 17.69(7.94) 17.60(7.74) 11.37(2.66) 11.82(2.84)
6 18.04(8.38) 18.10(7.41) 18.01(7.19) 11.74(2.63) 12.19(2.78)
8 17.90(7.97) 18.06(7.22) 17.99(6.98) 12.11(2.64) 12.56(2.78)
10 17.91(7.52) 18.04(6.92) 17.99(6.68) 12.45(2.67) 12.84(2.76)
12 18.08(7.18) 18.17(6.67) 18.12(6.42) 12.70(2.68) 13.11(2.76)

affected by the low-velocity tail in the Maxwell distribution,
for instance, at T = 6 K, β ≈ −7×10−21 GHz cm3, and
α ≈ 10−21 GHz cm3.

The thermally averaged shift and width of the spectral lines
for the selected transitions in pionic helium, obtained with the
fits HN1 and D47, are given in the fourth and fifth columns of
Table I, respectively. The temperature dependence of the line
profile is relatively weak in gaseous helium. At low perturber
density N = 1021 cm−3, we find a blueshift of the resonance
frequencies for the (n,l) = (16,15) → (16,14), (17,16) →
(17,15), and (16,15) → (17,14) transitions, β = 2.5, 6, and
18 GHz, respectively. For the favored transition (17,16) →
(16,15), the line center is redshifted by 8 GHz. Thus in
the absence of shape resonances in the potential scattering,
the direction of the shift reflects the sign of the difference
potential �V (R) = Vi(R) − Vf (R). The comparison of the
corresponding linewidths in Table I makes evident that the
spectral line for the unfavored transition (16,15) → (16,14)
is only weakly affected by collisions since it is broadened
by 0.1 GHz, which makes it suitable for spectroscopic
measurements in pionic helium.

To further analyze the effect of the interaction energy
V (r,R,θ ) in the He+π−-He collision system, in Figs. 2(a)
and 2(b) we plot the effective state-dependent potentials for
the transitions (17,16) → (16,15) and (16,15) → (16,14),
respectively, together with the difference potentials �V (R).
Figures 2(c) and 2(d) present the corresponding variable phase
functions at thermal collision energy with T = 6 K. For both
transitions, the elastic scattering of s and p waves gives the
dominant contribution to the line shift and width. The d-wave

scattering is less efficient, and contributions of partial waves
with L � 3 are suppressed due to a large centrifugal barrier.
Figures 2(c) and 2(d) make evident that a substantial part of
the line shift comes from the classically forbidden regions
for relative motion with 4 � R � 5 a.u. The s- and p-wave
variable phases rise steeply in the classically allowed part
of the scattering potentials R > 5 a.u., attain maxima near
R ≈ 6 a.u., then slightly fall off and saturate in the asymptotic
region with R > 7 a.u. Thus the principal parts of the line shift
and width at thermal collision energies are due to short-range
binary encounters; the effect of the long-range van der Waals
tail V (R) ∼ C6/R

6 acts as a weak perturbation.

C. Coupled partial waves

As an independent test of our hypothesis that the dominant
contributions to the line shift and width are induced by effective
central state-dependent scattering potentials in both initial and
final states, we included the effect of the anisotropic part of the
interaction energy. The collision-induced shift and broadening
of the transition line shapes are evaluated from [18],

αf i + iβf i =
∑

JJ ′LL′
(−1)L+L′

(2J + 1)(2J ′ + 1)

×
{
J ′ J 1
l l′ L

}{
J ′ J 1
l l′ L′

}

×
〈

π

Mk

[
δLL′ − SJ

iL,iL′(k)SJ ′,∗
f L,f L′(k)

]〉
T

, (7)
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FIG. 2. (a) and (b) Potential-energy curves Vnl(R) for the elastic scattering of pionic helium by an ordinary helium atom prior to (dashed
line) and after (solid line) the absorption of a photon in the laser-stimulated dipole transitions (16,15) → (16,14) and (17,16) → (16,15),
respectively. The potential energy difference �V = Vnl − Vn′ l′ is given by a dotted line, and the kinetic energy E of relative motion is indicated
by the dash-dotted line. (c) and (d) Variable phase shifts (in radians) corresponding to the potential-energy curves in (a) and (b). The phase
functions are labeled by the orbital angular momentum L.

where J and J ′ are the total angular momenta before and after
the absorption of a photon.

We obtain the S-matrix elements SJ (k) from the asymptotic
of the solutions of the coupled equations for the partial waves,

dSJ (k,R)

dR
= −i

M

k
[h(2)(kR) + SJ (k,R) · h(1)(kR)]VJ (R)

× [h(2)(kR) + h(1)(kR) · SJ (k,R)],

SJ (k) = SJ (k,R → ∞), (8)

subject to the boundary condition SJ (k,0) = I, where I is the
unit matrix and h(1)(z) and h(2)(z) are diagonal matrices of
the Riccati-Hankel functions. We approximate the matrix rep-
resentation of the interaction energy V (θ ) = ∑

λ VλPλ(cos θ )
by truncating its Fourier expansion over Legendre polynomials

at λ = 2, i.e.,

V J
nlL,nlL′ (R) ≈ Vnl(R)
(J lL)δLL′

+V
(2)
nl (R)

√
(2l + 1)(2L + 1)(−1)l+L′−J Cl0

l0,20

×CL′0
L0,20

{
2 L L′
J l l

}
, (9)

where C
cγ

aα,bβ are the Clebsch-Gordan coefficients, 
(abc)
imposes the triangle condition, and

V
(2)
nl (R) = 5

2

∫ r2

r1

drχ2
nl(r)

∫
dθ sin θV (r,R,θ )P2(cos θ ).

(10)

At low-collision energies, the S matrix for the coupled s

and d waves can be parameterized in terms of two variable
phases δJ

0 and δJ
2 and a mixing angle εJ ,

SJ (k,R) ≈
(

e2iδJ
0 (k,R) cos 2εJ (k,R) iei[δJ

0 (k,R)+δJ
2 (k,R)] sin 2εJ (k,R)

iei[δJ
0 (k,R)+δJ

2 (k,R)] sin 2εJ (k,R) e2iδJ
2 (k,R) cos 2εJ (k,R)

)
. (11)

In the εJ → 0 limit, the S matrix is diagonal, and the usual
decoupled result is recovered. In Fig. 3 we plot the mixing
angle εJ as a function of the separation R between the colliding
atoms at thermal energy with T = 6 K.

The principal effect of the weak quadrupole coupling is to
facilitate scattering of d waves due to the s-wave admixture in
both initial- and final-state wave functions. The enhancement
of the d-wave elastic scattering is most effective in the

062505-4



COLLISIONAL SHIFT AND BROADENING OF THE . . . PHYSICAL REVIEW A 93, 062505 (2016)

FIG. 3. Collision-induced mixing of s and d waves in the laser-
stimulated dipole transition (17,16) → (16,15) in pionic helium in
gaseous helium. The position dependence of the mixing angle εJ (R)
prior to and after the photon absorption is given by the solid and
dashed lines, respectively. The total angular momentum is J = 16 in
the initial state and J = 15 in the final state. The collision energy
corresponds to T = 6 K.

classically allowed region for both initial- and final-state
motions, where the colliding atoms experience the attractive
part of the scattering potential. The numerical results for
the line shape obtained with the HN1 fit are given in the
third column of Table I. As the comparison demonstrates,
the anistropic pairwise interaction has a minor effect on the
line shifts, which justifies our approximation of using central
state-dependent potentials to describe the collision. However,
the linewidths for certain transitions are noticeably affected by
the quadrupole interaction; for example, the enhancement of
d-wave scattering causes additional broadening of the transi-
tion line (16,15) → (17,14) by 1 GHz at low temperatures. In
contrast the narrow line of the transition (16,15) → (16,14) is
insensitive to anisotropic interatomic interactions.

D. Anderson’s semiclassical method

The slopes of the shift and broadening of the spectral
line of the transition can alternatively be represented in the
form [9]

αf i(T )7 = ∂�f i

∂N
= Re �, βf i(T ) = ∂ωf i

∂N
= Im �,

� =
〈
2π vT

∫
db b

[
1 − exp

(
−i

∫
dt (Vn′l′[|R(t)|]

−Vnl[|R(t)|])
)]〉

T

, (12)

where R(t) is the trajectory of the classical relative motion
of the pionic and ordinary helium atoms (i.e., the vector
joining the positions of the atoms at time t), while b and
vT = √

2kT /M are the impact parameter and the initial
velocity of the relative thermal motion of the colliding atoms
outside the interatomic potential range.

Equation (12) in its initial form involving rectilinear
trajectories R(t) = R0 + tvT was proposed by Anderson [19];
however, it fails to give reasonable estimates of the density
effects at low temperature. The substantial modification that
makes Eq. (12) applicable in this case is to use instead the
curvilinear trajectories determined by the binary interaction
potential in the initial state for the transition of interest, Vnl(R),
as suggested in [9,10]. The numerical results for the density
shift and broadening slopes for the transition lines in pionic
helium of experimental interest, obtained with fits HN1 and
D47, are given in the sixth and seventh columns of Table I,
respectively.

In agreement with the observations in Sec. II B, the detailed
look at the multiple integral in Eq. (12) reveals that the
dominant contribution to � (through the integrals of the
difference Vn′l′ [R(t)] − Vnl[R(t)] along the various classical
trajectories) comes from the range 4 � R � 10 a.u. For the
favored transition up to 95% of the value of � is accumulated in
the range 4 � R � 6 a.u., while for the unfavored transition the
contributions from the domains 4 � R � 6 and 6 � R � 10
are balanced. This emphasizes once more the importance of
using a realistic and accurate PES in the evaluation of the
density effects; estimates based on the asymptotic shape of
the interaction potentials, valid for R > 10 a.u., cannot be
reliable.

III. NUMERICAL RESULTS AND DISCUSSION

The cumulative Table I presents the numerical results
for the slopes of the density shift and broadening, βf i(T )
and αf i(T ), of four transition lines in pionic helium of
declared experimental interest, obtained with the theoretical
methods outlined in the preceding section and using two
different fits of the PES. We see that in some cases the
numerical values differ quite significantly and require further
comments.

(1) The two different fits HN1 and D47 produce values that
differ by up to 20%. As pointed out, this is related to the
extrapolation of the fits outside the range of configurations
relevant in antiprotonic helium for which the PES was
initially evaluated. As long as both fits give close results for
antiprotonic helium, we have no reason to consider any of them
as preferable; instead, the difference between the two values
should be regarded as numerical uncertainty of the results that
could only be eliminated with a new calculation of the PES
for a wider range of configurations.

(2) The two theoretical approaches of Sec. II B and II D
produce results that differ by only a few percent for the favored
transition (17,16) → (16,15) and by up to one third for the
unfavored ones. The good agreement with experiment of the
results for antiprotonic helium based on the use of classical
trajectories is not an argument to consider this approach as
more credible in the case of pionic helium. We should therefore
refer to these differences as a theoretical uncertainty of the
results.

(3) Accounting for the contribution of the anisotropic part
of the PES only slightly affects the shift slope βf i(T ) and has
a larger impact on the broadening slope αf i(T ), which is still
much smaller than the theoretical uncertainty.
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(4) The moderate temperature dependence of the results is
uniformly reproduced in all the calculations.

IV. CONCLUSION

We have calculated the density shift and broadening of four
dipole transition lines in pionic helium in gaseous helium.
At thermal collision energies, we find a blueshift of the
line center in the unfavored transitions (n,l) = (16,15) →
(16,14), (17,16) → (17,15), and (16,15) → (17,14), while
the transition frequency is redshifted for the favored
transition (17,16) → (16,15). The narrow collisional line
width (0.1 GHz) of the laser-induced resonance transition

(n,l) = (16,15) → (16,14) makes it suitable for precision
spectroscopy of pionic helium atoms. We demonstrate that the
major part of the collisional shift and width of the spectral lines
is induced by the short-range part of the interatomic potential.
Our result may be helpful in the extrapolation of the transition
wavelengths in pionic helium to zero density of the perturbing
helium gas.

While the significant overall uncertainty of the S&B slopes
may not allow for a direct extrapolation of the experimentally
observed resonance frequencies of the laser-induced transi-
tions to zero target gas density, we expect that knowing the
density shift to ∼20% fractional accuracy will greatly enhance
the efficiency of the precision laser spectroscopy study of
pionic helium.
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