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Heisenberg spin chains can act as quantum wires transferring quantum states either perfectly or with high
fidelity. Gaussian packets of excitations passing through dual rails can encode the two states of a logical qubit,
depending on which rail is empty and which rail is carrying the packet. With extra interactions in one or between
different chains, one can introduce interaction zones in arrays of such chains, where specific one- or two-qubit
gates act on any qubit which passes through these interaction zones. Therefore, universal quantum computation
is made possible in a static way where no external control is needed. This scheme will then pave the way for a
scalable way of quantum computation where specific hardware can be connected to make large quantum circuits.
Our scheme is an improvement of a recent scheme where we borrowed an idea from quantum electrodynamics
to replace nonlocal interactions between spin chains with local interactions mediated by an ancillary chain.
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I. INTRODUCTION

The circuit model of quantum computation, which is the
oldest and the most well-studied model of quantum computa-
tion, is very similar to the classical model of computation; its
basic features are that quantum circuits are drawn as horizontal
lines representing flow of qubits on which, instead of classical
gates, unitary quantum operators act. In the same way that the
elementary classical gates like AND, OR, and NOT can be joined
in various ways to implement any Boolean function on n bits,
in quantum circuits a universal set of one and two-qubit unitary
gates can be joined in a suitable way to produce any unitary
gate to any desired level of accuracy. This similarity is seen
in any diagram of quantum circuits, such as the one shown in
Fig. 1. However, the similarity stops here and indeed there is
a world of difference between the two models.

In Fig. 1(a), horizontal lines actually depict wires, and the
whole diagram is a static template which shows how different
gates which are well localized and “fixed in space” act on
the logical values of the input bits once they are fed into the
circuit. On the other hand, in Fig. 1(b) there is no wire at all
and horizontal lines and the gates just display when and on
which qubit a unitary gate should be applied “in time.” The
quantum circuit is not a static hardware template but is more
or less the same as the quantum algorithm itself, and a great
deal of external control should be applied in time to run this
circuit or algorithm. In a classical circuit, bits of information
(small electrical currents or bunches of electrons) move down
the lines and are acted on automatically by the classical gates
on their way, while in a quantum circuit qubits of information
(electrons, photons, spins, etc.) stay in their place while an
external controller applies different quantum gates on them in
a particular order described by the quantum circuit.

Of course there are schemes of quantum computation, e.g.,
optical realizations, in which “flying” qubits carry information
and are acted on by localized and fixed-in-space optical
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elements. However, the drawbacks of such schemes are
the weak interactions between photons in nonlinear optical
realizations, or the probabilistic nature of gate teleportation in
linear optical quantum computing [1]. One has also to design
mechanisms for converting flying qubits into stationary qubits
of other types which can interact strongly [2] and transfer
information over small distances. There are other schemes
which are much easier to control and manipulate, like NMR
[3], but are generally known not be scalable.

Intensive study of spin chains as quantum wires in the
past decade [4–18] has revealed an interesting synthesis
between these two demands. The very appealing property of
this solution is that it allows one to directly communicate
the information, without converting it to another form. Of
particular interest are those schemes where information can
be routed either passively, with no control on the overall
system, or control only over a small portion of the system
[8,10,15,19–21], or only global external control over the entire
system without any individual addressing [9,13].

Therefore, it is quite tempting both theoretically and
practically to design schemes where wires can be arrays of
Heisenberg spin chains, and qubits can be excitations that flow
down these chains [4–13]. These chains can be joined to each
other and, in certain interaction zones, their interaction can be
such that when excitations pass through these zones, specific
one- or two-qubit gates act on them, without any external
control. The emphasis is here on the absence of “external
control,” which makes these exactly as classical circuits.

The most recent attempt in this direction, which is the
culmination of a long series of investigations [22–27], is
reported in Ref. [28]. In this scheme a pair of periodic
Heisenberg spin chains with XY interactions on each of
them play the role of a single quantum wire, where a dual
rail encoding is used to encode a single qubit (see Fig. 2).
Single-qubit gates are implemented by “rewiring” parts of
these chains, in the sense that new types of interactions
are imposed on parts of these chains. These will be briefly
reviewed in the sequel. As is well known, universal quantum
computation requires, in addition to these single-qubit gates,
the ability to implement also an entangling gate, such as the
CNOT or CPHASE gate which acts on two qubits [29]. In Ref. [28]
this is solved by imposing nonlocal interactions between two
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FIG. 1. In a classical circuit, horizontal lines correspond to
wires and the gates to localized operations fixed in space acting
on bits flowing through wires. In a quantum circuit horizontal
lines correspond to flow of time and gates correspond to localized
operations in time, acting on qubits in their fixed place.

chains; see Fig. 3(a). Certainly this feature is an important
hindrance in experimental realizations of this scheme.

This is where our work in this paper is motivated. We want
to replace this nonlocal interaction by a local interaction and,
to this end, we borrow ideas from quantum electrodynamics,
where the long-range interaction between two charged parti-
cles is mediated by a photon that interacts locally with each of
the charged particles. Therefore, in places where we require a
CPHASE gate, we add a third chain between the two chains [see
Fig. 3(b)], which mediates the long-range interaction between
the two chains by locally interacting with each of them. Note
that, as shown in Ref. [28], the size of the interaction zones in
each of the chains and between the chains needs to be greater

0 1 0 1

G = 0 G = 1

FIG. 2. Dual-rail encoding for a qubit. The states of the two chains
are a logical |0〉 or a logical |1〉, depending on which of the two
XY chains is in the vacuum state |�〉 and which carries a Gaussian
packet |G〉.
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FIG. 3. (a) The CPHASE gate of [28] with nonlocal interactions.
(b) The CPHASE gate with local interactions via an ancillary chain.

than the width of the Gaussian packets to not have appreciable
errors. For details of error analysis see Ref. [28]. The final
result is that we now have a set of chains with local interaction
which acts like a static quantum circuit. This static quantum
circuit is then capable of doing universal quantum computation
in the same way that classical circuits can do universal classical
computation.

The structure of this paper is as follows: In Sec. II, we review
in some detail the basic elements of the static quantum circuit
of Ref. [28] or, as they call it, the quantum plinko machine. In
Sec. III, we show how the long-range interactions necessary
for the CPHASE gate can be implemented by using a third
chain that acts as a gauge particle or photon and mediates this
long-range interaction by local interactions. In fact, we show
that a different but still entangling gate can be made in this
way. In Sec. IV we briefly review the experimental progress in
realizing spin chains and their manipulation and control in a
few systems, such as cold atoms and quantum dots, and argue
that the ingredients needed for realization of our scheme are
at the edge of experimental feasibility within these schemes.
Finally, we conclude the paper with a discussion and delegate
some of the technical details to the appendixes.

II. STATIC QUANTUM CIRCUIT OF REFERENCE
THOMPSON ET AL.

For the sake of completeness, in this section we briefly
review the work of Thompson et al. [28]. We do not go into
the error analysis carried out in Ref. [28] and explain only the
basic notions: XY chains and their wave packets, the encoding
of logical qubits into these chains, the single-qubit gates, and
the CPHASE gate. First we describe our notations.

A. Notations and conventions

We will be dealing with periodic spin chains consisting
of N spins, labeled from 0 to N − 1, where the N th site is
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understood to be the same as site 0. Pauli operators on the j th
spin are denoted by xj , yj , and zj , where

x =
(

0 1
1 0

)
, y =

(
0 −i

i 0

)
, and z =

(
1 0
0 −1

)
,

respectively. The Hilbert space of each individual spin is
spanned by two states

|↑〉 ≡ |0〉 =
(

1
0

)
,

|↓〉 ≡ |1〉 =
(

0
1

)
.

When a chain is in the state of all-up spins, i.e., |0,0, . . . 0〉, we
call it the vacuum state, and when a spin in the j th position is
down, i.e., |0,0, . . . 1, . . . 0〉, we say that there is an excitation
or a particle in the j th position. The local operator

nj = 1

2
(I − zj ) =

(
0 0
0 1

)
j

detects an excitation on the j th site of the chain and the operator
N̂ :=∑N−1

j=0 nj counts the number of excitations in the whole
chain.

The configurations of pairs of spin chains, as described in
Sec. II C, will encode logical qubits which will be denoted
by bold-face numbers inside kets, i.e., |0〉 and |1〉. The Pauli
operators on the logical qubits will be denoted by capital
letters,

X = |0〉〈1| + |1〉〈0|, Y = −i |0〉〈1| + i |1〉〈0|,
Z = |0〉〈0| − |1〉〈1|. (1)

B. The XY chain

Consider a periodic chain of spin- 1
2 particles. States in

the Hilbert space of a chain are written in the computational
basis which have the form |a0,a1, . . . ,aN−1〉 where ai = 0,1.
The Hamiltonian for the chain entails the well-known XY

interaction:

H = 1

2

N−1∑
j=0

xj xj+1 + yj yj+1, (2)

where subscript j indicates the j th site of the chain.
This Hamiltonian commutes with Sz

total =∑N−1
j=0 zj so the

eigenstates of the Hamiltonian have specific value of Sz
total. The

subspace with Sz
total = N is one dimensional and includes the

so-called vacuum state,

|�〉 = |0,0, . . . ,0〉, (3)

and the subspace with Sz
total = N − 2 is called the single-

excitation subspace. This subspace is N dimensional and is
spanned by |x〉, which is defined as |0,0, . . . 0,1,0, . . . ,0〉,
where 1 is on site x. Here we are interested in eigenstates of
the Hamiltonian which are in the single-excitation subspace;
see Appendix A. They are defined as

|p̃〉 = 1√
N

N−1∑
x=0

e
2πipx

N |x〉, with energy E = 2 cos

(
2πp

N

)
,

(4)

where p is an integer between 0 and N − 1. A Gaussian wave
packet |G〉 can be defined as [30]

|G〉 = 1√
�x

√
π

N−1∑
x=0

∞∑
α=−∞

e
2πip0x

N e
− (αN+x−x0)2

2�x2 |x〉

= 1√
�p

√
π

N−1∑
p=0

∞∑
α=−∞

e
−2πipx0

N e
− (αN+p−p0)2

2�p2 |p̃〉, (5)

with 2π�x�p = N , where �x and �p are respectively the
widths of the packet in the position and momentum spaces.
The group velocity of these packets is given by

vg = N

2π

dE

dp
= −2 sin

(
2πp

N

)
. (6)

By choosing p = N/4, the packet will propagate with group
velocity vg = 2 and with no dispersion, since at p = N/4 the
derivative of the group velocity (dispersion) is 0 [20,28]. The
unitary evolution of the system U = e−iH t acts as a translation
operator on the wave packets which in time t will translate their
center from x0 to x0 + vgt up to a small error [20].

C. The dual-rail encoding

In Ref. [28] the dual-rail encoding is used to represent
a qubit. A pair of XY chains represent the |0〉 and the
|1〉 states of a single qubit, when they are in the following
states (Fig. 2):

|0〉 := |G〉 ⊗ |�〉, (7)

|1〉 := |�〉 ⊗ |G〉. (8)

From Eq. (5) we find that

(I ⊗ N̂ )|0〉 = 0 and (I ⊗ N̂ )|1〉 = |1〉, (9)

Thus, the operator I ⊗ N̂ acting on the dual rail detects whether
the logical qubit is in the |0〉 or the |1〉 state. We will later use
this fact in our local implementation of the entangling gate.

To represent M qubits, 2M chains are used. The pair of
chains corresponding to the nth qubit are pointed to by the
pair of indices (0,n) and (1,n), and all the chains are of equal
length N , where the spins on each chain are numbers from 0
to N − 1 (Fig. 4). A Pauli operator like x which acts on the j th
spin of chain (a,n) (a = 0,1) is denoted by x(a,n)

j . Thus, the
Hamiltonian for the free system which has no quantum gate in
it is given by

Hfree = 1

2

N−1∑
j=0

∑
a=0,1

M∑
n=1

x(a,n)
j x(a,n)

j+1 + y(a,n)
j y(a,n)

j+1 . (10)

Therefore, when there is no extra interaction between the spins,
any Gaussian wave packet flows down the chain without being
acted on by any sort of gate. This acts as a collection of M

simple wires of the quantum circuit.

D. Single-qubit gates

A single-qubit gate acts on a single qubit, or a single
wire (a pair of XY chains). Therefore, for simplicity we can
drop the extra superscript n from the spin chains and the
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FIG. 4. M qubits correspond to 2M spin chains. As we will see,
for the implementation of entangling gates, it is better to arrange the
chains in two layers, with the 0 chains in one layer and the 1 chains
in another parallel layer.

operators (pointing to the label of the qubit) and write the
free Hamiltonian for the two chains in the form

H
1 qubit
free = 1

2

N−1∑
j=0

(
x0

j x0
j+1 + y0

j y0
j+1 + x1

j x1
j+1 + y1

j y1
j+1

)
. (11)

Any single-qubit unitary can be decomposed (up to an overall
phase) in the form [29]

U = eiθ1Zeiθ2Xeiθ3Z, (12)

where θi are real parameters ∈ [0,π ]. This is described
separately for the two types of gates eiθZ and eiθX in the
following.

1. The eiθ Z gate

To implement this gate, the following interaction is added
to the 1 chain of Eq. (11), [28]:

HZ = φ

N−1∑
j=0

I1
j − z1

j

2
. (13)

This modified Hamiltonian is still diagonal in the momentum
basis but this time with eigenvalues E(|p̃〉) = 2 cos( 2πp

N
) + φ

which are shifted by the amount φ. It is now straightforward to
see that, upon adding this extra term, the logical state |1〉 will
gain an extra phase of φ per unit time, when it passes through
the wire, while the logical qubit |0〉 does not get any phase.
Therefore, the gate eiφtZ is implemented on the qubit.

Notice that, in this scheme, each gate (both single- and
two-qubit gates) is implemented in a confined gate block. This
means that only a portion of the chains have the added extra
interaction terms (see Fig. 5). In fact, when the packets are
localized outside of a gate, up to some approximation, they do
not feel the presence of these extra terms and we can safely
ignore them. Also, when they are well localized inside a gate
block, again up to some approximation, we can safely assume
that the gate spans the whole chain. The detailed error analysis

0 1 0 1

(a) (b)

VgVg

FIG. 5. (a) Implementation of a eiφZ gate. (b) Implementation
of a eiφX gate. A curly line indicates the Gaussian wave packet
and the boxes shows on which region the gates are acting. The
Gaussian wave packet enters the gate with group velocity vg and
the length of the gate is chosen to be much larger than the width
of the packet. The symbols φ depict the extra interactions for
implementations of the gates.

in this regard can be found in Ref. [28], we just mention here
some of their main results. It has been shown that, if we choose
the width of the Gaussian packets to be �x = �(N1/3), and
we take the length of each gate block to be �(N2/3), then we
can obtain error O( 1

(Mg)δ/3 ) with N = �(M3+δg3+δ) for any
δ > 0, where M is the number of qubits, and g is the number
of gate blocks.

2. The eiθ X gate

Again we focus on a specific pair of chains pertaining to a
single qubit and omit the superscript, the index n, pertaining to
the label of the qubit. We now add the following XY interaction
to the two chains:

HX = 1

2
φ

N−1∑
j=0

(
x0

j x1
j + y0

j y1
j

)
, (14)

where the superscript 0 or 1 denotes the two rails pertaining to
a single qubit on which the gate is to act. The extra interaction
term does not commute with the free Hamiltonian (11);
however, in the one-particle sector it does. The reason is that, in
the one particle sector, the XY interaction [h := 1

2 (xx + yy)]
acts just as a simple hopping term, i.e., h|1,0〉 = |0,1〉,
h|0,1〉 = |1,0〉 and the order of hopping on the legs and the
rungs of the ladder in Fig. 5 enforced by Hfree and HX is
immaterial. Since |p̃〉 is the single-particle eigenstate of the
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free Hamiltonian (11), one can easily see that the two states

|p̃,±〉 := |p̃〉 ⊗ |�〉 ± |�〉 ⊗ |p̃〉√
2

(15)

are eigenstates of the new Hamiltonian:

(Hfree + HX)|p̃,±〉 =
[

2 cos

(
2πp

N

)
± φ

]
|p̃,±〉. (16)

Therefore, the Gaussian wave packets constructed from |p̃,±〉,
in the form

|±〉 = 1√
�p

√
π

N−1∑
p=0

∞∑
α=−∞

e
− (αN+p−p0)2

2�p2 |p̃,±〉, (17)

when passing through the pairs of chains in a time t , will
acquire phases e±iφt . This means that the extra Hamiltonian
implements the gate eiθX on the single qubit which has this
type of interaction box on its way.

E. The two-qubit CPHASE gate

Finally, for performing a controlled-phase operation or
CPHASE gate, first the four chains of the two qubits are arranged
in such a way that the two 1 chains of the two qubits are
adjacent to each other [Fig. 3(a)] [28]. The chains (1,n) and
(1,n + 1) are adjacent to each other. Actually, this arrangement
makes half of the 1 chains near each other and the other half far
from each other. So a better arrangement will be to put all the 0
chains in one layer and all the 1 chains in another layer above
it. The idea of Ref. [28] for implementing a CPHASE gate is to
impose a long-range interaction between all the spins of the two
1 chains, as shown in Fig. 3(a). Again omitting the superscripts
corresponding to the labels of the qubits and focusing only on
the two 1 chains, the interaction is of the form

HCPHASE = φ

N−1∑
i�j=0

I1
i − z1

i

2
⊗ I1

j − z1
j

2

= φ

N−1∑
i�j=0

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎠

i,j

. (18)

This Hamiltonian does not commute with the free Hamiltonian
for the chains (11), but in the one-particle sector it does. If we
order the chains as 0, 1, 1′, 0′, then a momentum eigenstate like
|�〉 ⊗ |p̃1〉 ⊗ |p̃2〉 ⊗ |�〉, where two packets are moving on
the chains 1 and 1′ has the energy 2 cos( 2πp1

N
) + 2 cos( 2πp2

N
) +

φ, while the other states where there is only one or no packet in
the two middle chains have the same energy as before, without
an extra φ. Since the four possible logical qubits correspond
to the following four states on the chains:

|0,0〉 ≡ (|G〉 ⊗ |�〉) ⊗ (|G〉 ⊗ |�〉),
|0,1〉 ≡ (|G〉 ⊗ |�〉) ⊗ (|�〉 ⊗ |G〉),
|1,0〉 ≡ (|�〉 ⊗ |G〉) ⊗ (|G〉 ⊗ |�〉),
|1,1〉 ≡ (|�〉 ⊗ |G〉) ⊗ (|�〉 ⊗ |G〉), (19)

and in view of Eq. (19), one sees that only when two qubits
pass through the chains in a time t simultaneously they pick

up a phase eitφ , this interaction implements the two-qubit gate
CPHASE

CPHASE |a,b〉 = eitφab |a,b〉. (20)

Now we move on to replace this nonlocal interaction with a
local one and come up with a different entangling gate.

III. IMPLEMENTATION OF AN ENTANGLING
GATE WITH LOCAL INTERACTION

In this section we introduce a new method for implementing
an entangling gate. This gate, together with the one qubit gates
of Sec. II D, will then comprise a universal set of quantum
gates. The scheme of Ref. [28] for performing a CPHASE gate
on two qubits required nonlocal interactions between the 1
rails in which the two qubits were encoded. Therefore, we
introduce an ancillary rail between the two desired 1 rails,
where the ancillary rail has an XY Hamiltonian in a constant
external transverse magnetic field. The necessity of this
magnetic field is explained later. This ancillary rail will locally
interact with two 1 rails and effectively produces nonlocal
interactions between the two rails [see Fig. 3(b)]. The general
idea here is similar to that from quantum electrodynamics
where the photon generates long-range interactions between
charged particles. This analogy will help us to build the model
intuitively.

To this end we add an ancillary spin chain in the middle
of the two main chains (n,1) and (n + 1,1) and arrange so
that it has a doubly degenerate ground state and the energy
gap is so large to effectively restrict the dynamics to the
degenerate ground space. Denoting the two ground states by
|0〉anc and |1〉anc and inspired by the basic vertex of quantum
electrodynamics, we expect an effective potential as shown in
Figs. 6 and 7. Working backward from this effective potential
we find the Hamiltonian of the ancillary chain to be

H anc = 1

4m

N−1∑
i=0

(
I − zi − xixi+1 + yiyi+1

2

)
, (21)

where hereafter the superscript “anc” stands for the ancillary
rail. The role of the external magnetic field is to make the
ground state degenerate. The reason for the overall factor
of −1

4m
is explained later. The standard way for solving this

Hamiltonian is to use the Jordan–Wigner transformation [31].

e

e

e

e

FIG. 6. A photon, locally interacting with electrons, mediates
long-range interactions between them. The ancillary chains in this
article for implementing CPHASE gate between the rails carrying
qubits is inspired by this effect.
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(a) (b)

FIG. 7. The basic vertex of QED and the way it inspires the
effective interactions (29). The ancillary qubit plays the role of the
photon with two states |0〉anc and |1〉anc. The states of the electron are
denoted by |0〉 and 1〉. The vertex in (a) translate to Vj |1〉 ⊗ |0〉anc =
|1〉 ⊗ |1〉anc and the vertex in (b) to Vj |1〉 ⊗ |1〉anc = |1〉 ⊗ |0〉anc,
leading to Vj = nj ⊗ Xanc. Later in the article and for notational
convenience the two states |0〉anc and |1〉anc are denoted by |�〉 and
|
〉, respectively.

We use this transformation in Appendix A when we want
to find the full spectrum of the model and perform the error
analysis in Appendix B. For the present discussion where we
are only interested in the ground states, so we follow a simpler
approach and write Eq. (21) in the following explicit form:

H anc = 1

8m

N−1∑
j=0

hj,j+1, (22)

where

hj,j+1 = (2I − zj − zj+1 − xj xj+1 − yj yj+1)

=

⎛
⎜⎝

0
2 −2

−2 2
4

⎞
⎟⎠

j,j+1

, (23)

which shows that the operator h is a positive operator. It is then
readily seen that the following two states are eigenstates with
zero energy and thus, due to the positivity of h, the degenerate
ground states of H anc:

|�〉 = |0,0, . . . 0〉, |
〉 := 1√
N

N−1∑
j=0

|j 〉. (24)

The argument for |�〉 is simple, because h has the product state
|0,0〉 as a ground state. The argument for |
〉 is based on the
observation that 1

2 (xixi+1 + yiyi+1) acts as a hopping operator,
under which (|0,1〉 ↔ |1,0〉) and |00〉 and |11〉 are annihilated.
The operator ni = I−zi

2 also acts as a number operator which
gives a total energy equal to zero for |
〉.

We will later show that the parameter m can be chosen so
that there is a sufficiently large gap between the ground space
of the ancilla and its excited states. In this ground space we
can define the following Pauli operators which act on the two
ground states and will be needed in our calculations in the

sequel:

X̂anc := |�〉〈
| + |
〉〈�|,
Ŷ anc := −i |�〉〈
| + i |
〉〈�|,
Ẑanc := |�〉〈�| − |
〉〈
|. (25)

We are now ready to introduce the interaction between
the ancillary rail and the 1 rails, which lead to the effective
implementation of the CPHASE gate. Since we are concentrating
on two specific rails, we use a simpler notation for the Pauli
matrices and omit the superscripts. First consider a block of the
ancillary rail and one of the 1 rails, say the left one [Fig. 3(b)].
We denote this as a Vx block for reasons to be clear soon.

The j th site of the ancillary rail is connected to its adjacent
site [Fig. 3(b)], in the left 1 rails with couplings given by

V 1,anc
x = e

N−1∑
j=0

I − z1
j

2
⊗ xanc

j , (26)

where e is a coupling strength. A similar interaction exists
between the ancillary rail and the right 1 rail, as shown
in Fig. 3(b). To see what type of interaction this coupling
induces on the subspace of logical qubits (24), we note that,
by taking the coupling 1

4m
large enough, and thus, producing

a sufficiently large gap between the ground and the excited
states of the ancillary rail, we can restrict the dynamics in the
ancillary rail to the two-dimensional ground space spanned
by the two vectors |�〉 and |
〉. In Appendix B, we show
that, if we take 1

m
> 2N2, then restricting the dynamics to

the ancillary ground space causes an error which is less than
O( 1

N1/6 ). Therefore, we need the effective interaction induced

in this subspace which is given by V
1,anc

x, eff = (I ⊗ P0)V 1,anc
x (I ⊗

P0), where

P0 := |�〉〈�| + |
〉〈
| (27)

is the projection operator on the ground space of the ancillary
rail. In view of the form of V 1,anc

x and Eq. (27), we have to
calculate the following:

P0 xjP0 = (|�〉〈�| + |
〉〈
|)xj (|�〉〈�| + |
〉〈
|). (28)

We now note that, because xj creates an extra particle on an
empty site j or removes a particle from this site, then two of the
matrix elements vanish; namely, 〈�|xj |�〉 = 〈
|xj |
〉 = 0.
We also find that 〈�|xj |
〉 = 〈
|xj |�〉 = 1√

N
. Therefore, the

effective interaction turns out to be of the form

V
1,anc

x, eff = e
1√
N

N̂1 ⊗ X̂anc, (29)

where N̂1 is the number operator on rail 1 and X̂anc is the Pauli
operator X on the ancillary rail (25). We remind the reader that
the number operator N̂1 detects the existence of a Gaussian
packet on rail 1. In a similar way we can construct another
block where the interactions are of the type I−zj

2 ⊗ yj . This
will then lead to the effective interaction

V
1,anc

y, eff = e
1√
N

N̂1 ⊗ Ŷ anc. (30)

From these types of interaction between the ancillary rail
and the 1 rails, and by adjusting the signs of the coupling e,

062342-6



TIME-INDEPENDENT QUANTUM CIRCUITS WITH LOCAL . . . PHYSICAL REVIEW A 93, 062342 (2016)

anc
(1,n) (1,n+1)

VX

VY

VY

(0,n+1)(0,n+1)

FIG. 8. Three successive blocks of the type VY and VX , as
discussed in the text, implement a controlled phase gate �φ ,
introduced in Eqs. (32) and (33), between qubits n and n + 1. We
have arranged the 0 rails and the 1 rails in two separate layers.

we construct two blocks of interactions between the ancillary
rail and the two 1 rails adjacent to it and call them simply
VX and VY , respectively, as in Fig. 8. They are defined as
follows: where we have simplified the notation; that is, instead
of denoting the two 1 rails by (n,1) and (n + 1,1) we simply
denote them by 1 and 1′:

VX = e
1√
N

[N̂1 − N̂1’] ⊗ X̂anc

VY = e
1√
N

[N̂1 − N̂1’] ⊗ Ŷ anc. (31)

With these two blocks, we can now implement an entangling
two-qubit gate which make universal computation possible.
As we will shortly show, the two-qubit gate is given by

�φ =

⎛
⎜⎝

1
e−iφ

e−iφ

1

⎞
⎟⎠, (32)

which is clearly an entangling gate for generic values of φ.
Therefore, the effect of three consecutive blocks of the form
(33) as shown in Fig. 8 is given by �φ ,

�φ := e−i(N̂1−N̂1′
) π

4 Ŷ anc
ei(N̂1−N̂1′

)φX̂anc
ei(N̂1−N̂1′

) π
4 Ŷ anc

. (33)

Now we have to find the effect of the above operator on the
logical states of the two qubits for which the 1 rails are part of.
We also initialize the state of the ancillary rail at |�〉. First from
Fig. 2 we note that, when a logical qubit is in the |0〉 state, there
is no Gaussian packet in its 1 rail and when it is in the state |1〉,
then there is a Gaussian packet in its 1 rail. To be precise
we have to calculate the effect of these states on the state
|�〉1 ⊗ |�〉1′ ⊗ |�〉anc, and three other states where there is one
or two Gaussian packets on the first two rails. In view of the fact
that the existence of a Gaussian packet in a 1 rail corresponds
to a logical state of the dual rail qubit to be |1〉, we use a
simplified notation and denote these states simply by |0,0〉 ⊗
|�〉, |0,1〉 ⊗ |�〉, and so on, with the understanding that the
states of the 0 rails have been suppressed. We then find that

�φ|0,0〉 ⊗ |�〉 = |0,0〉 ⊗ |�〉,
�φ|1,1〉 ⊗ |�〉 = |1,1〉 ⊗ |�〉, (34)

because, in both cases, N̂1 − N̂1′ = 0 and all the blocks
in Eq. (8) act as identity operators. On the other hand,
when the states of the two rails are |1,0〉 or |0,1〉, then the
operators on the ancilla act as either e−i π

4 Ŷ anc
eiφX̂anc

ei π
4 Ŷ anc

or
ei π

4 Ŷ anc
e−iφX̂anc

e−i π
4 Ŷ anc

. Both operators are equal to(
e−iφ 0

0 eiφ

)
,

where we have used the representation of the last operator in
the ground space of the ancillary rail spanned by

|�〉 ≡
(

1
0

)
,

|
〉 ≡
(

0
1

)
.

When acting on the state |�〉 they both produce only a phase
e−iφ . Note that in all cases the state of the ancillary rail
returns to its initial value |�〉. Putting everything together and
suppressing the state of the ancilla, we have proved that

�φ|0,0〉 = |0,0〉,
�φ|0,1〉 = e−iφ|0,1〉,
�φ|1,0〉 = e−iφ|1,0〉,
�φ|1,1〉 = |1,1〉, (35)

which shows that �φ is of the form (32). In this way the
universal set of quantum gates is implemented with local
interactions between a set of XY chains.

We should point out that, although in all the calculations
the length of interaction boxes, both for single-qubit gates and
for the CPHASE gate, has been taken to be equal to N , this is not
necessary. In fact, as stressed and elaborated in Ref. [28], the
length of such boxes should only be well larger than the width
of a Gaussian packet. More specifically, it has been shown
that, for having the smallest possible error, the length of such
boxes should be equal to �(N2/3). Now considering Eqs. (31)
and (33), for implementing a phase � in our entangling gate,
we should have � = e√

N
t , where t = gate length

2 is the time that
takes for a wave packet to pass the gate block. Therefore, for
having a phase � ≈ 1, we should choose gate length

2
e√
N

= �≈ 1,
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and consequently e√
N

= �( 1
N2/3 ). We will use this fact later in

Appendix B.

IV. POSSIBLE EXPERIMENTAL REALIZATIONS

In this section we discuss possibilities of experimental
realization of this scheme. The discussion is only meant
to show that, in view of the long series of attempts for
experimental realizations of quantum information processing
on spin chains, the ideas presented in this paper are not too far
from realization in the future. Therefore, we draw the attention
of the reader to previous proposals in which the ingredients
of the scheme presented here have been realized in one way
or another in closely related systems. To this end, we try to
answer the following three questions:

(1) Do specific systems exist whose interaction can be
modeled by a spin-chain Hamiltonian with controllable in-
teractions?

(2) Can these systems be initialized to specific quantum
states necessary for quantum information processing?

(3) Can such systems be scaled up to include a large
number of individual two-state (spin) systems?

Of course it is understood that each of the proposed systems
cannot solve all the problems at once and only in the course
of time, a specific, possibly hybrid proposal may be developed
with optimal solutions of all the problems. Below we list
possible partial answers to the above questions.

(1) First we note that spin chains with controllable cou-
plings with effective interactions of Heisenberg or XY chains
have been realized in several systems. A possible setup is
quantum-dot arrays [32,33], where the exchange interactions
between the trapped electrons in neighboring dots can be
modeled as a spin interaction and the couplings can be tuned
by controlling the voltage barriers between neighboring dots.
Another setup is cold atoms in optical lattices [34–36], where
it has been shown [36] that it is possible to induce and control
strong interactions between spin states of neighboring atoms
by adjusting the intensity, frequency, and polarization of the
trapping light. More specifically, it is shown [36] that “for
sufficiently strong periodic potential and low temperatures,
the atoms will be confined to the lowest Bloch band” [34]
and “their effective Hamiltonian is given by the well-known
Heisenberg model (XXZ model).” Moreover it is argued in
Ref. [36] that homogeneous magnetic fields and also Ising
interactions, which are required in our implementation of
CPHASE gates, “can be easily turned on and off by adjusting the
potential Vμ” or the intensity of the laser light. It is important
to note that what is required in our scheme is to apply these
uniform interactions and magnetic fields over a long array of
spins and not on individual atoms or a small number of them.
Another scheme is the coupled-wave-guide array where, by
suitably choosing the distance between waveguides, effective
interactions of the Hamiltonian have been tuned. In these
systems, experimental perfect state transfer has been reported
in arrays of length 11 [18] and 19 [37]. Other less-controllable
systems are small NMR systems [38] and nitrogen-vacancy
centers in diamond [39].

(2) We next face the problem of initializing the chains to
the desired states. For gapful spin chains, cooling the system

down to below the energy gap is generally the standard tool
for this purpose. However, for gapless spin chains, which is
the more ubiquitous case for spin 1/2 systems, one can use
adiabatic evolution to put the system in the ground state [40].
To prepare a logical qubit in a dual rail, as needed in our
scheme, we should prepare a chain to be in a Gaussian wave
packet which should be almost dispersion free. The conditions
for such a preparation have been explored in detail in a theory
paper [20]. Since such a Gaussian packet is nothing but a
twisted W state [20], which is a linear superposition of states
in which only one spin is excited, they should resemble spin
waves and, thus, should be close to eigenstates of the chain
Hamiltonian. Nevertheless, at present we do not know of any
concrete experimental proposal for preparing such Gaussian
wave packets in the single-particle sector of spin chains. One
recent development which may be relevant in this connection
has recently been reported in Ref. [41], where a chain of
N = 21 waveguides, whose couplings can be modeled by an
XY Hamiltonian, have been used to perform discrete Fourier
transform (DFT). It has been shown in Ref. [41] that an input
signal of Gaussian form, prepared “by focusing a beam from a
HeNe laser,” can be converted into a Gaussian profile along the
chain. According to Ref. [41], the application of their scheme
reaches other areas, such as “qubit storage and realization
of perfect discrete lenses for nonuniform input distributions,”
which in turn “opens the way to many interesting applications
in integrated quantum computation.”

(3) Finally, we come to the question of whether these spin
chains can be scaled up to large sizes. This is, in fact, the basic
property of every viable candidate for quantum information
processing. Generally every protocol, whether it be ion trap
or optical lattice, faces this problem. As explained in the
answer to the first question, effective interactions between
electrons in arrays of quantum dots can be modeled by spin
Hamiltonians and the couplings can be controlled by adjusting
the potential barriers between the dots. Recent years have
seen ground-breaking results in fabricating Si, Si/SiGe, and
dopant-based quantum dots [32,33]. Critical advances like
isolation of single electrons, the observation of spin blockade,
single-shot readout of individual electron spins, and novel
ways of on-chip multiplexing [33], make them promising
candidates for realizing quantum spin systems with long
spin coherence times, and single-site addressability necessary
for quantum computation and spintronics, in particular for a
protocol like that discussed in the present paper.

V. SUMMARY

The trend of performing quantum computation on chains
of spins, either in the form of quantum Turing machines [42],
quantum ballistic models [43], or billiard balls [44] goes back
to the 1980s, well before the rapid upsurge of interest in
quantum computation initiated by Shor’s factoring algorithm
and the demonstration of a universal set of quantum gates by
Barrenco et al. [45]. It was then with the work of Bose in
Ref. [4] that Heisenberg spin chains were shown to be good
carriers of quantum states of spins. Since then, intensive studies
have shown that Heisenberg chains with simple or engineered
XY interactions can act as perfect or almost-perfect carriers
of quantum states over short distances. The arbitrary state of
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a spin joined to the left end of such a chain is carried with
high fidelity to the right end through the natural dynamics
of this chain, without any external control and without the
need to individually address the spins. It has also been shown
that these chains can be initialized to carry a Gaussian wave
packet of excitations. Dual rails can encode the two states of
a logical qubit depending on which of the two rails is empty
and which one carries a packet. A 2n array of such dual rails
can then act as quantum wires carrying n qubits. On specific
areas in these arrays, local interactions can be implemented
between the spins of the chain such that when qubits pass
through these interaction zones, specific one- and two-qubit
quantum gates, necessary for universal quantum computation,
act on them, again without any external control [28]. In this
way static templates or quantum circuit hardware, can be
constructed, which when joined to each other can create large-
scale quantum circuits. The scheme of Ref. [28], however,
requires long-range interactions between adjacent chains in
order to implement the two-qubit CPHASE gate. Inspired by the
role of gauge particles (photons) in quantum electrodynamics
which locally interact with electrons to mediate long-range
interaction between them, we have shown that, by adding
extra ancillary chains, one can indeed construct such quantum
hardware entirely with local interaction between spin chains.
In view of the emerging experimental attempts to realize such
schemes for quantum-state transfer [18], we hope that our
bringing of the scheme of Ref. [28] closer to experimental and
practical feasibility will pave the way for making static and
time-independent quantum circuits in the future and quantum
chips in the long run.
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APPENDIX A: THE SPECTRUM
OF THE ANCILLARY CHAIN

In this appendix we determine the full spectrum of the
Hamiltonian (21). We will need this spectrum when we discuss
the errors caused by replacing the full dynamics with an
effective one in the ground space of the ancillary chain. The
method of obtaining the spectrum is standard [31] and is based
on the Jordan–Wigner transformation [31],

φj = z ⊗ · · · ⊗ z⊗︸ ︷︷ ︸
j − 1 times

x + iy
2

⊗ I ⊗ · · · ⊗ I,

φ
†
j = z ⊗ · · · ⊗ z⊗︸ ︷︷ ︸

j − 1 times

x − iy
2

⊗ I ⊗ · · · ⊗ I, (A1)

where φj and φ
†
j annihilate and create fermions at site j ,

respectively, and obey the anticommutation relations

{φj ,φ
†
k} = δj,k, {φj ,φk} = 0, {φ†

j ,φ
†
k} = 0. (A2)

With this transformation, the model turns into a free-fermion
model with Hamiltonian

H anc = 1

4m

N−1∑
j=0

φ
†
j (2φj − φj−1 − φj+1)

+ P̂ + 1

4m
(φ†

N−1φ0 + φ
†
0φN−1), (A3)

where

P̂ :=
N−1∏
j=0

zj . (A4)

Note that, from Eq. (21), [H anc,P̂ ] = 0, so the Hilbert space
is divided into two sectors with P̂ = ±1, where +1 specifies
the sector with an even number of excitations and −1 with an
odd number of particles, and we can write

H anc = 1 + P̂

2
H+ + 1 − P̂

2
H−. (A5)

In each sector the fermionic operators can be decoupled by
using a Fourier transformation to the normal modes. The
difference lies in the boundary conditions for the modes. In
the P̂ = +1 and P̂ = −1 modes, we use, respectively, periodic
and antiperiodic boundary conditions to find in the P̂ = −1,

H± =
N−1∑
p=0

ωp
±ap

±†
ap

±, (A6)

where

a+
p

† = 1√
N

N−1∑
j=0

e
2πi
N

(
p+ 1

2

)
j
φ
†
j , ω+

p = 1

m
sin2

[
π

N

(
p+1

2

)]
,

(A7)

a−
p

† = 1√
N

N−1∑
j=0

e
2πipj

N φ†
x, ω−

p = 1

m
sin2

(
πp

N

)
. (A8)

In both sectors the energy eigenstates are formed by
successive operation of the respective creation operators on
the vacuum, where we have suppressed the superscript ± for
simplicity:

|p̃1,p̃2, . . . ,p̃i〉 = a†
p1

a†
p2

. . . a†
pi

|�〉,
with energy E = ωp1 + · · · + ωpi

. (A9)

APPENDIX B: ERROR ANALYSIS

Putting aside errors that result from imperfections and
inhomogeneity in the couplings, the imperfect shape of wave
packets and similar sources of errors that may result in practice,
we are faced with at least three sources of theoretical errors.
These should be properly bounded for a quantum computation
scheme to work properly. In this appendix we briefly discuss
these bounds.

The first type of error and the easiest ones to be dealt with
results from contamination of single-particle states with higher
particle states. If such errors occur, i.e., if a 1-particle sector
|α〉 is contaminated by a two-particle state |β〉 in the form
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|ψ〉 = |α〉 + ε|β〉, where |β〉 is in the 2-particle sector or
higher, due to conservation of particle number, the error ε

acquires only a time-varying phase and, over the course of
time, its magnitude does not increase. At the end of the circuit,
where only single-particle measurements are performed, such
erroneous states are projected out.

The other source of error is related to the degree of
localization of the packets. This is common to our scheme and
that of Ref. [28] and it suffices to quote from that reference
that, for performing g gates on M qubits, if the size of the
chains is chosen to be N = �(M3+δg3+δ), then the error of
the computation will scale as O((Mg)−δ/3), for any δ > 0.
Therefore, this is not a threat to the scalability of the scheme.

Finally, we come to the third problem which is specific to
our way of implementing the CPHASE gate by local interactions
with an ancillary chain, where we require that the couplings
in the ancillary rail be strong enough. We show in the rest
of this appendix that, if the XY couplings of the ancillary
rails are larger than 2N2, then the error that this would add
is O(N−1/6). Therefore, in view of the polynomial overhead
in the size of chains N for bounding all types of errors, the
protocol is scalable. The details of this analysis will follow.

In what follows we show that, if we choose the couplings
1
m

such that 1
m

> 2N2, then by substituting the Hamiltonian
with the effective Hamiltonian, Heff = (I ⊗ P0)H (I ⊗ P0),
the magnitude of error per entangling gate, is O(N−1/6).
Specifically, we show that, for each entangling gate block,
and a wave packet |I 〉 initialized at the beginning of this gate
blockis

‖e−iH�t |I 〉 − e−iHeff�t |I 〉‖ = O

(
1

N1/6

)
, (B1)

where �t is the time interval that takes for the wave packet
to translate through this gate block. We prove this result by
using time-independent perturbation theory. We split the total
Hamiltonian into two parts: the base Hamiltonian H̃0 = Heff

and the perturbation potential V ′, which will be defined in
the sequel. Then, in Theorem 1 we show that, if we choose
1
m

> 2N2, then there is an energy gap greater than one between
the ground and the excited states of the ancillary rail. Next, in
theorems 2 and 3 we derive some useful bound that, along with
Theorem B, is used in Corollary 1 to derive some bounds on
the transition amplitudes between the subspace that is spanned
by |�〉 and |
〉, and the other eigenstates of H̃0. Specifically,
in Corollary 1 by using perturbation theory, we show that, if
we have an eigenstate of H̃0, where the ancillary rail is in its
ground states, then it is approximately equal to its perturbed ket
up to an error O(N−1/6), and also its energy will be perturbed
with a correction of order O(N−5/6). Afterwards, by using
Corollary 1 we show that Eq. (B1) holds for eigenstates of H̃0.
Given the fact that the wave packet |I 〉 is a linear combination
of some eigenstates of H̃0, we have to show that the same
inequality that holds for these eigenstates is true for the wave
packet |I 〉 as well. Thus, in Theorem 4, we use the translational
symmetry of the system to prove an equation for conservation
of momentum, and we use it afterwards to prove the main result
of this appendix, Eq. (B1). Also notice that the error analysis in
this appendix is done only for the case where the logical state
of the two qubits is |10〉, i.e., |I 〉 = |G〉1 ⊗ |�〉1′ ⊗ |�〉anc, the
error analysis for the other cases can be done similarly.

We provide the error analysis for the case of a VX gate
block, the case of a VY gate block is quite similar. First, we
split the total Hamiltonian H = Hfree + V 1,anc

x + V 1′,anc
x into

two parts, the base Hamiltonian H̃0 := Hfree + Veff, and the
perturbation potential V ′ := V 1,anc

x + V 1′,anc
x − Veff:

H = (Hfree + Veff) + (V 1,anc
x + V 1′,anc

x − Veff
) = H̃0 + V ′,

(B2)

where

Hfree = H 1 + H 1′ + H anc,

Veff = V
1,anc

x, eff + V
1′,anc

x, eff = e
1√
N

[N̂1 − N̂1′
] ⊗ X̂anc, (B3)

and

V ′ = e
∑

x

[
n1

x − n1′
x

]⊗
[

xanc
x − X̂anc

√
N

]
. (B4)

Notice that the base Hamiltonian H̃0 here is, in fact, equal to the
effective Hamiltonian Heff = (I ⊗ P0)H (I ⊗ P0) defined in
Sec. III. Now we have to identify the eigenstates of H̃0 and then
obtain the perturbed eigenstates in terms of the perturbation
potential V ′. Given the fact that X̂anc can be diagonalizes as

X̂anc = |+〉〈+| − |−〉〈−|, where |±〉 = |�〉 ± |
〉√
2

, (B5)

and the fact that |±〉 are eigenstates of H anc, if we change the
eigenstates |�〉 and |
〉 to states |±〉, we can diagonalize both
Veff and Hfree simultaneously. So, Veff commutes with Hfree

and, in the sector where N̂1 = 1 and N̂1′ = 0, the eigenstates
of H̃0 can be written as

|p̃,�,α〉 = |p̃〉1 ⊗ |�〉1′ ⊗ |α〉anc

with energy 2 cos

(
2πp

N

)
+ Eanc

α , (B6)

where |α〉anc is an eigenstate of H anc with energy Eanc
α

introduced in Eq. (A9), except for the eigenstates |�〉 and |
〉,
which have changed to states |±〉 with energy E± = ± e√

N
.

Hereafter we assume that N̂1 = 1 and N̂1′ = 0, and we do the
error analysis only for this case (error analysis in other cases
can be done similarly). Before going through the perturbation
theory calculations, we have to derive some useful bounds.

Theorem 1 (energy gap). Given 1
m

> 2N2 and |n0〉 =
|p̃,�,±〉 defined in Eq. (B6), an eigenstate of H̃0 has energy
E0

n. Then, for every other eigenstate |k0〉 = |q̃,�,α〉 of H̃0

with energy E0
k such that |α〉anc �= |±〉, we have∣∣E0

n − E0
k

∣∣ > 1. (B7)

Proof. Take |α〉anc = |p̃1,p̃2, . . . ,p̃i〉anc defined in Eq. (A9);
then from Eq. (B6) we have∣∣E0

n − E0
k

∣∣ =
∣∣∣∣2 cos

(
2πp

N

)
± e√

N
−2 cos

(
2πq

N

)
− Eanc

α

∣∣∣∣
� Eanc

α −2

∣∣∣∣cos

(
2πp

N

)∣∣∣∣−2

∣∣∣∣cos

(
2πq

N

)∣∣∣∣−
∣∣∣∣ e√

N

∣∣∣∣
� Eanc

α − 4 − |e|√
N

. (B8)
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Now notice that

min
α

{
Eanc

α

}
= min

{
sin2

(
π
N

)
m

,
sin2

(
π
N

(
1
2

))
m

+ sin2
(

π
N

(
N − 1

2

))
m

}

= 2
sin2

(
π

2N

)
m

, (B9)

so∣∣E0
n − E0

k

∣∣ � 2
sin2

(
π

2N

)
m

− 4 − |e|√
N

≈ 1

2m

(
π

N

)2

− 4 > 1,

(B10)
where we have used the assumption that 1

m
> 2N2. �

Before going to the next theorem, as we mentioned at
the end of Sec. III, we have e√

N
= �( 1

gate length ) = �(N−2/3),

Thus, e = O(N−1/6) is a vanishingly small number.
Theorem 2. For the perturbation potential V ′ defined in

Eq. (B4), we have∑
k1,...,kt−1

∣∣V ′
k0k1

V ′
k1k2

· · ·V ′
kt−1kt

∣∣ = O(et ), (B11)

where V ′
ab = 〈a|V ′|b〉, and each summation is over some

eigenstates of H̃0 which lie in the section where N̂1 = 1 and
N̂1′ = 0.

Proof. First, we have to prove a useful lemma.
Lemma 1. Let |
1〉 and |
2〉 be two arbitrary vectors and

{|k〉} be an orthonormal set of vectors in a Hilbert space. Then
there exist an operator O, with ‖O‖ = 1, such that

∑
k

|〈
1|k〉〈k|
2〉| = 〈
1|O|
2〉, (B12)

where the standard operator norm (largest eigenvalue) is used.
Proof. We can write

∑
k

|〈
1|k〉〈k|
2〉| =
∑

k

eiθk 〈
1|k〉〈k|
2〉 = 〈
1|O|
2〉.

where O =∑k eiθk |k〉〈k|, and since the |k〉 are orthonormal,
we have ‖O‖ = 1. �

By applying this lemma we can write∑
k1,...,kt−1

∣∣V ′
k0k1

V ′
k1k2

· · ·V ′
kt−1kt

∣∣ = ∑
k2,...,kt−1

〈k0|V ′O1V
′|k2〉

∣∣V ′
k2k3

· · · V ′
kt−1kt

∣∣ = ∑
k3,...,kt−1

〈k0|V ′O1V
′O2V

′|k3〉
∣∣V ′

k3k4
· · · V ′

kt−1kt

∣∣
=

∑
k4,...,kt−1

〈k0|V ′O1V
′O2V

′O3V
′|k4〉

∣∣V ′
k4k5

· · · V ′
kt−1kt

∣∣. (B13)

If we continue this until the summation vanishes, we have∑
k1,...,kt−1

∣∣V ′
k0k1

V ′
k1k2

· · · V ′
kt−1kt

∣∣ = 〈k0|V ′O1V
′O2 · · ·V ′Ot−1V

′|kt 〉 � ‖V ′O1V
′ · · ·Ot−1V

′‖ � ‖V ′‖t , (B14)

where ‖Oi‖ = 1, and we have used the fact that for every two operators we have ‖AB‖ � ‖A‖‖B‖. To finish the proof, it is

enough to show that ‖V ′‖ = O(e). Notice that here we are restricted in the subspace where N̂1 = 1, which means the operators
n1

x are a set of orthogonal projective operators, Therefore, V ′ is block diagonal and we have

‖V ′‖ =
∥∥∥∥∥e∑

x

n1
x ⊗

(
xanc

x − X̂anc

√
N

)∥∥∥∥∥ = |e| max
x

∥∥∥∥xanc
x − X̂anc

√
N

∥∥∥∥ � |e| max
x

∥∥xanc
x

∥∥+ |e|
∥∥∥∥ X̂anc

√
N

∥∥∥∥ = O(e), (B15)

since ‖xanc
x ‖ = ‖X̂anc‖ = 1. �

Theorem 3. If we have 1
m

> 2N2, then for |n0〉 = |p̃,�,±〉, an eigenstate of H̃0 with energy E0
n defined in Eq. (B6), we have

∑
k �=n

∣∣∣∣ 〈n0|V ′|k0〉
E0

n − E0
k

∣∣∣∣ = O

(
1

N2/3

)
, (B16)

where the summation is over all the eigenstates of H̃0.
Proof. Without loss of generality assume that |n0〉 = |p̃,�,+〉. Take |k0〉 = |q̃,�,α〉, then we have

〈k0|V ′|n0〉 =
∑

x

e〈q̃|n1
x |p̃〉〈α|

(
xanc

x − X̂anc

√
N

)
|+〉. (B17)

In cases where |α〉anc = |±〉, clearly we have 〈k0|V ′|n0〉 = 0, since P0 = |+〉〈+| + |−〉〈−| and consequently 〈k0|V ′|n0〉 =
〈k0|V |n0〉 − 〈k0|P0V P0|n0〉 = 0, where V = V 1,anc

x + V 1′,anc
x . Therefore, since X̂anc|±〉 = ±|±〉, we have

〈k0|V ′|n0〉 =
∑

x

e〈q̃|n1
x |p̃〉〈α|xanc

x |+〉. (B18)
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Also notice that 〈k0|V ′|n0〉 vanishes, unless we have either N̂1|α〉anc = |α〉anc or N̂1|α〉anc = 2|α〉anc, since both xanc
x and X̂anc

either create or annihilate a particle. So, according to Eqs. (A7)–(A9), |α〉anc has one of the following forms:
(1) |α〉anc = |α̃〉anc = 1√

N

∑
x e

2πi
N

αx |x〉,
(2) |α〉anc = |ñ1,ñ2〉anc = 1

N

∑
x1,x2

ε(x1,x2)e
2πi
N

(α1x1+α2x2)|x1,x2〉,
where α is integer, while α1 and α2 are half integers. Also,

ε(x1,x2) =
⎧⎨
⎩

1 if x1 < x2

−1 if x1 > x2

0 if x1 = x2.

In case 1, since 〈α|xanc
x |
〉 = 0, we have

〈k0|V ′|n0〉 =
∑

x

e〈q̃|n1
x |p̃〉 〈α|xanc

x |�〉√
2

=
∑

x

e

N
e

2πi
N

x(p−q)
∑

y

1√
2N

e− 2πi
N

αy〈y|x〉

= e√
2N3

∑
x

e
2πi
N

x(p−q−α) = e√
2N

δ(α + q − p), (B19)

and in case 2, again because 〈α|xanc
x |�〉 = 0, we have

〈k0|V ′|n0〉 =
∑

x

e〈q̃|n1
x |p̃〉 〈α|xanc

x |
〉√
2

=
∑

x

e

N
e

2πi
N

x(p−q)
∑

x1,x2,y

1√
2N3

ε(x1,x2)e− 2πi
N

(α1x1+α2x2)〈x1,x2|Xanc
x |y〉

= e√
2N5

∑
x1,x2,y,x

ε(x1,x2)e− 2πi
N

[α1x1+α2x2+(q−p)x](δx1,xδx2,y + δx1,yδx2,x)

= e√
2N5

∑
x1,x2

ε(x1,x2)
[
e− 2πi

N
[(α1+q−p)x1+α2x2] + e− 2πi

N
[α1x1+(α2+q−p)x2]

]
. (B20)

So, we need to compute∑
x1,x2

ε(x1,x2)e− 2πi
N

(q1x1+q2x2) =
∑
x1<x2

e− 2πi
N

(q1x1+q2x2) − e− 2πi
N

(q1x2+q2x1) =
∑
x2

ωq1x2 − 1

ωq1 − 1
ωq2x2 − ωq2x2 − 1

ωq2 − 1
ωq1x2

=
(

N − 1

ωq1 − 1
− N − 1

ωq2 − 1

)
δ(q1 + q2) = i(N − 1) cot

(
q2π

N

)
δ(q1 + q2), (B21)

where ω = e− 2πi
N , and qi = q ′

i + 1
2 for some integer q ′

i . Thus,

|〈k0|V ′|n0〉| = |e|(N − 1)√
2N5

∣∣∣∣cot

(
α2π

N

)
− cot

(
α1π

N

)∣∣∣∣δ(α1 + α2 + q − p) � |e|√
N

δ(α1 + α2 + q − p). (B22)

We have shown that |V ′
kn| � |e|√

N
always, and also we have proven that V ′

kn = 0, unless we have α + q = p or α1 + α2 + q = p,
which is simply an equation for conservation of momentum. Now, given the fact that, for each |α〉anc, there exists at most one
|k0〉 = |q̃,�,α〉 such that V ′

kn �= 0, we can write

∑
k

∣∣∣∣ 〈n0|V ′|k0〉
E0

n − E0
k

∣∣∣∣ < |e|√
N

⎛
⎝N−1∑

α=1

1
1
m

sin2
(

πα
N

)− 4
+
∑

α1 �=α2

1
1
m

sin2
(

πα1
N

)+ 1
m

sin2
(

πα2
N

)− 4

⎞
⎠, (B23)

where, in the second summation, αi = ni + 1
2 and ni = 1,2, . . . ,N . Now, since 1

m
> 2N2, we have 1

m
sin2(πα

N
) − 4 > 1

2m
sin2(πα

N
)

and, consequently,

N−1∑
α=1

1
1
m

sin2
(

πα
N

)− 4
<

N−1∑
α=1

1
1

2m
sin2

(
πα
N

) . (B24)

Now, according to a well-known theorem, for every continuous real-valued function f that does not have any local maximum in
the interval (1,n), we have

f (1) + f (2) + · · · + f (n) �
∫ n

1
f (x) dx + f (1) + f (n), (B25)

062342-12



TIME-INDEPENDENT QUANTUM CIRCUITS WITH LOCAL . . . PHYSICAL REVIEW A 93, 062342 (2016)

so

N−1∑
α=1

1
1
m

sin2
(

πα
N

)− 4
<

∫ N−1

1

2m

sin2
(

πx
N

) dx + 2
2m

sin2
(

π
N

) ≈ 2mN

π
cot(x)

∣∣∣∣∣
π− π

N

π
N

+ 2

π2
= O(1). (B26)

Similarly, for the second term we have∑
α1 �=α2

1
1
m

sin2
(

πα1
N

)+ 1
m

sin2
(

πα2
N

)− 4

<
∑

α1 �=α2

2m

sin2
(

πα1
N

)+ sin2
(

πα2
N

) <

∫ N− 1
2

1
2

∑
α2

2m

sin2
(

πx
N

)+ sin2
(

πα2
N

) dx + 2
2m

sin2
(

π
2N

)+ sin2
(

πα2
N

)

<
∑
α2

2mN

π

tan−1

(
tan(x)√

a
a+1

)
√

a
√

a + 1

∣∣∣∣π− π
2N

π
2N

+
∑
α2

4m

sin2
(

πα2
N

) ≈
∑
α2

4m

sin2
(

πα2
N

) +
∑
α2

4m

sin2
(

πα2
N

) =
∑
α2

8m

sin2
(

πα2
N

) = O(1), (B27)

where in the third line a = sin2(πα2
N

). From the last two inequalities and the fact that e√
N

= �(N−2/3), we can conclude the proof:

∑
k

∣∣∣∣ 〈n0|V ′|k0〉
E0

n − E0
k

∣∣∣∣ = |e|√
N

O(1) = O

(
1

N2/3

)
. (B28)

�
Now we can use perturbation theory and make use of the previous theorems to obtain our desired results.
Corollary 1. Let |n0〉 = |p̃,�,±〉 be an eigenstate of H̃0 with energy E0

n defined in Eq. (B6), and let V ′ be the perturbation
potential defined in Eq. (B3). Also, define |n〉 to be the normalized perturbed eigenket of |n0〉, then we have√

1 − |〈n0|n〉|2 = O

(
1

N1/6

)
, �n = O

(
1

N5/6

)
, (B29)

where �n = En − E0
n, and En is the perturbed energy.

Proof. According to time-independent perturbation theory we have

√
1 − |〈n0|n〉|2 =

√√√√∑
k �=n

|〈k0|n〉|2 =

√√√√√∑
k �=n

∣∣∣∣∣∣
V ′

kn

E0
n − E0

k

+
∑
l �=n

V ′
klV

′
ln(

E0
n − E0

k

)(
E0

n − E0
l

) − V ′
nnV

′
kn(

E0
n − E0

k

)2 + · · ·
∣∣∣∣∣∣
2

�

√√√√∑
k �=n

|V ′
nkV

′
kn|

�2
nk

+ 2
∑
k,l �=n

|V ′
nkV

′
klV

′
ln|

�2
nk�nl

+
∑

k,l,m�=n

|V ′
nlV

′
lkV

′
kmV ′

mn|
�2

nk�nl�nm

+ · · ·, (B30)

where �nk = |E0
n − E0

k |, and we have used the fact that V ′
nn = 0. Applying theorems 1 and 2 gives

√
1 − |〈n0|n〉|2 �

√
1

�2
|e|2 + 2

1

�3
|e|3 + 3

1

�4
|e|4 + · · · = O(e) = O

(
1

N1/6

)
, (B31)

where � = mink �=n |E0
n − E0

k | � 1. Now notice that

〈n0|
(
H̃0 − E0

n − �n

)|n〉 = −〈n0|V ′|n〉 ⇒ �n = 〈n0|V ′|n〉
〈n0|n〉 =

∑
k �=n

〈n0|V ′|k0〉〈k0|n〉
〈n0|n〉 ,

therefore,

|�n| �
∑
k �=n

∣∣∣∣V ′
nk〈k0|n〉
〈n0|n〉

∣∣∣∣ ≈∑
k �=n

|V ′
nk〈k0|n〉| =

∣∣∣∣∣∣
∑
k �=n

V ′
nkV

′
kn

�nk

+
∑
k,l �=n

V ′
nkV

′
klV

′
ln

�nk�nl

+
∑

k,l,m�=n

V ′
nkV

′
klV

′
lmV ′

mn

�nk�nl�nm

+ · · ·
∣∣∣∣∣∣

�
∑
k �=n

∣∣∣∣V ′
nkV

′
kn

�nk

∣∣∣∣+ ∑
k,l �=n

∣∣∣∣V ′
nkV

′
klV

′
ln

�nk�nl

∣∣∣∣+ ∑
k,l,m�=n

∣∣∣∣V ′
nkV

′
klV

′
lmV ′

mn

�nk�nl�nm

∣∣∣∣+ · · ·

�
∑
k �=n

∣∣∣∣ V ′
nk

�nk

∣∣∣∣
⎛
⎝|V ′

nk| +
∑
l �=n

|V ′
klV

′
ln|

�
+
∑

l,m�=n

|V ′
klV

′
lmV ′

mn|
�2

+ · · ·
⎞
⎠, (B32)
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then applying theorems 1 and 2 gives

�
∑
k �=n

∣∣∣∣ V ′
nk

�nk

∣∣∣∣(|e| + |e|2 + |e|3 + · · · ) = O

(
e2

√
N

)
= O

(
1

N5/6

)
, (B33)

where we have used Eq. (B16) from Theorem 3. �
The last theorem that we need is a theorem for conservation

of momentum. If we define the translation operator T̂ as

T̂ := T 1 ⊗ T 2 ⊗ T anc, (B34)

where for each chain, the translation operator T is defined as

T |a0,a1, . . . ,aN−1〉 = |aN−1,a0, . . . ,aN−2〉, where ai ∈ {0,1},
(B35)

then
(1) [T̂ ,H ] = 0, where H = Hfree + V 1,anc

x + V 2,anc
x is the

total Hamiltonian of the system.
(2) T̂ |p̃,�,+〉 = e− 2πi

N
p|p̃,�,+〉.

(3) For every p �= q, 〈q̃,�,+|eiHt |p̃,�,+〉 = 0.
Proof. 1. We can write the total Hamiltonian as

H =
N−1∑
j=0

hj,j+1, (B36)

where each hj,j+1 is a sum of some local operators acting on
the j th and (j + 1)st sites of each chain. Then because of the
translational symmetry of the system we have

T̂ † hj,j+1 T = hj+1,j+2. (B37)

Therefore, we have T̂ †HT = H and, since T̂ is unitary, we
can conclude that [T̂ ,H ] = 0.

2. First note that we have

T |�〉 =T |0,0, . . . ,0〉 = |�〉 and T anc|
〉= 1√
N

∑
x

T anc|x〉

= 1√
N

∑
x

|x + 1〉 = |
〉. (B38)

Thus, we have T |+〉 = |+〉 and, therefore,

T̂ |p̃,�,+〉 = 1√
N

∑
x

e
2πi
N

px T̂ |x〉 ⊗ |�,+〉

= 1√
N

∑
x

e
2πi
N

px |x + 1〉 ⊗ |�,+〉

= 1√
N

∑
x

e
2πi
N

p(x−1)|x〉 ⊗ |�,+〉

= e− 2πi
N

p|p̃,�,+〉. (B39)

3. From statement 1 we have [T̂ ,eiHt ] = 0, so

〈q̃,�,+|T̂ eiHt |p̃,�,+〉 = 〈q̃,�,+|eiHt T̂ |p̃,�,+〉, (B40)

and so from statement 2 we have(
e− 2πi

N
q − e− 2πi

N
p
)〈q̃,�,+|eiHt |p̃,�,+〉 = 0. (B41)

Therefore, since p �= q we can conclude that
〈q̃,�,+|eiHt |p̃,�,+〉 = 0. �

Now we are ready to compute the error that we get by
substituting the Hamiltonian by the effective Hamiltonian H̃0,
when performing a controlled-phase operation. In our model,
a controlled-phase operation is implemented by a gate block
localized somewhere along the chains. The initial state of the
system which, in fact, is a superposition of Gaussian packets,
will enter this gate block, evolve with the Hamiltonian for the
system H , and then exit this gate block. Now suppose that the
initial state be |I 〉, then after time �t when the wave packets
exit this gate block the state of the system would be e−itH |I 〉.
Therefore, in this process the error that we will obtain by the
substitution is just ||e−iH�t |I 〉 − e−iH̃0�t |I 〉||. Thus, we have
to show that this number is vanishingly small. Note that here
we do not have to be worried about the state of other rails in
the system because their ring Hamiltonians commute with the
perturbation potential V ′. Therefore, the unitary evolution of
the system is separable and they evolve only through their ring
Hamiltonians. Because the initial state of the ancillary rail is
|�〉, then we can write the overall initial state of the two 1 rails
and the ancillary rail as

|I 〉 = |I+〉 + |I−〉√
2

, where |I±〉 = |G,�,±〉

=
∑

p

ap|p̃,�,±〉. (B42)

Now, take |n0
p〉 = |p̃,�,+〉 and its normalized perturbed ket

to be |np〉 = α|n0
p〉 + β|ϕp〉 such that 〈n0

p|ϕp〉 = 0. Then we
get that (

e−iH�t − e−i(E0
n+�n)�t

)
|np〉 = 0, (B43)

where E0
n + �n is the perturbed energy eigenstate. Then

e−iH�t
∣∣n0

p

〉 = e−i(E0
n+�n)�t

∣∣n0
p

〉
− β

α

(
e−iH�t − e−i(E0

n+�n)�t
)
|ϕp〉, (B44)

so according to corollary 1, β = O(N−1/6) and we get that∥∥e−iH�t
∣∣n0

p

〉− e−iH̃0�t
∣∣n0

p

〉∥∥
=
∥∥∥∥e−iE0

n�t (e−i�n�t − 1)
∣∣n0

p

〉
−β

α

(
e−iH�t − e−i(E0

n+�n)�t
)∣∣ϕp〉

∥∥∥∥
� |e−i�n�t − 1| + 2

∣∣∣∣βα
∣∣∣∣ = O(�n�t) + O

(
1

N1/6

)

= O

(
1

N5/6
�t + 1

N1/6

)
= O

(
1

N1/6

)
, (B45)

where in the last line we have used the fact that �t = �(N2/3)
because �t is twice the length of a gate block, since the
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group velocity of our wave packets is equal to two. Now given statement 3 from Theorem 4, since the vectors {|n0
p〉} have different

momenta, the vectors (e−iH�t − e−iH̃0�t )|n0
p〉 are orthogonal and, consequently,

‖e−iH�t |I+〉 − e−iH̃0�t |I+〉‖2 =
∑

p

ap
2
∥∥e−iH�t

∣∣n0
p

〉− e−iH̃0�t
∣∣n0

p

〉∥∥2 = O

(
1

N2/6

)
(B46)

since
∑

p ap
2 = 1. Similarly, we can obtain the same inequality for |I−〉 as well. Finally, we obtain

‖e−iH�t |I 〉 − e−iH̃0�t |I 〉‖ � ‖e−iH�t |I+〉 − e−iH̃0�t |I+〉‖ + ‖e−iH�t |I−〉 − e−iH̃0�t |I−〉‖√
2

= O

(
1

N1/6

)
. (B47)

Thus, if we have 1
m

> 2N2, then each entangling gate will only add a small error O(N−1/6).
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