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General monogamy of Tsallis q-entropy entanglement in multiqubit systems
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In this paper, we study the monogamy inequality of Tsallis q-entropy entanglement. We first provide an
analytic formula of Tsallis q-entropy entanglement in two-qubit systems for 5−√

13
2 � q � 5+√

13
2 . The analytic

formula of Tsallis q-entropy entanglement in 2 ⊗ d system is also obtained and we show that Tsallis q-entropy
entanglement satisfies a set of hierarchical monogamy equalities. Furthermore, we prove the squared Tsallis
q-entropy entanglement follows a general inequality in the qubit systems. Based on the monogamy relations, a
set of multipartite entanglement indicators is constructed, which can detect all genuine multiqubit entangled states
even in the case of N -tangle vanishes. Moreover, we study some examples in multipartite higher-dimensional
system for the monogamy inequalities.
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I. INTRODUCTION

Multipartite entanglement is an important physical resource
in quantum mechanics, which can be used in quantum
computation, quantum communication, and quantum cryptog-
raphy. One of the most surprising phenomena for multipartite
entanglement is that the monogamy property, which quantifies
the resources of quantum entanglement, cannot be shared
freely between different constituents in a multipartite system.
Monogamy property may be as fundamental as the no-cloning
theorem [1–4]. A simple example of monogamy property
can be interpreted as the amount of entanglement between
A and B, plus the amount of entanglement between A and C,
cannot be greater than the amount of entanglement between
A and the pair BC. Monogamy property has been considered
in many areas of physics: One can estimate the quantity of
information captured by an eavesdropper about the secret key
to be extracted in quantum cryptography [3,5], the frustration
effects observed in condensed matter physics [6,7], and even
in black-hole physics [8,9].

Monogamy property of various entanglement measures
have been discovered. Coffman et al. first considered three
qubits A, B, and C which may be entangled with each other
[2], who showed that the squared concurrence C2 follows
this monogamy inequality. Osborne et al. proved the squared
concurrence follows a general monogamy inequality for the N -
qubit system [3]. Different kinds of monogamy inequalities for
concurrence have been noted in Refs. [10–14]. Some similar
monogamy inequalities were also discussed for entanglement
of formation [12,15,16], negativity [17–21], relative entropy
entanglement [22,23], continuous variable systems [24–26],
Renyi α-entropy entanglement [27,28], and Tsallis q-entropy
entanglement [29,30]. The monogamy property of other
physical resources has also been discussed, such as discord
[31,32] and steering [33,34].

Tsallis q entropy is an important entropic measure, which
can be used in many areas of quantum information theory
[35–40]. In this paper, we study the monogamy inequality
of Tsallis q-entropy entanglement (TEE). We first pro-
vide an analytic formula of TEE in two-qubit systems for
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5−√
13

2 � q � 5+√
13

2 . The analytic formula of TEE in the 2 ⊗ d

system is also obtained and we show that TEE satisfies a set of
hierarchical monogamy equalities. Furthermore, we prove the
squared TEE follows a general inequality in the qubit systems.
As a corollary, we provide that the αth power of TEE satisfies
the monogamy inequality for α � 2. Based on the monogamy
relations, a set of multipartite entanglement indicators is
constructed, which can detect all genuine multiqubit entangled
states even in the case of N -tangle vanishes. Moreover, we
study some examples in the multipartite higher-dimensional
system for the monogamy inequalities.

This paper is organized as follows. In Sec. II, we recall the
definition of TEE and entanglement of formation. In Sec. III,
we discuss the monogamy properties of TEE. In Sec. IV,
we construct a set of multipartite entanglement indicators,
and analysis of some examples. In Sec. V, we study some
examples in the multipartite higher-dimensional system for the
monogamy inequalities. We summarize our results in Sec. VI.

II. QUANTIFYING ENTANGLEMENT
BY TSALLIS q ENTROPY

Quantifying entanglement is an important problem in
quantum information. Given a bipartite state ρAB in the Hilbert
space HA ⊗ HB. The Tsallis-q entropy is defined as [41]

Tq(ρ) = 1

q − 1
(1 − Trρq) (1)

for any q > 0 and q �= 1. When q tends to 1, the Tsallis q

entropy Tq(ρ) converges to its von Neumann entropy [42]:
limq→1 Tq(ρ) = −T r(ρ ln ρ). For any pure state |ψAB〉, the
TEE is defined as

Tq(|ψAB〉) = Tq(ρA) (2)

for any q > 0. For a mixed state ρAB , the TEE can be defined
as

Tq(ρAB) = min
∑

i

piTq

(∣∣ψi
AB

〉)
, (3)

for any q > 0, where the minimum is taken over all possible
pure state decompositions {pi,ψ

i
AB} of ρAB. TEE can be

viewed as a general entanglement of formation when q tends
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to 1. The entanglement of formation is defined as [43,44]

Ef (ρAB) = min
∑

i

piEf

(∣∣ψi
AB

〉)
, (4)

where Ef (|ψi
AB〉) = −Trρi

A ln ρi
A = −Trρi

B ln ρi
B is the von

Neumann entropy, the minimum is taken over all possible pure
state decompositions {pi,ψ

i
AB} of ρAB. In Ref. [45], Wootters

derived an analytical formula for a two-qubit mixed state ρAB ,

Ef (ρAB) = H

(1 +
√

1 − C2
AB

2

)
, (5)

where H (x) = −x ln x − (1 − x) ln(1 − x) is the binary en-
tropy and CAB = max{0,λ1 − λ2 − λ3 − λ4} is the concur-
rence of ρAB , with λi being the eigenvalues, in decreasing
order, of matrix

√
ρAB(σy ⊗ σy)ρ∗(σy ⊗ σy) [45].

In particular, Kim found Tq(ρAB) has an analytical formula
for a two-qubit mixed state, which can be expressed as a
function of the squared concurrence C2

AB for 1 � q � 4 [29],

Tq(ρAB) = fq

(
C2

AB

)
, (6)

where the function fq(x) has the form,

fq(x) = 1

q − 1

[
1 −

(
1 + √

1 − x

2

)q

−
(

1 − √
1 − x

2

)q]
.

(7)

In this paper, we further prove that the analytical formula
also holds for q ∈ [ 5−√

13
2 , 5+√

13
2 ], where 5−√

13
2 ≈ 0.697 and

5+√
13

2 ≈ 4.302. We refer the interested readers to Appendix A
for the detailed calculation.

III. MONOGAMY OF TEE IN MULTIQUBIT SYSTEMS

Before presenting our main results, we have the following
properties for TEE fq(C2).

Property 1. The squared Tsallis q-entropy entanglement
f 2

q (C2) is an increase monotonic and convex function of the
squared concurrence C2 for any two-qubit mixed states, where
q ∈ [ 5−√

13
2 , 5+√

13
2 ].

Property 2. The Tsallis q-entropy entanglement fq(C2) is
an increase monotonic and concave function of the squared
concurrence C2, where q ∈ [ 5−√

13
2 ,2] ∪ [3, 5+√

13
2 ].

We refer the interested readers to Appendixes B and C for
the detailed proof for properties above. The region of q we
considered for the properties is q ∈ [ 5−√

13
2 , 5+√

13
2 ].

It’s well known that for any pure state in a 2 ⊗ d system,
TEE has an analytical expression for q > 0 [29]. We have the
following result for any mixed state in a 2 ⊗ d system:

Theorem 1. For a mixed state ρAC in a 2 ⊗ d system, TEE
has an analytical expression,

Tq(ρAC) = fq[C2(ρAC)], (8)

for q ∈ [ 5−√
13

2 ,2] ∪ [3, 5+√
13

2 ].
Proof. First, we should prove Tq(ρAC) � fq[C2(ρAC)]. For

q ∈ [ 5−√
13

2 ,2] ∪ [3, 5+√
13

2 ], consider a mixed state ρAC in
a 2 ⊗ d system. We use an optimal convex decomposition

{pi,|φi
AC〉} for the TEE Tq(ρAC):

Tq(ρAC) =
∑

i

piTq

(∣∣φi
AC

〉)

=
∑

i

pifq

[
C2
(∣∣φi

AC

〉)]

�
∑

j

sjfq

[
C2
(∣∣ψj

AC

〉)]

� fq

⎡
⎣∑

j

sjC2
(∣∣ψj

AC

〉)⎤⎦
= fq[C2(ρAC)], (9)

where we have used an optimal convex decomposition
{sj ,|ψj

AC〉} for concurrence C2(ρAC) = min
∑

j sjC2(|ψj

AC〉)
in the first inequality. The second inequality holds due to
the function fq(C2) is a concave function of the squared

concurrence C2 for q ∈ [ 5−√
13

2 ,2] ∪ [3, 5+√
13

2 ].
Second, we will prove Tq(ρAC) � fq[C2(ρAC)]. We can

obtain

Tq(ρAC) =
∑

i

piTq

(∣∣φi
AC

〉)

=
∑

i

pifq

[
C
(∣∣φi

AC

〉)]

� fq

⎧⎪⎨
⎪⎩
⎡
⎣∑

j

sjC
(∣∣ψj

AC

〉)⎤⎦
2
⎫⎪⎬
⎪⎭

� fq

⎧⎨
⎩
[∑

k

rkC
(∣∣ψj

AC

〉)]2
⎫⎬
⎭

= fq[C2(ρAC)], (10)

where the first inequality holds due to the convexity of
fq(C2) as the function of concurrence C for q > 0 (see
Appendix A), and we have used the optimal con-
vex decomposition {rk,|ψk

AC〉} for concurrence C(ρAC) =
min

∑
k rkC(|ψk

AC〉) in the second inequality, thus proving
Theorem 1. �

A straightforward corollary of Theorem 1 is as follows.
Corollary 1. For any mixed state in a 2 ⊗ d system, TEE

obeys the following relation:

Tq(ρAC) � fq[C2(ρAC)], (11)

where q > 0.
The Eq. (11) provides a lower bound for TEE in the 2 ⊗ d

system.
Now we will study the monogamy property of TEE. We

have the following theorem first.
Theorem 2. For a mixed state ρA|BC in a 2 ⊗ 2 ⊗ 2N−2

system, the following monogamy inequality holds:

T 2
q (ρA|BC) � T 2

q (ρAB) + T 2
q (ρAC), (12)

where q ∈ [ 5−√
13

2 ,2] ∪ [3, 5+√
13

2 ].
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Proof. Consider a mixed state ρA|BC in a 2 ⊗ 2 ⊗ 2N−2

system for q ∈ [ 5−√
13

2 ,2] ∪ [3, 5+√
13

2 ]; from Eq. (8) we have

T 2
q (ρA|BC) = f 2

q [C2(ρA|BC)]

� f 2
q [C2(ρAB) + C2(ρAC)]

� f 2
q

[
C2(ρAB)] + f 2

q [C2(ρAC)
]

= T 2
q (ρAB) + T 2

q (ρAC),

where the first inequality holds because f 2
q (x) is an in-

crease monotonic function of the squared concurrence C2

and C2(ρA|BC) � C2(ρAB) + C2(ρAC) for concurrence [3]. The
second inequality holds because of convexity of f 2

q (C2) as a
function of C2.

From Theorem 2, a set of hierarchical monogamy inequal-
ities of T 2

q (ρA1|A2...AN
) holds for any N -qubit mixed state

ρA1A2...AN
in k-partite cases with k = {3,4, . . . ,N}:

T 2
q

(
ρA1|A2...AN

)
�

k−1∑
i=2

T 2
q

(
ρA1Ai

)+ T 2
q

(
ρA1|Ak...AN

)
, (13)

where q ∈ [ 5−√
13

2 ,2] ∪ [3, 5+√
13

2 ]. These sets of hierarchical
relations can be used to detect the multipartite entanglement
in these k partites. When k = N , we have the following
monogamy inequality for q ∈ [ 5−√

13
2 ,2] ∪ [3, 5+√

13
2 ]:

T 2
q

(
ρA1|A2...AN

)
� T 2

q

(
ρA1A2

)+ · · · + T 2
q

(
ρA1AN

)
. (14)

One can wonder whether the monogamy inequality Eq. (14)
still holds for q ∈ [2,3]. Here, we give an affirmative answer.
In Ref. [29], the author proved the following inequality for
q ∈ [2,3],

Tq

(
ρA1|A2...AN

)
� Tq

(
ρA1A2

)+ · · · + Tq

(
ρA1AN

)
, (15)

which is easy to check that the inequality Eq. (14) also holds
for q ∈ [2,3] from Eq. (15). Thus we have following result.

Theorem 3. For a mixed state ρA1A2...AN
in an N -qubit

system, the following monogamy inequality holds:

T 2
q

(
ρA1|A2...AN

)
� T 2

q

(
ρA1A2

)+ · · · + T 2
q

(
ρA1AN

)
, (16)

for q ∈ [ 5−√
13

2 , 5+√
13

2 ].
Bai et al. show that the squared entanglement of forma-

tion follows the general monogamy inequality in multiqubit
systems [15,16]. Here, we prove the monogamous property of
multiqubit entanglement can also be characterized in terms of
squared TEE, where the monogamy inequality in terms of the
squared entanglement of formation can be viewed as a special
case for q = 1.

As a result of Theorem 3, we also have the following
corollary.

Corollary 2. For a mixed state ρA1A2...AN
in an N -qubit

system, the αth power of TEE satisfies the monogamy
inequality,

T α
q

(
ρA1|A2...AN

)
� T α

q

(
ρA1A2

)+ · · · + T α
q

(
ρA1AN

)
, (17)

for α � 2 and q ∈ [ 5−√
13

2 , 5+√
13

2 ].
The proof can be found in Appendix D. We can view the

coefficient α as a kind of assigned weight to regulate the
monogamy property [19,46,47].
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FIG. 1. The indicator τ0.7(|W 〉G).
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0
10

0.05

4

τ 2.
5

φ

5

θ

0.1

2
0 0

FIG. 3. The indicator τ2.5(|W 〉G).

0
10

0.01

4

τ 4.
3 0.02

φ

5

θ

2
0 0

FIG. 4. The indicator τ4.3(|W 〉G).
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IV. A NEW KIND OF MULTIPARTITE
ENTANGLEMENT INDICATOR

Based on Eq. (16), we can construct a class of multipartite
entanglement indicator for q ∈ [ 5−√

13
2 , 5+√

13
2 ],

τq

(
ρA1|A2...AN

) = min
∑

i

piτq

(∣∣ψi
A1|A2...AN

〉)
, (18)

where the minimum is taken over all possible pure state decom-
positions {pi,ψ

i
A1|A2...AN

} of ρA1A2...AN
and τq(|ψi

A1|A2...AN
〉 =

T 2
q (ψi

A1|A2...AN
) −∑N

j=2 T 2
q (ρi

A1Aj
). Use the concavity of Tsal-

lis q entropy for q > 0 [48], and follow the method of deriving
the squared entanglement of formation in Ref. [15], we have
following result.

Theorem 4. For any three-qubit mixed state ρABC , the
multipartite entanglement indicator τq(ρA|BC) is zero if and
only if ρABC is biseparable, i.e., ρABC =∑i piρ

i
AB ⊗ ρi

C +∑
j pjρ

j

AC ⊗ ρ
j

B +∑k pkρ
k
A ⊗ ρk

BC.

We will show some examples as below.
Example 1. Coffman et al. considered a three-qubit

general W state |W 〉G = sin θ cos φ|001〉 + sin θ sin φ|010〉 +
cos φ|100〉 where 0 � θ � π and 0 � φ � 2π , they found
the three-tangle vanishes for every parameter θ and φ [2]. In
this case, we consider the multipartite entanglement indicator
shown in Eq. (18). For this state, the value of τq(|W 〉G) can
be given by its analytical formula Eq. (6). In Figs. 1–4,
we plot the indicator τq(|W 〉G) for q = 0.7,1,2.5,4.3. The
indicator τq(|W 〉G) shows that the τq(|W 〉G) is nonnegative
for 0 � θ � π and 0 � φ � 2π , which vanishes when |W 〉G is
separable, thus the situation of θ = π

2 ,π and φ = π
2 ,π, 3π

2 ,2π .
For example, when θ = π

2 , the related state becomes |W 〉G =
cos φ|001〉 + sin φ|010〉 which is separable.

Example 2. We consider the N -qubit W state |W 〉N =
1√
N

(|10 · · · 0〉 + |01 · · · 0〉 + |0 · · · 01〉), the three-tangle can-
not detect the entanglement of this state. By using the
multipartite entanglement indicator shown in Eq. (18), we
have τq(|W 〉N ) = f 2

q ( 4(N−1)
N2 ) − (N − 1)f 2

q ( 4
N2 ). In Fig. 5, we

plot the indicator τq(|W 〉N ) for N = 3,6,9,11, respectively.
It shows that the indicator τq(|W 〉) is always positive for

q ∈ [ 5−√
13

2 , 5+√
13

2 ].

V. MONOGAMOUS EXAMPLES IN MULTIPARTITE
HIGHER-DIMENSIONAL SYSTEM

In this section, let’s consider several higher-dimensional
examples to illustrate the monogamy inequality of TEE in
Eq. (16). We define the “residual tangle” of TEE as

τq

(∣∣ψA1A2...AN

〉) = T 2
q

(
ρA1|A2...AN

)−
N∑

i=2

T 2
q

(
ρA1Ai

)
. (19)

Example 3 (Bai et al. [16]). Consider a tripartite pure state
in a 4 ⊗ 2 ⊗ 2 system,

|ψABC〉 = 1√
2

(α|000〉 + β|110〉 + α|201〉 + β|311〉), (20)

where α = cos θ and β = sin θ . Bai et al. point out the three-
tangle is nonpositive for this state [16]. But the monogamy
relation of squared TEE still works for this state when q ∈

0.5 1 1.5 2 2.5 3 3.5 4 4.5

q

0

0.02

0.04
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0.08

0.1

0.12

0.14

τ q

N=3
N=6
N=9
N=11

FIG. 5. The indicator τq (|W 〉N ) is always positive for q ∈
[ 5−√

13
2 , 5+√

13
2 ].

[1, 5+√
13

2 ]:

τq(|ψA|BC〉) = T 2
q (|ψA|BC〉) − T 2

q (ρAB) + T 2
q (ρAC)

= (1 − a)(1 − b)

(q − 1)2
[(1 + a)(1 + b) − 2]

� 0, (21)

where a = ( 1
2 )q−1 and b = α2q + β2q . When q = 1, the TEE

converges to entanglement of formation, which has been
discussed in Ref. [16].

Example 4 (Ou [49]). Let |ψABC〉 be a totally antisymmetric
pure state on a three-qutrit system,

|ψABC〉 = 1√
6

(|123〉 − |132〉 + |231〉

− |213〉 + |312〉 − |321〉). (22)

Ou points out the CKW inequality in Ref. [2] does not work
for this state [49]. However, for the squared TEE of this state,

τq(|ψA|BC〉)
= T 2

q (|ψA|BC〉) − T 2
q (ρAB) + T 2

q (ρAC)

= 1

(q − 1)2

[(
1 −

(
1

3

)q−1)2

− 2

(
1 −

(
1

2

)q−1)2]
,

and the TEE can still work for this state when q ∈ [ 5−√
13

2 ,q1],
where q1 ≈ 1.619.

Example 5 (Kim et al. [17]). For a pure state |ψABC〉 in a
3 ⊗ 2 ⊗ 2 system,

|ψABC〉 = 1
6 (

√
2|121〉 +

√
2|212〉 + |311〉 + |322〉). (23)

Kim et al. shows that the CKW inequality does not work for
this state [17].

The reduced state of subsystem A is

ρA = 1

3

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠, (24)
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FIG. 6. The “residual tangle” τq (|ψA|BC〉) still works for 5−√
13

2 �
q � q1 ≈ 1.619 of Example 4 (solid red line) and for 5−√

13
2 � q �

q2 ≈ 2.471 of Example 5 (dashed blue line).

and the TEE of ρA is Tq(|ψA|BC〉) = 1
q−1 [1 − ( 1

3 )q−1]. The
bipartite reduced state of subsystem AB can be written as

ρAB = 1
2 (|x〉AB〈x| + |y〉AB〈y|), (25)

where

|x〉AB =
√

2√
3
|12〉 + 1√

3
|31〉, (26)

|y〉AB =
√

2√
3
|21〉 + 1√

3
|32〉. (27)

It can be shown that for arbitrary pure states |φAB〉 =
cx |x〉AB + cy |y〉AB with |cx |2 + |cy |2 = 1; their reduced state
ρA = T rB(|φ〉AB〈φ|) has the same spectrum {0,1/3,2/3}.
Then, the TEE of |φAB〉 is Tq(|φAB〉) = 1

q−1 [1 − (1 +
2q)( 1

3 )q−1]. Thus, the TEE of ρAB is Tq(ρAB) = 1
q−1 [1 − (1 +

2q)( 1
3 )q−1]. In the same way, the TEE of ρAC is Tq(ρAC) =

1
q−1 [1 − (1 + 2q)( 1

3 )q−1]. We find the monogamy inequality

of TEE still holds for q ∈ [ 5−√
13

2 ,q2], where q2 ≈ 2.471.

As shown in Fig. 6, we have plotted “residual tangle”
τq(|ψA|BC〉) as the function of q for the states of Examples
4 and 5, respectively. In the multipartite higher-dimensional
system, the monogamy inequality Eq. (16) still works for the
suitable parameter q.

VI. CONCLUSION

In this paper, we study the monogamy inequality of TEE.
We provide an analytic formula of TEE in two-qubit systems
for 5−√

13
2 � q � 5+√

13
2 . The analytic formula of TEE in 2 ⊗ d

system is also obtained and we show that TEE satisfies a set of
hierarchical monogamy equalities. Furthermore, we prove the
squared TEE follows a general inequality in the qubit systems.
As a corollary, we provide the αth power of TEE satisfies the
monogamy inequality for α � 2. Based on the monogamy
relations, a set of multipartite entanglement indicators is

constructed, which can detect all genuine multiqubit entangled
states even in the case of N -tangle vanishes. Moreover, we
study some examples in the multipartite higher-dimensional
system for the monogamy inequalities. Computing a variety
of entanglement measures is NP hard [50], which implies (in a
rigorous sense) that the analytical formulas of TEE for general
mixed states are impossible unless P = NP . Thus, to find
a useful method to compute general entanglement measures
is still a problem. We may find other methods to derive new
monogamy inequalities.

For entanglement of formation, its αth power satisfies the
monogamy inequality in Eq. (17) for α �

√
2 [12]. However,

the monogamy inequality of the αth power of TEE does not
work for α �

√
2. To see this, we can consider the three-

qubit W state |WA|BC〉 = 1√
3
(|001〉 + |010〉 + |100〉). Let q =

0.7 and α = √
2, we find that T α

q (|WA|BC〉) − T α
q (ρAB) −

T α
q (ρAc) ≈ −0.087 < 0. Finally, we believe our results can

be used in the quantum physics.
Note added in proof. Recently, we noted a similar work in

Ref. [51].
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APPENDIX A: THE CRITICAL VALUE
OF q FOR TWO-QUBIT STATE

In this section, we will discuss the analytic formula of TEE
in two-qubit systems. Let us consider the monotonicity and
convexity of fq(C2) as a function of C, where 0 � C � 1. First,
from Ref. [29], we obtain that fq(C2) is a monotonic increasing
function of C for any q > 0 and 0 � C � 1. Second, we will
consider the convexity of fq(C2) as a function of C. Kim has
proven the convexity of fq (C2) as a function of C for 1 � q � 4
and the nonconvexity of fq(C2) as a function of C for q � 5
[29]. Thus, we only consider the situation of 0 < q < 1 and
4 < q < 5, respectively. The function fq(C2) is defined as

fq(C2) = 1

q−1

[
1 −

(
1 + √

1 − C2

2

)q

−
(

1 − √
1 − C2

2

)q]
.

(A1)

The second derivative of fq(C2) is

∂2fq(C2)

∂C2

= α

[
(1 + √

1 − C2)q−1

(1 − C2)3/2
− C2(q − 1)(1 + √

1 − C2)q−2

(1 − C2)

− (1 − √
1 − C2)q−1

(1 − C2)3/2
− C2(q − 1)(1 − √

1 − C2)q−2

(1 − C2)

]
,
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FIG. 7. The condition ∂2

∂C2 fq (C2) = 0 for q ∈ [0,1].

where α = q

2q (q−1) . For the region 0 < q < 1, the convexity

of fq(C2) holds if ∂2

∂C2 fq(C2) � 0 for any concurrence C. To

find the region of q, we analyze the condition ∂2

∂C2 fq(C2) = 0.
Numerical calculation shows that the value of q increases
monotonically along with the increase of concurrence C.

As shown in Fig. 7, there may exist a critical point qc1

corresponding to the limit C → 1 and the requirement
that

lim
C→1

∂2fq(C2)

∂C2
= 0. (A2)

After some straightforward calculation, we derive the follow-
ing equality:

− 2(q − 1)(q2 − 5q + 3) = 0. (A3)

The critical point of the region 0 < q < 1 is qc1 = 5−√
13

2 ≈
0.697. The second derivative is nonnegative in this region,
qc1 � q < 1. For the region 4 < q < 5, we obtain the critical
point qc2 with a similar method. As shown in Fig. 8, the
value of q decreases monotonically along with the increase of

0 0.2 0.4 0.6 0.8 1
C

4

4.2

4.4

4.6

4.8

5

q

FIG. 8. The condition ∂2

∂C2 fq (C2) = 0 for q ∈ [4,5].

concurrence C; the critical point qc2 can be obtained by the limit
limC→1

∂2

∂C2 fq(C2) = 0. Thus the critical point of the region

4 < q < 5 is qc2 = 5+√
13

2 ≈ 4.302. The second derivative is
nonnegative in this region, 4 < q � qc1 . Therefore, the second
derivative is nonnegative for qc1 � q � qc2 in the region of
0 < q < 5. The analytic formula of TEE in two-qubit systems
is in this region.

APPENDIX B: f 2
q (C2) IS AN INCREASING MONOTONIC

AND CONVEX FUNCTION OF THE SQUARED
CONCURRENCE C2

First, let’s consider that the monotonicity of the function
fq(x), fq(x) is defined as

fq(x) = 1

q − 1

[
1 −

(
1 + √

1 − x

2

)q

−
(

1 − √
1 − x

2

)q]
.

(B1)

f 2
q (C2) is an increasing monotonic function of the squared

concurrence C2 and is equivalent to the first derivative
∂
∂x

f 2
q (x) � 0 with q ∈ [ 5−√

13
2 , 5+√

13
2 ] and x = C2. After some

calculation, we have

∂f 2
q (x)

∂x
= qfq(x)

2q
√

1 − x

Aq−1 − Bq−1

q − 1
, (B2)

where A = 1 + √
1 − x and B = 1 − √

1 − x. It is easy to
check that ∂

∂x
f 2

q (x) is nonnegative for q � 0. Thus, f 2
q (x) is

an increasing monotonic function of x for q ∈ [ 5−√
13

2 , 5+√
13

2 ].
Second, the squared Tsallis q-entropy entanglement f 2

q (C2)
is a convex function of the squared concurrence C2 for q ∈
[ 5−√

13
2 , 5+√

13
2 ], which is equivalent to the second derivative

∂2

∂x2 f
2
q (x) � 0. Thus, we define the function,

lq(x) = ∂2f 2
q (x)

∂x2
, (B3)

on the domain D = {(x,q)|x ∈ [0,1],q ∈ [ 5−√
13

2 , 5+√
13

2 ]}. Af-
ter a straightforward calculation, we have

lq(x) = q2

8(1 − x)

(Aq−1 − Bq−1)2

22(q−1)(q − 1)2

+ fq(x)

q − 1

[
q(1 − q)

8(1 − x)

Aq−2 + Bq−2

2q−2

+ q

4(1 − x)3/2

Aq−1 − Bq−1

2q−1

]
.

The intermediate value theorem tells us if a continuous
function on the domain has two values with opposite signs,
there must exist a root on the domain. The function lq(x)
is continuous on the domain D, and we plot the solution of
lq(x) = 0. As shown in Fig. 9, no point exists on the domain D

such that lq(x) = 0. Thus the value of lq(x) on the domain D

have the same sign. When q → 1, f 2
q (C2) converges to squared

entanglement of formation, in which the second derivative
is positive [15]. Therefore, lq(x) is positive on the domain
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FIG. 9. The solution of lq (x) = 0 on the domain D.

D. We have plotted the function lq(x) on the domain D in
Fig. 10.

APPENDIX C: fq(C2) IS AN INCREASING MONOTONIC
AND CONCAVE FUNCTION OF THE SQUARED

CONCURRENCE C2

fq(C2) is an increasing monotonic function if the first
derivative ∂

∂x
fq(x) is nonnegative.

∂fq(x)

∂x
= q

2q+1
√

1 − x

Aq−1 − Bq−1

q − 1
, (C1)

which is nonnegative for q � 5−√
13

2 and 0 � x � 1. Namely,
fq(C2) is an increasing monotonic function of the squared
concurrence C2.

The concavity of function fq(C2) is decided by the second
derivative ∂2

∂x2 fq(x), and we define the function,

gq(x) = ∂2fq(x)

∂x2
, (C2)

FIG. 10. The function lq (x) is positive on the domain D.

0 0.2 0.4 0.6 0.8 1

x

0.5
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4.5

q

D
3

D
2

D
1

FIG. 11. The condition gq (x) = 0, which holds on the domain
only if q = 2,3 and cuts the domain D into three domains: D1 (red),
D2 (yellow), and D3 (green).

on the domain D = {(x,q)|x ∈ [0,1],q ∈ [ 5−√
13

2 , 5+√
13

2 ]}. We
have

gq(x) = q

2q+2(q − 1)

[
Aq−2

1 − x

(
A√

1 − x
+ (1 − q)

)

− Bq−2

1 − x

(
B√

1 − x
− (1 − q)

)]
. (C3)

In order to find the region of q such that ∂2

∂x2 fq(x) � 0,

we consider equality ∂2

∂x2 fq(x) = 0 and plot the solution. As
showed in Fig. 11, the equality holds on the domain only if
q = 2,3, which cut the domain D into three domains: D1 =
{(x,q)|x ∈ [0,1],q ∈ [ 5−√

13
2 ,2]}, D2 = {(x,q)|x ∈ [0,1],q ∈

(2,3]}, and D3 = {(x,q)|x ∈ [0,1],q ∈ (3, 5+√
13

2 ]}. The cor-
responding functions for q = 2,3 are

f2(x) = x

2
, f3(x) = 3x

8
, (C4)

where 0 � x � 1. The intermediate value theorem tells us
if a continuous function has two values on the domain with
opposite signs, there must exist a root on the domain. The
function ∂2

∂x2 fq(x) is a continuous function on the domain
D = D1 ∪ D2 ∪ D3. Therefore, we can consider the condition
of q = 1, q = 5

2 , and q = 4 which are on the domain D1,
D2, and D3, respectively. When q = 1, the TEE converges to
entanglement of formation, it has been proved in Ref. [16] that
g1(x) < 0 for x ∈ [0,1]. Thus, gq(x) < 0 is nonpositive on the
domain D1 and equality holds only if q = 2. When q = 5

2 , we
have

g 5
2
(x) = − 15

64
√

2

A
1
2 + B

1
2

1 − x
+ 5

32
√

2

A
3
2 − B

3
2

(1 − x)
3
2

. (C5)

It’s easy to check that limx→0 g 5
2
(x) = 15

128 > 0 and

limx→1 g 5
2
(x) = 15

256
√

2
> 0. Thanks to the continuous g 5

2
(x)

and the intermediate value theorem, we can obtain g 5
2
(x) > 0

for x ∈ [0,1]. Thus, gq(x) is nonnegativity on the domain
D2 and equality holds only if q = 3. As showed in Fig. 12,
the function gq(x) is nonnegativity on the domain D2. When
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FIG. 12. gq (x) is nonnegativity on the domain D2.

q = 4, we have

f4(x) = 8x − x2

24
, (C6)

and g4(x) = − 1
12 < 0 for x ∈ [0,1]. Thus, gq(x) < 0 is neg-

ativity on the domain D3. Therefore, the function fq(x) is

concave on the domain D′={(x,q)|x ∈ [0,1],q ∈ [ 5−√
13

2 ,2] ∪
[3, 5+√

13
2 ]}.

APPENDIX D: MONOGAMY OF THE αth POWER OF TEE

Assuming
∑N−1

i=2 T 2
q (ρA1Ai

) � T 2
q (ρA1AN

), from Eq. (16)
we have

T α
q (ρA1|A2...AN

)

�
(
T 2

q (ρA1A2 ) + · · · + T 2
q (ρA1AN

)
) α

2

=
(

N−1∑
i=2

T 2
q (ρA1Ai

)

) α
2
(

1 + T 2
q (ρA1AN

)∑N−1
i=2 T 2

q (ρA1Ai
)

) α
2

�
(

N−1∑
i=2

T 2
q (ρA1Ai

)

) α
2
⎛
⎝1 +

(
T 2

q (ρA1AN
)∑N−1

i=2 T 2
q (ρA1Ai

)

) α
2

⎞
⎠

=
(

N−1∑
i=2

T 2
q (ρA1Ai

)

) α
2

+ T α
q (ρA1AN

)

� T α
q (ρA1A2 ) + · · · + T α

q (ρA1AN
),

where the second inequality holds because the property
(1 + x)t � 1 + xt , where 0 � x � 1 and t � 1, and the third
inequality holds because the property (

∑
x2

i )
α
2 �

∑
xα

i , where
0 � xi � 1 and α � 2.
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