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Quantum state transfer in optomechanical arrays
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Quantum state transfer between distant nodes is at the heart of quantum processing and quantum networking.
Stimulated by this, we propose a scheme where one can achieve quantum state transfer with a high fidelity
between sites in a cavity quantum optomechanical network. In our lattice, each individual site is composed of a
localized mechanical mode which interacts with a laser-driven cavity mode via radiation pressure, while photons
hop between neighboring sites. After diagonalization of the Hamiltonian of each cell, we show that the system
can be reduced to an effective Hamiltonian of two decoupled bosonic chains, and therefore we can apply the
well-known results in quantum state transfer together with an additional condition on the transfer times. In fact,
we show that our transfer protocol works for any arbitrary joint quantum state of a mechanical and an optical
mode. Finally, in order to analyze a more realistic scenario we take into account the effects of independent

thermal reservoirs for each site. By solving the standard master equation within the Born-Markov approximation,
we reassure both the effective model and the feasibility of our protocol.
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I. INTRODUCTION

For quantum information processing purposes one often
needs to transfer a quantum state from one site to another [1].
This is the central goal in quantum networking schemes. To this
end, a wide range of physical systems able to carry information
is used. For instance, photons interacting with atoms through
cavity quantum electrodynamics (QED) [2] could be used to
transfer quantum states between distant atoms.

Although photons are individual quantum carriers them-
selves, several promising technologies for the implementation
of quantum information processing rely on collective phenom-
ena to transfer quantum states, such as optical lattices [3] and
arrays of quantum dots [4], just to name a few. It is therefore,
an interesting goal to find physical systems that provide robust
quantum data bus (QDB) linking different quantum processors.

In recent years, extensive theoretical research has been
carried out on the topic of state transfer in quantum networks,
and many of them have been conducted in several different
systems and architectures [5].

Interestingly, a plethora of results has been obtained
based on qubit-state transfer through spin chains considering
different types of neighbor (site-site) couplings [6,7], as
well as errors and detrimental effects arising from network
imperfections and/or nonidealities [8—10].

On the other hand, optical lattices constitute a promising
platform for quantum information processing, where both
the coherent transport of atomic wave packets [11] and
the evolution of macroscopically entangled states [12] have
been achieved. Furthermore, significant advances have been
made in engineered (passive) quantum networks, where
the adjustment of static parameters leads to quantum
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information tasks, such as entanglement generation and state
transfer [13].

Motivated by all of the aforementioned quantum systems
towards quantum networking and/or processing, we present
the state transfer of quantum information in optomechanical
cavity systems—a promising growing field, where “weak”
light-matter interactions (trilinear radiation pressure inter-
action) take place leading to interesting quantum effects
[14].

Specifically, we show that information encoded on polariton
states, i.e., photonic-phononic combined excitations, can be
transferred from one site to another. Additionally, the use
of polariton states allows us to include both the degrees
of freedom—the quantized electromagnetic radiation field
and the mechanical mode. Furthermore, polaritons permit
undemanding manipulations with an external laser field. In
fact, quantum state transfers of polaritonic qubits (photonic-
atomic excitations) in a coupled cavity system have been
studied [15].

We would like to stress that recent works on networks
of coupled optomechanical cells [16] and light storage [17]
have been introduced. Also, collective effects such as synchro-
nization [18], quantum phase transitions [19], and generation
of entanglement [20] have been proposed in the optome-
chanical field. It is appropriate to mention that a multimode
optomechanical setup [21,22] allows stronger nonlinearities
than a single mode that can be used for quantum information
processing, such as generating single photons and to perform
controlled gate operations.

Moreover, earlier studies of quantum state transfer in
optomechanical systems relied on some sort of external control
in the realm of active small networks [23,24] or quantum
state transfer only between mechanical modes [25]. The most
straightforward approach in this context pertains to a sequence
of SWAP gates, which ensure the successive transfer of the
state between neighboring sites. While intuitively simple,
active networks are considered to be very susceptible to
errors—which are accumulated in each operation applied

©2016 American Physical Society


http://dx.doi.org/10.1103/PhysRevA.93.062339

DE MORAES NETO, ANDRADE, MONTENEGRO, AND BOSE

during the transfer, as well as to dissipation and detrimental
effects due to decoherence [5].

However, alternative strategies are based on the idea of
eigenmode-mediated state transfer, rely on a perturbative cou-
pling, and ensure resonance between the common frequency
of the sender and the receiver and a single normal mode of
the QDB [26] or a tunneling-like mechanism, described by
a two-body Hamiltonian, which allows either a bosonic or a
fermionic state to be transferred directly from the sender to the
receiver, without populating the QDB [27].

In this paper, we envisage the quantum state transfer from
a sender to a receiver in an array of optomechanical cells.
There, each cell is composed of a localized mechanical mode
that interacts with a laser-driven cavity mode via radiation
pressure, and therefore photons can hop between neighboring
sites.

In addition, we show how to design the parameters that
allow us perfect state transfer of an arbitrary quantum state. In
fact, two-way simultaneous communication for different pairs
of sites without mutual interference is possible. We stress that
the linearization of the nonlinear optomechanical Hamiltonian
does not constitute a major restriction. For example, for driven
optomechanical systems in the strong single-photon regime,
we can transfer information encoded in polariton states arising
from ion-trap-like Hamiltonians [28] as well as in dark states
in optomechanical systems [29].
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Finally, we illustrate the effectiveness of our protocol when
each cell is in contact with a thermal environment and under
the red-sideband regime.

II. THE MODEL

We consider a one-dimensional array of N optomechanical
cells, each of these cells consists of a mechanical mode of
angular frequency wj, coupled viaradiation pressure to a cavity
mode of angular frequency . In addition, we consider an
external laser driving the optical mode at angular frequency
w),, as schematically depicted in Fig. 1(a).

Following the standard linearization procedure for driving
optical modes in optomechanical cavities, we can recast
the following Hamiltonian (in units of Planck constant, i.e.,
h=1):

Al = —A"ala, + oblb, — Gu(by + bY@, +a}). (1)
where the mechanical (optical) mode of the nth cell is
associated with the bosonic operator 5,, (a,), A’l’, = w’; —w!is
the pump detuning from the cavity resonance, g, corresponds
to the single-photon coupling rate, and G, = «,g, is the
effective optomechanical coupling strength proportional to the
laser amplitude.

Here the cells are coupled by evanescent coupling be-
tween nearest-neighbors cavities with hoping strength J,,, an

FIG. 1. (a) Sketch of an array of N optomechanical cells. Each of these cells consists of a mechanical mode of frequency «), coupled via
radiation pressure to a cavity mode of frequency o). The optical mode is driven by a laser at frequency o/, and cells are coupled by evanescent
coupling between nearest-neighbors cavities with hoping strength J,. (b) Schematic of the effective model: two decoupled bosonic chains with
polaritonic energies 2" and 2/ and neighbor-site hopping A, and ¢,, respectively.
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interaction described by

N—-1
Ay = 3 Iu@ane + a0 @

n=1

As seen from the above Hamiltonian FlnL (with A’I', < 0),
we can readily notice two linearly coupled quantum harmonic
oscillators. To obtain the relevant decoupled effective Hamil-
tonian, we proceed to diagonalization of the Hamiltonian
using the usual Bogoliubov transformation [30], leading to
the eigenvalues

(A5) + (wn)”

QL) = >

1 2 212
+ 5/ [(23)" = (@p) ] —16G3 A%, ()
and normal mode operators
A, = sin6,(, a, + o, a)) + cos 0,(8, b, + B, b)),
. X @
By = cos 6,(nay + m, &) — sin 6, by + 1y, b)),

where the coefficients are

ai:Q’iiW}:' izﬂ’iiw,i

T2 fanan 2y Qo
Q" 4 |A" ey ®

LAY L QL ta),

+
nn = ’ - —nn’
2. /Qm|An 2y,
and we have defined sin6, = s,//f, and cos6, = ¢,/ /I,
with
n 2 n 2 n n
sn=3[(A%)" = (&) + (@) — (@],

en = Gu /AL, 1y = 2+ s2. (6)

Therefore, the total Hamiltonian H = Fl,f + I:II in the
polariton basis can be rewritten as

N
A=Y Al + 9" BB,

n=1
N—-1

+ Z()\nAA-,]-,AAnH + é—nB,i-anLl + H'C')v (7)
n=1

with the effective tunneling strengths
Ap = Jy sin6, sin 0,1 (o oy + o 0y, )
and
&y = Jyc086,co80, . ((nFnt  +nTn )
n n n n+1T, M4 My Myg1)-

It is important to point out that in deriving the above
expression, terms like Aj'Aj 4 and A;-r Bi 1 have been neglected
due to the usual rotating-wave approximation (RWA), which
remains valid for

N
QLIQL — Q> [ (anan) + (Bhba) o + ). (8)

n=1
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Now, it is straightforward to observe under the above
mapping that the original full Hamiltonian of a unidimen-
sional array of optomechanical cells becomes equivalent to a
Hamiltonian of two distinct bosonic chains, this Hamiltonian
being the central result of this paper [scenario schematically
illustrated in Fig. 1(b)]. Because of the effective structure
achieved above, i.e., two independent chains, we are now
in position to take advantage of the well-known results on
quantum state transfer.

As known from any state transfer scheme, the set of
coupling parameters {A,,, } as well as energies 27 defines the
transfer time t. Here, we point out that our protocol requires
that the transfer times for both polaritons ATA and BB have
to be the same or at least an odd multiple of each other.

To illustrate this point, we consider the red-detuned regime
A; ~ —w}, ; thus the Hamiltonian (1) can be simplified as

A™ = " (a4, +blb,) — G,(b,al +bla,).  (9)

To obtain the diagonal form of the above expression, we
consider the operators

~

~ (an + Bn) 75 (&n - bn)
An = —3 Bﬂ = —’
V2 V2

with eigenvalues o} = o, + G, and 0 = ), — G, respec-

tively. "

For the strongly off-resonant regime (G, > J,) together
with the RWA, we can recast the following polariton Hamilto-
nian:

(10)

Jn
V2

Now we proceed to choose a set of parameters that allows
quantum state transfer. For instance, a straightforward set can
be found in Ref. [5] corresponding to ), = w,,, G, = G, and
J, =/ V2)/n(N = n), which provides the same transfer
time for each chainty = 3 = 7/J.

Therefore, regardless of a relative phase depending on w4
and wp which is fixed and known, and hence can be amended,
any optomechanical state can be transferred only, ensuring the
G > J regime together with J,, = (J/«/i)«/n(N —n).

However, we stress that any other protocol could have
been chosen for this purpose, for example, schemes based
on eigenmodes, where one of many possibilities that permit
quantum state transfer is the following set of parameters:
Ji=In1=AKL h=J<KLG (k=2...N -2, N being
an odd number), v}, = wy,, and G, = G.

On the other hand, in resonant schemes [26] the
shorter transfer time possible corresponds to 74 = 15 =
(r/A)/2(N + 1), and for the tunneling-like protocol [27] with
the same parameters and conditions w! = " = w,, + § and
L < 8§ < J, we obtain transfer times 14 = 75 = Nmw§/2A%.

Finally, it is worth stressing that the effect of a phononic
hop term between neighboring sites only changes the strength
of A, and ¢,.

(AfAss1 + BlBupi +He). (1D

i=1
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II1. DISSIPATIVE MECHANISMS

In this section, in a step towards a more realistic model we
take into account decoherence and dissipation. To fulfill this
goal, we employ the standard formalism for open quantum
systems, i.e., we solve the dynamics of the optomechanical
array using the master equation in Lindblad form within the
Born-Markov approximation.

Furthermore, we numerically investigate the effectiveness
of our model computing the fidelity for the state transfer
considering engineered hop couplings between cells where
each cell is considered in the red-sideband regime.

The master equation for the composite coupled system is
given as
dp S A
77 = ULH.P]

N
Kfl —_— A A K”l— A A
+Y 5 (L +7r)Dlanp + ?nﬂ?[al]p

n=1

+ %(1 + 7, DIbu1p + %ﬁmém (12)

where H = Y| A’ + H; and the Lindblad term
D[01=20p0" — pOtO — OT0p (13)

takes into account the dissipative mechanisms of the optics
(mechanics) in contact with a thermal reservoir with the
occupation number 7, (7,,), where the photon (phonon) decay
rate is given by «,(y,,).

Needless to say the first nontrivial quantum network
in passive schemes is composed of four sites. Hence, for
computational time purposes, we exemplify our findings
considering an array of four cells where the couplings fulfill
Jp = (J/N2)/n(N —n) and @, = w,,.

To validate the polariton Hamiltonian (11), we present the
closed evolution, computed from the full Hamiltonian (9) of
the transfer fidelity at time 7 = 7r/J as a function of G/J
(see Fig. 2). We note the detrimental effects of the non-RWA
terms cease to G > 10J, as expected by Eq. (8), whence we

15 20 25 30
G/J

FIG. 2. The figure shows the dynamics of the transfer fidelity
at time t=m/J as a function of G/J. The states |¢p,) =
(1/v/2)(11,0) +10,1)) and [®4) = (1/v/2)(|12,0) +10,2)) corre-
spond to the initial states of the sender.
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may infer that for the superposition of coherent states |«),
such as Schrodinger cat states with mean occupation numbers
loe|?, we need to secure at least G > |o| x 10J to achieve a
high-fidelity state transfer.

In order to compute the fidelity of the transferred quan-
tum state, we solved the closed quantum system dynamics
(running the simulation in QuTiP [31]) considering the sender
initially in the state |¢;) = (l/ﬁ)(ll,O) +10,1)) or [®,) =
(1 /«/E)(lZ,O) +10,2)) (we have used the following notation
la,b) = |a)optics ® |b)mechanics)» Where all the other cells are in
the vacuum state.

Moreover, for our illustrative red-sideband detuning regime
(—Ap, ~ wy, > y,k) a well-known stability condition [32]
givenby G < (1/2)/w% + (y* + k2)/4 comes into sight, and
therefore it must be observed throughout the quantum state
transfer protocol. On the other hand, in order to achieve a
fidelity value close to unity, G has to be G ~ (J/4) x 10?
(as seen in Fig. 2). The effects of both the stability condition
(being an upper bound for G) and the effectiveness of the
fidelity [F(t) — 1] have as a result the limitation of the maxi-
mum coupling strength J,_y/,» = NJ /4 and consequently the
maximum number of cells.

In Fig. 3, we compute the fidelity for the transfer of an
initial quantum state given by |¢.) as a function of k / J for two
different mechanical phonon bath occupation numbers, 7, =
100 and 7,,, = 1, where we have used the following currently
experimental parameters in optomechanical crystals [33] in the
GHzregime: w,, /2w = 3.68 x 10° Hz, y /2w = 35 x 10’ Hz,
7. = 0.005, and G = (J/4) x 10> =5 x 10°. The high fi-
delity showninFig. 3upto J = 10k is an expected result, since
kT < hwy,, and the threshold for coherent operations takes
place when max(J,) = max(y,,k,). Thus, to achieve transfer
fidelities close to unity for an array with N = 100 cells (with
the same set of parameters considered above), we can then
estimate the cavity linewidth as k ~ 10° Hz.

Finally, we point out that the hopping coupling reported
in Ref. [18] is in the range of THz. Hence, to achieve
the inequality J < G within the stability region, we should

1.0
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0.8
S
— 0.7
'y

0.6
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0.4 ‘ ‘ ]
1077 1073 1072 1077 10°
k/J

FIG. 3. Weillustrate the fidelity of the transfer process (t = 7 /J)
as a function of x/J (log-axis) for two mechanical phonon bath
occupation numbers: n,, = 100 and 7,, = 1. To exhibit our findings,
we consider the following feasible parameters in optomechanical
crystals [33] in the microwave regime: w,,/2m = 3.68 x 10° Hz,
y /2w =35 x 103 Hz, 71, = 0.005,and G = (J/4) x 10> =5 x 10°.
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engineer optomechanical arrays with larger lattice spacing
and/or mechanical modes with frequencies above THz. This
is, of course, a challenging experimental scenario.

IV. CONCLUSION

We have proposed a theoretical proposal for quantum state
transfer in optomechanical arrays. Our proposal relies on a
general scheme illustrated by polariton transformation of the
linearized Hamiltonian (7) that allow us to obtain an effective
Hamiltonian of two decoupled bosonic networks.

The central result of the present paper is the derivation of
the polariton Hamiltonian (7), where we can bring in previous
results from quantum state transfer protocols in bosonic
networks. Specifically, we can apply any type of quantum state
transfer scheme with an extra additional condition, namely,
that the rate between the transfer times of both decoupled
polaritonic chains must be an odd number. Furthermore, we
analyze the effects of dissipation and a possible experimental
implementation of our proposal in the red-sideband regime
with experimental accessible parameters.

It is also important to point out that—although not reported
explicitly in this work—the linearization of the nonlinear
optomechanical Hamiltonian does not constitute a major
restriction. For instance, for driven optomechanical systems in
the strong single-photon regime, we can transfer information
encoded both in polariton states arising from ion-trap-like
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Hamiltonians [28] and in dark states in optomechanical
systems [29].

Before concluding we should stress one of the possible
practical uses of the type of state transfer that we have
proposed. In general, the generation of non-Gaussian states
of both light and mechanics is difficult, as well as entangled
states between the light and mechanics. One could then
adopt the strategy of generating such states at one physical
cell (say, called a non-Gaussian or entangler node) where,
perhaps, one has built in enhanced nonlinearities or extra
control on the parameters of a system. Then one can simply
transfer such states to a distant location—where they will be
exploited—through the optomechanical array as outlined by
us. Moreover, even though we used a one-dimensional (1D)
array in this work, any other topology might be consider,
such as lattice (2D) or crystal (3D) setups. In addition, other
interesting aspects to study are the “pretty good state transfer”
schemes in Ref. [5] and the generation of long -distance
quantum entanglement between sites [27].
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