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The staggered quantum-walk model makes it possible to establish an unprecedented connection between
discrete-time quantum walks and graph theory. We call attention to the fact that a large subclass of the coined
model is included in Szegedy’s model, which in its turn is entirely included in the staggered model. In order to
compare those three quantum-walk models, we put them in the staggered formalism and show that the Szegedy
and coined models are defined on a special subclass of graphs. This inclusion scheme is also true when the
searching framework is added. We use graph theory to characterize which staggered quantum walks can be
reduced to the Szegedy or coined quantum-walk model. We analyze a staggered-based search that cannot be
included in Szegedy’s model and show numerically that this search is more efficient than a random-walk-based
search.
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I. INTRODUCTION

Coined quantum walks (QWs) on graphs were defined in
Ref. [1], have been extensively analyzed in literature [2–6],
and were used to develop new quantum algorithms, such as
for searching marked vertices on graphs [7,8]. Despite the
success of coined QWs, Szegedy [9] proposed a new discrete-
time QW model without coins on bipartite graphs, which was
also used to build new quantum algorithms, for instance, for
searching triangles in graphs [10] and for searching web pages
in complex networks [11]. Generalizations of Szegedy’s model
were recently proposed in some papers [12,13].

The staggered quantum-walk (SQW) model was defined
in Ref. [14], which has shown that the entire Szegedy model
[9], including its searching framework, is contained in the
SQW model. Reference [15] has shown that many coined QWs
(DTQWs) can be cast into Szegedy’s model, including flip-flop
coined QWs employing the Grover or Hadamard coins and the
coined QWs using the abstract-search-algorithm scheme [8].
Reference [15] has also shown that if the DTQW on a graph �

is included in Szegedy’s model, then the DTQW can be seen as
a coinless QW on an enlarged graph �′. The coin space, which
is internal in the DTQW, becomes explicit in the equivalent
SQW on �′.

The name of the SQW model comes from the staggered
fermion formalism [16–18], which was proposed to solve
some technical difficulties when dealing with fermionic fields
in the context of quantum field theories. This formalism is
useful for putting fermionic fields on a hypercubic lattice to
be addressed in the context of the lattice field theory [19].
Key ideas of the staggered fermion formalism were used in
Ref. [20] to propose a nontrivial one-dimensional quantum
cellular automata avoiding the no-go lemma [21]. Similar
ideas were used in Refs. [22–24] to propose coinless QWs
on hypercubic lattices, the one-dimensional case of which
includes the one proposed in Ref. [20] as a particular case.
Reference [25] has shown that the one-dimensional case can
be included in the DTQW model. The higher-dimensional
versions, in the way presented in Ref. [22], use nonlocal unitary
operators violating the principle that walkers must jump only
to neighboring sites. The escape for this problem, when the
dimension is greater than one, is to assume that the graph on

which the QW has been defined is not the hypercubic lattice
by adding edges connecting some diagonally opposed sites, as
discussed in Ref. [14].

The basic ideas employed in Refs. [20,22] can be sum-
marized in two points. First, they convert the internal spin or
chirality state of the particle into extra degrees of freedom
by adding new vertices to the lattice, which becomes a
larger lattice (noticeable only in the finite case with some
boundary conditions). Second, they use two unitary operators
with repeated alternating action. Can those ideas be applied
for the coined model on a generic graph? Reference [15]
has addressed this problem for a subclass of flip-flop coined
models characterized by coins with (+1) eigenvectors obeying
special orthogonality properties, called orthogonal reflections.
For d-dimensional coins, the original graph of the coined
model must be enlarged by replacing each vertex with a
d-clique [26] and using two alternating unitary operators
described by the staggered QW model. The result is a coinless
QW on the enlarged graph equivalent to the coined model on
the original graph.

The staggered model provides a recipe to build quantum
walks on generic graphs by partitioning the vertices into
cliques. An element of the partition is called a polygon and
the union of polygons is called a tessellation. Nontrivial
SQWs use at least two tessellations, but depending on the
graph more tessellations may be required, for instance, the
hypercubic lattice. For the sake of simplicity, we address
only connected 2-tessellable graphs and we prove that a
graph is 2-tessellable if and only if its clique graph is
2-colorable.

This work, besides reviewing some aspects of the SQW
model proposed in Ref. [14], characterizes the class of graphs
on which 2-tessellable SQWs are equivalent to some Szegedy
or coined QWs. We show that the Szegedy and coined QW
models are defined in a restricted class of graphs, which is
included in the class of line graphs of bipartite graphs. We
prove that a SQW with no edge in the tessellation intersection
can be cast into the extended Szegedy QW model. SQWs
that are equivalent to Szegedy’s QWs inherit the results
regarding the advantage of Szegedy’s QWs over their classical
counterparts; see, for instance, Refs. [9,27]. On the other hand,
a SQW using two tessellations on graphs that are not line
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graphs of bipartite graphs cannot be reduced to Szegedy’s
QW model.

One of the main applications of QWs is the spatial search
problem, whose data are spread out in a lattice, for instance,
and each step costs some resource. It was discussed initially
by Benioff [28], who tried without success to use Grover’s
algorithm to beat random-walk-based searches. The first
efficient quantum-walk-based search seems to be the one in
Ref. [7], which used the DTQW model to search a marked
vertex in a hypercube. In the coined QW model, the coin used
on the nonmarked vertices is the Grover coin and the coin used
on the marked vertices is the minus identity operator (−I ). In
the SQW model, vertices are marked using partial tessellations.
Reference [29] used a SQW with three tessellations to search
for a single marked vertex in a two-dimensional crisscross
lattice (see Ref. [14]). In this work, we provide the first example
of a 2-tessellable SQW search, which is shown numerically to
be more efficient than random-walk-based search.

The structure of the paper is as follows. In Sec. II, we
describe how to define the evolution operator of the SQW
model. In Sec. III, we show that a graph is 2-tessellable if
and only if its clique graph is 2-colorable and we discuss the
classes of graphs on which the SQW model reduces to the
Szegedy or coined models. In Sec. IV, we characterize which
SQWs can be cast into Szegedy’s QW model. In Sec. V, we
describe how to convert a SQW into an equivalent form in
the coined QW model for graphs on a restricted class and
give nontrivial examples, namely the honeycomb lattice and
the three-state QW on the line. In Sec. VI, we provide an
example of an efficient SQW search, which cannot be put
into other QW models. In Sec. VII, we draw our conclusions.
Appendix A is a glossary of some terms in graph theory and
Appendix B gives a formal definition of Szegedy’s QW.

II. DEFINING THE EVOLUTION OPERATOR

A quantum-walk model is a recipe for building an evolution
operator based on local unitary operators. Local operators obey
the graph structure in the sense that if a particle is on vertex v,
it can move only to the vertices that are in the neighborhood of
v. In the discrete-time models, one step of the quantum walk
is a product of such operators. The flip-flop coined QW model
has an internal space, which can become explicit when the coin
is an orthogonal reflection by converting the coin directions
into extra vertices, as described in Ref. [15]. In this case, the
Hilbert space is spanned by the vertices of the extended graph.
In this work, we address only QWs on Hilbert space that are
spanned by the vertices of the graph. The following models are
included in this analysis: (1) the flip-flop coined QW models
with coins that are orthogonal reflections, (2) Szegedy’s QW
model, and (3) the staggered QW model.

Let us start with an example of a SQW that is included in
neither Szegedy’s model nor the coined model. The recipe for
building the SQW on the graph of Fig. 1 is as follows.

Step 1. Make a partition of the vertices so that each element
of the partition is a clique. An element of the partition is called a
polygon. The polygons do not overlap and their union contains
all vertices. The polygon union is called a tessellation and we
use the blue color for the first graph tessellation. Notice that
some edges are not in the blue tessellation, as we can check in

FIG. 1. Procedure to define a SQW on a graph. Panel (a) describes
the blue tessellation. Panel (b) describes the red tessellation. Panel
(c) presents the tessellation union, which must cover all edges.

Fig. 1(a). A polygon is always a clique, but not necessarily a
maximal clique. An edge is in a polygon if and only if the end
points of the edge are in the polygon.

Step 2. Associate a unit vector to each polygon so that
the vector belongs to the subspace spanned by the vertices of
the polygon. The simplest choice is the uniform superposition
given by

|α0〉 = 1
2 (|0〉 + |1〉 + |2〉 + |3〉),

|α1〉 = |4〉,
where |α0〉 is associated with (or induces) the blue polygon in
the form of a triangle in Fig. 1(a) and |α1〉 is associated with
(or induces) the square. Any other choice so that |α0〉 and |α1〉
have no zero entry and unit l2 norm is acceptable. Now we are
ready to define the first local unitary operator, which has the
following expression:

U0 = 2|α0〉〈α0| + 2|α1〉〈α1| − I. (1)

By construction, U0 is unitary and Hermitian (U 2
0 = I ) because

〈αj |αj ′ 〉 = δjj ′ for 0 � j,j ′ � 1. U0 is local because the
particle does not leave the polygon. Since a polygon is a clique,
the particle can move only to neighboring vertices because
〈αj |j ′〉 = 0 if j ′ is not a vertex of the polygon induced by
αj and, if j ′ is a vertex in αj , U0|j ′〉 belongs to the subspace
spanned by the vertices of αj .

Step 3. Now we are going to make a second vertex partition
in order to cover the edges that were not included in the first
tessellation. Figure 1(b) shows that this task is doable for this
graph. In the generic case, we may need to use more than two
tessellations.

Step 4. Similar to step 2, we associate a unit vector in the
subspace spanned by the polygon vertices to each polygon.
Again, we use the uniform superposition

|β0〉 = 1√
2

(|0〉 + |1〉),

|β1〉 = 1√
3

(|2〉 + |3〉 + |4〉).

The second local unitary operator is

U1 = 2 |β0〉〈β0| + 2 |β1〉〈β1| − I. (2)
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Step 5. Since we have covered all edges of the graph, as we
can check in Fig. 1(c), the evolution operator is given by

U = U1U0 = 1

6

⎡
⎢⎢⎢⎣

3 −3 3 3 0
−3 3 3 3 0

1 1 3 −3 4
1 1 −3 3 4
4 4 0 0 −2

⎤
⎥⎥⎥⎦. (3)

Now we can generalize this construction for a generic
simple undirected graph �, whose edges can be covered by
two tessellations called α and β [30]. The evolution operator
is

U = U1U0, (4)

where

U0 = 2
m−1∑
k=0

|αk〉〈αk| − I, (5)

U1 = 2
n−1∑
k=0

|βk〉〈βk| − I, (6)

and m and n are the number of polygons in each tessellation,
and

|αk〉 =
∑
k′∈αk

ak k′ |k′〉, (7)

|βk〉 =
∑
k′∈βk

bk k′ |k′〉, (8)

where ak,k′ are nonzero complex amplitudes for k′ ∈ αk , which
means that if k′ is a vertex of the polygon induced by vector
|αk〉, then ak,k′ �= 0; otherwise, ak,k′ = 0. Likewise bk,k′ are
nonzero complex amplitudes for k′ ∈ βk and zero otherwise.
Index k′ in akk′ and bkk′ runs from 0 to N − 1, where N is the
number of vertices of �.

Formally, a tessellation is a partition of the graph into
cliques; that is, each element of the partition is a clique and
two elements of the partition cannot have a vertex in common.
An element of the partition is called a polygon. We can
associate unitary and Hermitian operators with a tessellation of
m polygons using the form of the operator given by Eqs. (5) and
(7). A unitary and Hermitian operator is called an orthogonal
reflection if it is associated with (or induces) a tessellation. A
SQW is defined by an evolution operator that is a product of
orthogonal reflections such that the union of the tessellations
induced by the orthogonal reflections covers the edges of the
graph [14,15].

An interesting class of orthogonal reflections is obtained
using polygons in uniform superposition. In this case, Eq. (7)
reduces to

|αk〉 = 1√|αk|
∑
k′∈αk

|k′〉, (9)

where |αk| is the number of vertices in polygon αk . This class
generalizes flip-flop DTQWs with the Grover coin in the sense
that, when we convert the internal degrees of freedom into
extra vertices, the extended graph on which the Grover walk
is defined is a line graph of a bipartite graph, while the SQW
can be defined in a wider class.

FIG. 2. Nine forbidden Beineke induced subgraphs.

III. MAIN CLASSES OF GRAPHS

In this section, we use graph theory to classify the most
relevant classes of graphs that help to identify SQWs that can
be reduced into the Szegedy or coined model. Since our focus
in this work is the set of 2-tessellable SQWs (those that have an
evolution operator that is the product of exactly two orthogonal
reflections), we start addressing the following question: Which
graphs are 2-tessellable? We give a necessary condition. Each
vertex of the graph must belong to, at most, two maximal
cliques. For example, graph �9 in Fig. 2 has a central vertex
that belongs to the intersection of five maximal cliques. To
define a SQW on this graph we need to employ at least five
tessellations. By inspection, we can check that only graphs
�2, �3, �4, �5, and �6 are 2-tessellable and those graphs obey
the necessary condition. This condition is not sufficient. For
instance, each vertex of �7 belongs to two maximal cliques,
but we need to employ at least three tessellations to define a
SQW on this graph.

To definitively answer the question, we need to use the
clique graph of the original graph because the clique graph
contains all information about the adjacency relation of
the maximal cliques of the original graph. The necessary
and sufficient condition is that the clique graph must be
2-colorable. To prove this we need the following lemma.

Lemma 1. Each maximal clique of a 2-tessellable graph is
inside a polygon (blue or red).

Proof. Suppose that the graph is a clique. We state that one
tessellation must have a polygon that covers the whole clique.
In fact, if a blue polygon does not cover the whole clique, the
missed vertices are adjacent to all vertices of that blue polygon.
The red polygon must cover all edges of the whole clique
because, otherwise, there will be at least one edge whose end
points belong to polygons with different colors. This edge
will not be in the tessellation union violating the definition of
2-tessellable SQWs. Then all vertices of the whole clique must
be in the red polygon. The same argument is valid for each
maximal clique of a generic 2-tessellable graph. �
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Proposition 1. A connected graph is 2-tessellable if and
only if its clique graph is 2-colorable.

Proof. Let us start with the sufficiency. If the clique
graph is 1-colorable, the original graph is a clique, which
is 2-tessellable. If the clique graph is 2-colorable, we can use
the coloration induced by the clique graph on the original
graph, which generates a partial tessellation of the original
graph with two colors (some of the vertices belong to two
different-colored polygons), and then we complete the partial
tessellations by defining new polygons that will cover the
remaining vertices (those that do not belong to the intersection
of the induced colorations). In the end, all vertices belong to
two different-colored polygons. This proves the sufficiency.

To prove the necessity, we take the original graph with
two tessellations and erase all polygons that are not maximal
cliques. The union of the remaining polygons still covers all
vertices of the original graph because each vertex belongs to a
maximal clique (using the above lemma here). The union of the
remaining polygons also covers all edges and is a 2-colorable
clique cover. Those remaining polygons induce a 2-coloration
of the clique graph unless the whole graph is a clique whose
clique graph is 1-colorable. �

This proposition shows that graph �7 in Fig. 2 is not 2-
tessellable because the clique graph of �7 is a pentagon, which
is not 2-colorable.

It seems that Proposition 1 cannot be easily extended for
graphs that require more than two tessellations. Take for
example the Hajós graph (a triangle surrounded by three
triangles each one sharing an edge in common with the central
triangle). This graph is 3-tessellable and its clique graph is
not 3-colorable [31]. Besides, it is possible to have a maximal
clique that does not belong to any polygon.

A. Class 1: Graphs that are not line graphs

The nine forbidden Beineke induced subgraphs of Fig. 2
are used to check whether a graph is a line graph. Beineke [32]
has proved the following theorem.

Theorem 1. Let �′ be a graph. There exists a graph � such
that �′ is the line graph of � if and only if �′ contains no graph
of Fig. 2 as an induced subgraph.

If we want to define a 2-tessellable SQW on a graph that is
not a line graph (class 1), our graph, on the one hand, cannot
have �1, �7, �8, and �9 as an induced subgraph (their clique
graphs are not 2-colorable) and, on the other hand, it must
have �2, �3, �4, �5, or �6 as an induced subgraph (Beineke’s
theorem).

The 2-tessellable SQWs on graphs in class 1 have the
following property: There are necessarily one or more edges
in the intersection of the tessellations. This follows from the
fact that �2, �4, �5, and �6 have maximal cliques sharing an
edge and �3 have maximal cliques sharing three edges. Take
�6, for instance; it comprises two 4-cliques having in common
the central vertical edge.

SQWs on graphs in class 1 can be included in neither
Szegedy’s model nor the flip-flop coined model because
Refs. [14,15] have shown that any Szegedy’s QW or flip-flop
coined walk using orthogonal reflections are equivalent to
SQWs on line graphs of the bipartite graphs.

1

Γ´
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5

4

2

Γ

1 3

5

42

FIG. 3. A line graph �′ with the Krausz partition and its root
graph �. There is an one-to-one map from the Krausz partition and
the vertices of the root graph displayed by the colors. Notice that the
Krausz partition is not 2-colorable and � is not bipartite.

B. Class 2a: Line graphs of nonbipartite graphs

To characterize this class of graphs, we use the Krausz
partition.

Definition 1. A Krausz partition is a collection C of
subgraphs of a graph � that satisfies the following items:
(1) each element of C is a clique, (2) each edge of � is in
exactly one element of C, and (3) each vertex is in exactly two
elements of C.

For example, Fig. 3 shows the Krausz partition of graph
�′ (the same as Fig. 1). Krausz [33] has proved the following
theorem.

Theorem 2. A graph �′ is a line graph of some graph � if
and only if �′ has a Krausz partition.

Krausz’s theorem is an alternative way to check whether
a graph is a line graph. The advantage of using the Krausz
partition is that it shows how to obtain the root graph. Each
element of the Krausz partition is associated with a vertex of
the root graph. Two vertices of the root graph are adjacent if
and only if the intersection of the corresponding elements of
the partition is nonempty. On the other hand, it is known that
a generic graph is bipartite if and only it is 2-colorable. Then
the line graph of a graph � has a 2-colorable Krausz partition
if and only if � is bipartite.

We state that the class of graphs that are line graphs
of nonbipartite graphs is characterized by graphs that have
Krausz partitions that are not 2-colorable. If a graph of
this class has a 2-colorable clique graph, then the graph
is 2-tessellable. The tessellation union cannot coincide with
the Krausz partition because the Krausz partition is not
2-colorable. The intersection of two elements of the Krausz
partition has no edge. If the graph is 2-tessellable, there must
be an edge in a polygon intersection because the tessellation
union splits the graph into maximal cliques so that each vertex
is in exactly two cliques. The only escape using the definition
of Krausz partition is the following: There is an edge in the
intersection of two polygons. This property is shared with
graphs that are not line graphs (class 1).

Besides the correspondence between the elements of the
Krausz partition and the vertices of the root graph, there is
another correspondence, coming from the definition of line
graphs, between the edges of the root graph and the vertices
of the line graph. For example, there is an one-to-one map
between E(�) and V (�′) of graphs � and �′ of Fig. 3, which
is displayed by the numerical labels.
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Summing up, we have proved so far that 2-tessellable
SQWs on graphs in class 1 or 2a have at least one edge in
the tessellation intersection. Those SQWs cannot be cast into
Szegedy’s QW model because they are defined in neither line
graphs nor line graphs of bipartite graphs. Reference [14] has
shown that any Szegedy’s QW is equivalent to a SQW on the
line graph of a bipartite graph.

There are graphs in class 2a that are not 2-tessellable, for
instance, the Hajós graph.

C. Class 2b: Line graphs of bipartite graphs

Class 2b is composed of graphs that have 2-colorable
Krausz partition. Another way to characterize graphs in this
class is by using the following theorem (see, for instance,
Ref. [34]).

Theorem 3. � is the line graph of a bipartite graph if and
only if � is diamond free and the clique graph K(�) is bipartite.

Reference [34] also has the following result.
Proposition 2. A graph is diamond free if and only if any

two maximal cliques intersect in, at most, one vertex, which
holds if and only if each edge lies in exactly one maximal
clique.

Graph � in class 2b cannot have a diamond as an induced
subgraph and two maximal cliques of � do not share a common
edge. This means that any minimum clique cover of � is
also a minimum clique partition. All graphs in this class are
2-tessellable because K(�) is bipartite and the 2-colorable
Krausz partition induces the blue and red tessellations. A SQW
that uses the tessellations induced by the Krausz partition can
be cast into Szegedy’s model, as shown in Sec. IV.

To define a SQW on � that is not included in Szegedy’s
model, we have to choose tessellations blue and red with
an edge in the tessellation intersection. For example, the
tessellations of the graph in Fig. 4(a) have two edges in the
tessellation intersection, while the tessellations of the same
graph in Fig. 4(b) have no edges in the tessellation intersection.
The tessellation union of Fig. 4(b) is a 2-colorable Krausz
partition, confirming that this graph is in class 2b.

If we remove the elements of the Krausz partition that are
not maximal cliques, we have a 2-colorable minimum clique
partition. We must use this partition to define the blue and red
polygons of a 2-tessellable SQW because each maximal clique
must be inside a polygon (Lemma 1). After this procedure, if
there are vertices that do not belong to two polygons, then
we have to define new polygons until both tessellations are
complete (all vertices must be in exactly two polygons). If
there are two or more vertices in the same blue polygon of the
2-colorable minimum clique partition that do not belong to red

FIG. 4. A graph (a barbell) with two different tessellation pat-
terns. A SQW with tessellation (a) does not belong to Szegedy’s
model, while a SQW with tessellation (b) always belongs to Szegedy’s
model.

polygons, we can put those vertices in a single red polygon to
have one or more edges in the tessellation intersection. Such
SQWs cannot be cast into Szegedy’s model. If there is, at most,
one vertex in each polygon of the 2-colorable minimum clique
partition that does not belong to a second polygon (with a
different color), then the SQW in this case can be cast into
Szegedy’s model, as shown in Sec. IV.

D. Class 2b′: Line graphs of bipartite graphs
with perfect matching

Let us define class 2b′ (we show that class 2b′ ⊂ class 2b)
of graphs � that obey the following three conditions:

(1) � has a perfect matching M;
(2) the end points of an edge in M induces a maximal

clique of size two;
(3) if we delete the edges of the perfect matching (leaving

the end points), we obtain a union of disconnected maximal
cliques.

The third condition is equivalent to stating that the comple-
ment of the perfect matching M in � is a union of disconnected
maximal cliques; some (or all) of them can have one vertex.

Let us show that a graph � in class 2b′ is the (or isomorphic
to the) line graph of a bipartite graph. Conditions (1) to (3)
guarantee that � has a 2-colorable Krausz partition. The edges
of the perfect matching are the elements of the Krausz partition
with the red color and the maximal cliques in the complement
of the perfect matching in � are the elements with the blue
color. Each vertex is in exactly two elements of the partition
(elements with different colors) establishing a well-defined
Krausz partition. This Krausz partition is 2-colorable; then � is
the line graph of a bipartite graph. This proves that class 2b′ ⊂
class 2b.

If we add an extra condition, we can prove a stronger result:
A graph � that obeys conditions (1) to (3) and has no vertex
with degree 1 is the line graph of its clique graph; that is, � =
L(K(�)). Besides, K(�) is bipartite. Let us show that � is the
line graph of K(�). This follows from the fact that the vertices
of K(�) correspond to all elements of the Krausz partition of
� because there is no element with one vertex. Each element
of the Krausz partition has at least two vertices. Besides, each
element is a maximal clique. By the definition of clique graph,
two vertices of K(�) are adjacent if and only if the intersection
of the corresponding elements of the Krausz partition is
nonempty. This shows that K(�) is the root graph of �.

IV. STAGGERED QWS THAT ARE IN SZEGEDY’S MODEL

Graphs in class 2b have 2-colorable Krausz partitions. If
we use the Krausz partition to define the tessellations (there
is exactly one vertex in the polygon intersections), then the
SQWs are included in the extended Szegedy QW model (see
Appendix B for formal definition). The following proposition
generalizes this statement.

Proposition 3. A 2-tessellable SQW with no edge in the
intersection of the tessellations can be cast into the extended
Szegedy QW model.

Proof. Suppose that the 2-tessellable SQW is defined on a
graph �′ with N vertices. The labels of the vertex set of �′ run
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from 0 to N − 1 and the basis of the Hilbert space associated
with �′ is {|0〉, . . . ,|N − 1〉}.

We have shown in Sec. III that �′ belongs to neither class
1 nor class 2a because any 2-tessellable SQW on graphs in
those classes has an edge in the tessellation intersection. Then
�′ must be in class 2b; that is, �′ is the line graph of a bipartite
graph �.

Since �′ is 2-tessellable, each maximal clique is inside a
blue or red polygon (Lemma 1). Adjacent maximal cliques
have different color. Since there is no edge in the tessellation
intersection (there is exactly one vertex in the polygon
intersections), the tessellation union is a 2-colorable Krausz
partition. The root graph � is bipartite with edges connecting
set A (associated with blue polygons) and set B (associated
with red polygons). No two vertices in A are adjacent, and the
same holds for B. Let m,n be the number of polygons in the
blue and red tessellations, respectively. We label the vertices in
A by α̃k, 0 � k < m, and the vertices in B by β̃k, 0 � k < n

using the one-to-one mapping between the elements of the
Krausz partition and the vertices of �. Each vertex k of �′
belongs to the intersection of two polygons αi and βj for
some 0 � i < m and 0 � j < n. Then there is an one-to-one
mapping between the vertex set of �′ and the edge set of �

given by

k ↔ (α̃i ,β̃j ), (10)

where k is a vertex of �′ and α̃i ,β̃j are the end points of the
edge of � that corresponds to k. Label k runs from 0 to N − 1
and labels i,j run over the edge set E(�), whose cardinality is
equal to N . Labels i,j run in the whole range 0 � i < m and
0 � j < n if and only if � is the complete bipartite graph.

Let |α̃i〉 ⊗ |β̃j 〉 ≡ |α̃i ,β̃j 〉 for 0 � i < m and 0 � j < n be
the computational basis ofHm ⊗ Hn using weird labels, which
help to remember the correspondence between the vertices α̃i

and β̃j of � and polygons αi and βj of �′.
Using bijection (10), define the linear transformation T :

HN → Hm ⊗ Hn by

T |k〉 = |α̃i〉 ⊗ |β̃j 〉. (11)

Using T , define the unitary operators R0 and R1 in Hm ⊗ Hn

by

R0 = 2
m−1∑
k=0

|φk〉〈φk| − I, (12)

R1 = 2
n−1∑
k=0

|ψk〉〈ψk| − I, (13)

where

|φk〉 = T |αk〉 =
∑
k′∈αk

ak k′ T |k′〉, (14)

|ψk〉 = T |βk〉 =
∑
k′∈βk

bk k′ T |k′〉, (15)

akk′ and bkk are the entries of |αk〉 and |βk〉 given by Eqs. (7) and
(8). Now let us show that W = R1R0 is the evolution operator
of a well-defined extended Szegedy QW on � equivalent to the
SQW on �′. The Hilbert space associated with � is Hm ⊗ Hn.

Expressing (14) and (15) in the computational basis of
Hm ⊗ Hn, we obtain

|φk〉 =
∑

j

such that
(α̃k ,β̃j ) ∈ E(�)

ak;(k,j ) |α̃k,β̃j 〉, (16)

|ψk〉 =
∑

i

such that
(α̃i ,β̃k ) ∈ E(�)

bk;(i,k) |α̃i ,β̃k〉, (17)

where index k of |φk〉 runs from 0 to m − 1 and index k of
|ψk〉 runs from 0 to n − 1. The notation ak;(i,j ) means that
ak;(i,j ) = ak;k′ for the value of k′ such that T |k′〉 = |α̃i ,β̃j 〉.
Since k′ in Eq. (14) is in polygon αk, T |k′〉 = |α̃k,β̃j 〉 for some
0 � j < n. Since k′ in Eq. (15) is in polygon βk, T |k′〉 =
|α̃i ,β̃k〉 for some 0 � i < m. The same notation applies to
bk;(i,j ).

Using |φk〉 and |ψk〉, mapping (10), and the notation of
Appendix B, we define matrices P and Q whose dimen-
sions are m × n and n × m and whose entries are pkj =
|ak;(k,j )|2 and qki = |bk;(i,k)|2, respectively. P and Q are right-
stochastic matrices. In fact,

∑n−1
j=0 pkj = 1 for 0 � k < m and∑m−1

i=0 qki = 1 for 0 � k < n because |αk〉 and |βk〉 have unit
l2 norm. Let P ′,Q′ be the matrices obtained from P,Q by
replacing the nonzero entries with 1. We have to show that
P ′ = Q′T [see Definition 2 and matrix (B1)] or, equivalently,
p′

kj = 1 ⇔ q ′
jk = 1. Suppose that p′

kj = 1. Then ak;(k,j ) �= 0,
where ak;(k,j ) is the coefficient of some |k′〉 in |αk〉. Vertex
k′ in �′ is in the intersection of polygons αk and βj . The
coefficient of |k′〉 in βj also must be nonzero because k′ ∈ βj .
Then bj ;(k,j ) �= 0 and q ′

jk = 1. The same argument works the
other way around, and if q ′

jk = 1, then p′
kj = 1.

Now let us display the connection between the evolution
operator U of the staggered model given by Eq. (4) and W =
R1R0 of Szegedy’s model. U and W are not exactly equal
in general because W may have an idle subspace. Suppose
that the first vectors of the computational basis of Hm ⊗ Hn

are the vectors |α̃i ,β̃j 〉 in the same order of the elements of
the computational basis of HN after using bijection (10). The
order of the remaining (mn − N ) vectors of the computational
basis of Hm ⊗ Hn does not matter.

If |α̃i ,β̃j 〉 and |α̃i ′ ,β̃j ′ 〉 are vectors in the computational
basis of Hm ⊗ Hn that correspond to |k〉 and |k′〉 in HN , then
using Eqs. (11), (12), and (16) we obtain

〈α̃i ,β̃j |R0|α̃i ′ ,β̃j ′ 〉 = 〈k|U0|k′〉. (18)

This shows that the submatrix of R0 obtained by selecting the
first N lines and columns of R0 is equal to U0. If |a,b〉 is in
the computational basis of Hm ⊗ Hn and (a,b) �∈ E(�), then
〈a,b|R0|a,b〉 = −1 because 〈a,b|φk〉 = 0,∀ k. The remaining
entries of R0 are zero, as we can systematically check.
Summing up, we have shown that

R0 =

⎡
⎢⎢⎣

U0 0 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · −1

⎤
⎥⎥⎦. (19)
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It is straightforward to show that the same property holds
when we compare R1 and U1; that is, the submatrix of R1

obtained by selecting the first N lines and columns of R1 is
equal to U1, the remaining diagonal entries of R1 are (−1),
and the remaining nondiagonal entries are zero. Summing up,
we have shown that

W =

⎡
⎢⎢⎣

U 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎤
⎥⎥⎦, (20)

where the number of 1′s in the diagonal is (mn − N ), which
is the dimension of the idle space in Szegedy’s model. �

The evolution operators of the Szegedy and SQW models
are not exactly the same when the bipartite graph is not
complete because the dimension mn of the Hilbert space of
Szegedy’s model is larger than the dimension N of the stag-
gered model. We have shown that U |ψ〉 ↔ W |ψ ′〉 if |ψ〉 ↔
|ψ ′〉, where |ψ〉 ↔ |ψ ′〉 means that |ψ ′〉 is obtained from
|ψ〉 after using the bijection (10) or, equivalently, T U |ψ〉 =
WT |ψ〉, ∀ |ψ〉 ∈ HN , where T is given by Eq. (11).

V. STAGGERED QWS THAT ARE IN THE COINED MODEL

The 2-tessellable SQWs on graphs �(V,E) in class 2b′ are
included in the coined model if the tessellation that covers
the perfect matching uses vectors in uniform superposition.
This result follows from the demonstration of Theorem 4.2 of
Ref. [15], which states that Szegedy’s QWs on bipartite graphs
�(X,Y,E) are equivalent to a flip-flop coined QW on some |X|
multigraph if the vertices in Y have degree 2 and the edges
incident on the vertices in Y have equal weight.

We briefly review this result using the blue and red
tessellations induced by the Krausz partition of �(V,E). The
red tessellation covers the perfect matching. If we choose
the vertex labels so that vertices in the blue polygons are
consecutive numbers, the unitary operator U0 associated with
the blue tessellation will be a block diagonal matrix, each
block associated with a blue polygon. U0 is the coin operator
of a QW on a new graph �′(V ′,E′) obtained from �(V,E)
by shrinking the blue polygons into single vertices so that a
blue polygon that is a d-clique becomes a degree-d vertex in
V ′. The cardinality of V ′ is the number of blue polygons. The
edge set E′ corresponds to the perfect matching of �. This
shrinking process can produce a multigraph [15].

The unitary operator U1 associated with the red tessellation
is

U1 = 2
∑

(i,j )∈M

|βij 〉〈βij | − I, (21)

where

|βij 〉 = |i〉 + |j 〉√
2

(22)

and M is the perfect matching. Simplifying U1 we obtain

U1 =
∑

(i,j )∈M

|i〉〈j | + |j 〉〈i|, (23)

FIG. 5. Graph � on which a SQW is defined. Labels (x,y,i) used
in Eq. (24) are shown inside the blue polygons. Label k, which runs
from 0 to 2 used in Eq. (25), are shown outside the blue polygons.

which is a flip-flop shift operator on �′(V ′,E′). U = U1U0 is
the evolution operator of a well-defined flip-flop coined model
on �′(V ′,E′).

In the next sections, we show nontrivial examples that
display the connection between the staggered and coined
models.

A. Honeycomb lattice

Consider the SQW on the graph � of Fig. 5, which
is obtained from the hexagonal lattice (honeycomb) after
replacing the vertices by triangles. Graph � belongs to class
2b′ because it obeys conditions (1) to (3). The vertex labels
are chosen following a method similar to the one used for
two-dimensional lattices. Recall that in the latter case, the
vertex label (x,y) means that it is represented by vector
x�ex + y�ey , where �ex and �ey are the unit canonical vectors
along axes x and y, respectively. For the honeycomb, the unit
canonical vectors must be replaced by the vectors �ex and �ey

displayed in Fig. 6. The position of half nonadjacent vertices
are obtained using vectors x�ex + y�ey , for 0 � x,y < m, where
m is the even number of hexagons in the x or y directions
(we are using the cyclic or toruslike boundary conditions).
The other vertices are obtained using vectors x�ex + y�ey + �a,
where �a = (�ex + �ey)/3, as shown in Fig. 6. So, we use labels
(x,y,0) for the first set of vertices and (x,y,1) for the second
set of vertices of the honeycomb. The labels of graph � of
Fig. 5 requires a fourth index k describing the position of the
vertices inside the triangle such as (x,y,i,k) for 0 � i � 1 and
0 � k � 2.

Vectors α associated with the blue polygons are

∣∣α(i)
x,y

〉 = 1√
3

(|x,y,i,0〉 + |x,y,i,1〉 + |x,y,i,2〉), (24)

and they split into two sets: When i = 0, the polygon refers to
a vertex that in the honeycomb has the form (x,y,0), and when
i = 1, the polygon refers to a vertex that in the honeycomb has
the form (x,y,1). The first set consists of inverted triangles in
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FIG. 6. Graph �′ is obtained from � of Fig. 5 by replacing the
blue polygons with single vertices. Vectors �ex and �ey are shown in red
and the unit vector �a in blue. We are taking m = 2, because there are
two hexagons in the x direction and two hexagons in the y direction.
The boundary conditions are cyclic following the directions �ex and
�ey . The coined QW on �′ with the Grover coin is equivalent to the
SQW on � because they have the same evolution operator.

� and the latter consists of usual triangles. Vectors |α(i)
x,y〉 need

not necessarily be in uniform superposition and can assume
different values on different vertices. When they are in uniform
superposition, they produce the Grover coin at each vertex.

Vectors β associated with the red polygons are

∣∣β(k)
x,y

〉 = 1√
2

(|x,y,0,k〉 + |x − δ1k,y − δ2k,1,k〉), (25)

for 0 � k � 2. They must be in uniform superposition.
The evolution operator is U = U1U0, where U0 induces the

blue tessellation and is given by

U0 = 2
m−1∑

x,y=0

(∣∣α(0)
xy

〉〈
α(0)

xy

∣∣ + ∣∣α(1)
xy

〉〈
α(1)

xy

∣∣) − I, (26)

and U1 induces the red tessellation and is given by

U1 = 2
m−1∑

x,y=0

(∣∣β(0)
xy

〉〈
β(0)

xy

∣∣ + ∣∣β(1)
xy

〉〈
β(1)

xy

∣∣ + ∣∣β(2)
xy

〉〈
β(2)

xy

∣∣) − I.

(27)

U1 can be further simplified and reduced into the form of
Eq. (23). U is equal to the evolution operator of the coined
model analyzed in Refs. [35,36]. In the continuous-time case,
the honeycomb was analyzed in Refs. [37,38] using the
evolution operator of the continuous-time QW model [39].

There are three regular two-dimensional lattices: squared,
triangular, and hexagonal. Only the coined model on the
hexagonal lattice corresponds to SQWs on planar graphs.
Coined models on the squared and triangular lattice correspond
to SQW on graphs that have 4-cliques and 6-cliques as induced
subgraphs, which are nonplanar.

FIG. 7. Panel (a) describes a directed graph on which a three-state
coined QW is defined. Panel (b) describes a 2-tessellable graph on
which an equivalent SQW is defined.

B. Three-state coined QWs

An interesting question is can we define a SQW on a
directed graph? The answer seems to be negative because if the
walker is on vertex v1 that has an edge pointing to v2 and there
is no edge from v2 pointing to v1, then there is a coin value
i so that S|v1〉|i〉 = |v2〉|j 〉 for some j and there is no coin
value i so that S|v2〉|i〉 = |v1〉|j 〉, where S is the shift operator
of a coined model on the directed graph. This means that
S2 �= I . Since the staggered model uses only Hermitian and
unitary operators to produce the evolution operator, it seems
that we cannot define SQWs on directed graphs that would be
equivalent to the coined model. There is an exception when
the directed edges are loops. In the next example, we show that
a coined model on a directed graph is equivalent to a SQW on
a graph that is in class 2b\class 2b′.

Consider the flip-flop three-state coined QW defined on
the directed graph of Fig. 7(a), which was analyzed in
Refs. [40–42]. The evolution operator is U = S [C(ρ) ⊗ I ],
where C(ρ) is the coin operator,

C(ρ) =

⎛
⎜⎝

−ρ2 ρ
√

2 − 2ρ2 1 − ρ2

ρ
√

2 − 2ρ2 2ρ2 − 1 ρ
√

2 − 2ρ2

1 − ρ2 ρ
√

2 − 2ρ2 −ρ2

⎞
⎟⎠, (28)

with parameter ρ ∈ (0,1) and S is the flip-flop shift operator,

S =
∑
n∈Z

(|n + 1,2〉〈n,0| + |n,1〉〈n,1| + |n − 1,0〉〈n,2|).

(29)

The flip-flop shift operator is interesting because it does not
use information that is external to the graph such as go to the
right or go to the left and can be easily extended to generic
graphs. The familiar three-state Grover walk [43] is recovered
taking ρ = 1/

√
3.

Coin C(ρ) is an orthogonal reflection because it has only
one (+1) eigenvector, which is given by

|αρ〉 =
√

1 − ρ2

2
|0〉 + ρ|1〉 +

√
1 − ρ2

2
|2〉. (30)

Then C(ρ) = 2|αρ〉〈αρ | − I . Define

U0 = 2
∑
n∈Z

|n,αρ〉〈n,αρ | − I, (31)

where vectors |n,αρ〉 induce the blue polygons of Fig. 7(b)
using labels (n,i),0 � i � 2, for the vertices of the graph.
Notice that U0 = C(ρ) ⊗ I .

Define U1 by

U1 = 2
∑
n∈Z

(∣∣β(0)
n

〉〈
β(0)

n

∣∣ + ∣∣β(1)
n

〉〈
β(1)

n

∣∣) − I, (32)
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using the red tessellation, whose polygons are induced by

∣∣β(0)
n

〉 = |n,0〉 + |n + 1,2〉√
2

,
∣∣β(1)

n

〉 = |n,1〉. (33)

After simplifying U1, we obtain U1 = S. Then the SQW on
the graph of Fig. 7(b) with evolution operator U = U1U0 is
equivalent to the flip-flop coined QW on the directed graph
of Fig. 7(a). The blue tessellation represents the internal coin
states and the red tessellation represents the shift operator.

VI. SEARCHING

Searching in the staggered model on a graph � is imple-
mented using partial tessellations. A partial tessellation is a
tessellation of an induced subgraph of � (distinct from �).
The vertices in the missing polygons are the marked ones.
If the evolution operator is U = U1U0 and both U0 and U1

are unitary operators associated with partial tessellations, then
we demand that the tessellation union covers all vertices. The
vertices that belong to only one polygon are the marked ones
and the vertices that belong to two polygons are the ordinary
ones. If U0 induces a partial tessellation and U1 induces a
complete tessellation, the tessellation union always covers all
vertices of the graph because the tessellation induced by U1

covers all vertices. A SQW using at least one partial tessellation
is called a generalized SQW.

The initial condition is the uniform superposition of all
vertices in order to avoid any bias towards the location of the
marked vertices, that is,

|ψ0〉 = 1√|V |
∑
v∈V

|v〉, (34)

where V is the vertex set of �. The searching algorithm consists
of applying U in succession; that is, the final state is |ψt 〉 =
Ut |ψ0〉, where t is the running time.

FIG. 8. Graph in class 1 with blue 8-clique partial tessellation
and red 4-clique complete tessellation. The vertices in the central
8-clique are the marked ones. The 4-cliques at the boundary are
identified, establishing a toruslike topology.

We present an example of a generalized SQW on a graph in
class 1 that finds a marked vertex faster than classical random
walks. Let us define a generalized SQW on the graph of Fig. 8.
This example is included in neither the coined nor the Szegedy
model because there are edges in the tessellation intersection.
This graph is in class 1 because graph �4 of Fig. 2, for instance,
is an induced subgraph. The graph consists of n2 8-cliques
linked by 2n2 4-cliques with a toruslike topology, which is
obtained by identifying the external 4-cliques. This graph is
2-tessellable, as can be checked in Fig. 8, which depicts the
case n = 3. The blue polygons cover the 8-cliques and the
red polygons cover the 4-cliques. There is a missing blue
polygon associated with the central 8-clique characterizing a
partial blue tessellation. The marked vertices are the ones in
the central 8-clique. All vertices are in the tessellation union.
Notice that there are edges that do not belong to the tessellation
union. This can happen in the generalized model.

The Hilbert space associated with this graph has dimension
N = 8n2. The vectors associated with the blue polygons are

|αxy〉 = 1

2
√

2

7∑
k=0

|x,y,k〉, (35)

and the vectors associated with the red polygons are

∣∣β(0)
xy

〉 = 1
2 |x,y〉(|0〉 + |7〉) + 1

2 |x + 1,y〉(|3〉 + |4〉), (36)

∣∣β(1)
xy

〉 = 1
2 |x,y〉(|1〉 + |2〉) + 1

2 |x,y + 1〉(|5〉 + |6〉), (37)

for 0 � x, y � n − 1 and the arithmetic with the labels of
|x,y〉 is performed modulo n. The central 8-clique is located
at x = 0, y = 0 (with no blue polygon) and the vertices have
labels (x,y,k), where k runs from 0 to 7, as shown in Fig. 8.

The evolution operator is U = U1U0, where U0 induces the
blue tessellation, given by

U0 = 2
n−1∑
x,y=0

(x,y)�=(0,0)

|αxy〉〈αxy | − I, (38)

and U1 induces the red tessellation, given by

U1 = 2
n−1∑

x,y=0

(∣∣β(0)
xy

〉〈
β(0)

xy

∣∣ + ∣∣β(1)
xy

〉〈
β(1)

xy

∣∣) − I. (39)

To perform a numerical analysis to obtain the efficiency
of the search algorithm based on U , we use the following
three-part procedure. First, we fix a value of n and we plot
the probability of finding the walker in a marked vertex as a
function of the number of steps. This probability is given by

p(t) =
7∑

k=0

〈0,0,k|Ut |ψ0〉, (40)

where t is the number of steps and ψ0 is the initial condition,
given by the uniform superposition. The first panel of Fig. 9
shows p(t) for n = 30 and the fitting curve. We take the
first maximum of the fitting curve as the success probability
and the corresponding abscissa as the running time of the
searching algorithm. This process is repeated for many values
of n. Second, we analyze how the running time increases as a
function of the number of vertices N , which is depicted in the
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FIG. 9. Three plots that allow us to determine the time complexity
of the searching algorithm. The first panel depicts the probability of
finding the walker in a marked vertex as a function of the number of
steps. The second panel depicts the loglog plot of the running time
as function of the number of vertices N . The third panel depicts the
semilog plot of the inverse of the success probability as function of
N . In all of them we included the fitting curve using the least-squares
method.

second panel of Fig. 9. The fitting line shows that the running
time is approximately 0.32N0.57. Third, we analyze how the
success probability decreases as a function of N , which is
depicted in the third panel of Fig. 9. The fitting line shows
that the success probability is approximately 0.53/(ln N )0.60.
Joining those three steps and extrapolating for large N , we
conclude that the total running time with a constant success
probability is O[N0.57(ln N )0.30] because we use the amplitude
amplification scheme [44].

VII. DISCUSSION AND CONCLUSIONS

An interesting question in this context is this: Is there some
advantage of using the SQW model? A partial answer comes
from the following four points. (1) When coined QWs are
converted into the SQW model, it becomes clear that the coin
and shift operators have the same nature and the distinction
between them vanishes. What matters is the alternate action of
two unitary operators. For example, decoherence by breaking
edges of the graph, called percolation [45–47], can be applied
to the edges that represent the coin. (2) The SQW model helps
to establish the equivalence between the coined and Szegedy’s
models [15]. (3) The SQW model is an important step to unify
the description of discrete-time QW models. (4) The SQW
model may help to understand the connection between coined
and continuous-time QWs [39]. Reference [48] described how
to define a coined QW with Hermitian and unitary coins
with a well-defined continuous-time limit. The authors used
a method of expanding the graph on which the coined model
takes place. This method is similar to the technique employed
in Sec. V to express the coined QW as an instance of a
staggered QW.

In this paper we have characterized which graphs are
2-tessellable by proving that a graph is 2-tessellable if and
only if its clique graph is bipartite. The class of 2-tessellable
SQWs is large enough to encompass Szegedy’s model. Since
it is defined using the product of only two local operators,
we can employ Szegedy’s spectral lemma [9,14] to find the
spectral decomposition of the evolution operator. We have also
shown that 2-tessellable SQWs with no edge in the tessellation
intersection can be cast into Szegedy’s model.

Another contribution of this paper is to characterize the
classes of graphs that help to establish the equivalence among
discrete-time QW models. We use four classes:

(i) class 1, graphs that are not line graphs;
(ii) class 2a, graphs that are line graphs of nonbipartite

graphs;
(iii) class 2b, graphs that are line graphs of bipartite graphs;
(iv) class 2b′, graphs that obey conditions (1) to (3)

described on page 12.
We have shown that if a SQW with two tessellations is

defined in class 2b′, then it can be reduced to the coined model
and any SQW defined in classes 1 and 2a are not equivalent
to Szegedy’s QW. Besides, any SQW that can be cast into
Szegedy’s model must be in class 2b, but there are SQWs in
class 2b that cannot be cast into Szegedy’s model. Reference
[14] showed that if we convert an extended Szegedy’s QW
on � into an equivalent SQW on the line graph of �, there is
no edge in the tessellation intersection. Proposition 3 formally
shows the inverse; that is, if there is exactly one vertex in
each polygon intersection, then the SQW can be cast into the
extended Szegedy model.

We have provided two examples of nontrivial 2-tessellable
SQWs that are equivalent to the coined model, which help to
understand the connection between the coined and staggered
models. We have also given an example of a searching
algorithm using a SQW on a graph in class 1, which cannot be
reduced to Szegedy’s model. A numerical analysis has shown
that this algorithm is more efficient than its classical analog
using random walks.
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APPENDIX A: GLOSSARY OF TERMS
IN GRAPH THEORY

This Appendix compiles the main definitions of graph
theory used in this work [49–51].

A simple undirected graph �(V,E) is defined by a set V

of vertices or nodes and a set E of edges so that each edge
links two vertices and two vertices are linked by, at most, one
edge. Two vertices linked by an edge are called adjacent. Two
edges that share a common vertex are also called adjacent. The
degree of a vertex is the number of edges incident to the vertex.
A graph is connected when there is a path between every pair
of vertices; otherwise, it is called disconnected. The complete
graph is a simple graph in which every pair of distinct vertices
is connected by an edge. A directed graph is a graph whose
edges have a direction associated with them. A multigraph is
an extension of the definition of graph that allows multiple
edges between vertices. Most of the times, we use the term
graph as synonym of simple undirected graph.

A subgraph �′(V ′,E′), where V ′ ⊂ V and E′ ⊂ E, is an
induced subgraph of �(V,E) if it has exactly the edges that
appear in � over the same vertex set. If two vertices are adjacent
in �, they are also adjacent in the induced subgraph.

A bipartite graph is a graph whose vertex set V is the
union of two disjoint sets X and X′ so that no two vertices
in X are adjacent and no two vertices in X′ are adjacent. A
complete bipartite graph is a bipartite graph such that every
possible edge that could connect vertices in X and X′ is part
of the graph and is denoted by Km,n, where m and n are the
cardinalities of sets X and X′, respectively.

A clique is a subset of vertices of a graph such that its
induced subgraph is complete. A maximal clique is a clique that
cannot be extended by including one more adjacent vertex; that
is, it is not contained in a larger clique. A maximum clique is a
clique of maximum possible size. A clique of size d is called
a d-clique. A clique can have one vertex. Some references in
graph theory use the term “clique” as synonym of maximal
clique. We avoid this notation here.

A clique graph K(�) of a graph � is a graph such that every
vertex represents a maximal clique of � and two vertices of
K(�) are adjacent if and only if the corresponding maximal
cliques in � share at least one vertex in common.

A clique partition of a graph � is a set of cliques of �

that contains each edge of � exactly once. A minimum clique
partition is a clique partition with the smallest set of cliques. A
clique cover of a graph � is a set of cliques of � that contains
each edge of � at least once. A minimum clique cover is a
clique cover with the smallest set of cliques.

A diamond graph is a graph with four vertices and five
edges consisting of a 4-clique minus one edge or two triangles
sharing a common edge. A graph is diamond-free if no induced
subgraph is isomorphic to a diamond graph.

A line graph (or derived graph or interchange graph) of
a graph � (called root graph) is another graph L(�) so that
each vertex of L(�) represents an edge of � and two vertices
of L(�) are adjacent if and only if their corresponding edges
share a common vertex in �.

A matching M ⊆ E is a set of edges without pairwise
common vertices. An edge m ∈ M matches the end points of
m. A perfect matching is a matching that matches all vertices
of the graph.

A planar graph is a graph that can be drawn in a two-
dimensional plane in such a way that no edges cross each
other.

A proper coloring or simply coloring of a loopless graph is
a labeling of the vertices with colors such that no two vertices
sharing the same edge have the same color. A k-colorable
graph is the one whose vertices can be colored with, at most,
k colors so that no two adjacent vertices share the same color.
This concept can be used for edges and other graph structures.

APPENDIX B: DEFINITION OF SZEGEDY’S QW

Let us define Szegedy’s QW model [9] using the description
given in Ref. [15]. Consider a connected bipartite graph
�(X,Y,E), where X,Y are disjoint sets of vertices and E is the
set of nondirected edges. Let(

0 A

AT 0

)
(B1)

be the biadjacency matrix of �(X,Y,E). Using A, define P as
a probabilistic map from X to Y with entries pxy . Using AT ,
define Q as a probabilistic map from Y to X with entries qyx .
If P is an m × n matrix, Q will be an n × m matrix. Both are
right-stochastic; that is, each row sums to 1. Using P and Q,
it is possible to define unit vectors

|φx〉 =
∑
y∈Y

√
pxy eiθxy |x,y〉, (B2)

|ψy〉 =
∑
x∈X

√
qyx eiθ ′

xy |x,y〉, (B3)

that have the following properties: 〈φx |φx ′ 〉 = δxx ′ and
〈ψy |ψy ′ 〉 = δyy ′ . In Szegedy’s original definition, θxy = θ ′

xy =
0. We call extended Szegedy’s QW the version that allows
nonzero angles.

Definition 2. Szegedy’s QW on a bipartite graph �(X,Y,E)
with biadjacent matrix (B1) is defined on a Hilbert space
Hmn = Hm ⊗ Hn, where m = |X| and n = |Y |, the compu-
tational basis of which is {|x,y〉 : x ∈ X,y ∈ Y }. The QW is
driven by the unitary operator

W = R1 R0, (B4)

where

R0 = 2
∑
x∈X

|φx〉〈φx | − I, (B5)

R1 = 2
∑
y∈Y

|ψy〉〈ψy | − I. (B6)

Notice that operators R0 and R1 are unitary and Hermitian
(R2

0 = R2
1 = I ).
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