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Matchgates are a restricted set of two-qubit gates known to be classically simulable under particular conditions.
Specifically, if a circuit consists only of nearest-neighbor matchgates, an efficient classical simulation is possible if
either (i) the input is a computational-basis state and the simulation requires computing probabilities of multiqubit
outcomes (including also adaptive measurements) or (ii) if the input is an arbitrary product state, but the output of
the circuit consists of a single qubit. In this paper we extend these results to show that matchgates are classically
simulable even in the most general combination of these settings, namely, if the inputs are arbitrary product states,
if the measurements are over arbitrarily many output qubits, and if adaptive measurements are allowed. This
remains true even for arbitrary single-qubit measurements, albeit only in a weaker notion of classical simulation.
These results make for an interesting contrast with other restricted models of computation, such as Clifford
circuits or (bosonic) linear optics, where the complexity of simulation varies greatly under similar modifications.
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I. INTRODUCTION

Matchgates are a class of restricted two-qubit gates with
intriguing computational capabilities. Circuits composed of
matchgates acting on nearest-neighboring qubits (on a linear
array) were shown to be classically simulable by Valiant [1]
and soon after shown to correspond to free fermions by Terhal
and DiVincenzo [2]. Several other papers investigated the clas-
sical simulation of matchgates through different formalisms
[3–7]. However, matchgates also can become universal for
quantum computation by the addition of seemingly simple re-
sources. They were shown to be universal when supplemented
by the SWAP gate [6,8], by some two-qubit nondemolition
measurements [9], by specific multiqubit magic states [10],
by almost any parity-preserving two-qubit gate [11], and on
any connectivity graph that is not a path or a cycle [12,13].

In this paper, we are interested in how the complexity
of simulating matchgates depends on restrictions on the
inputs and outputs of the circuit. More concretely, we restrict
our attention to circuits composed only of nearest-neighbor
matchgates and modify the computational model by allowing
different types of input states and different restrictions on the
size of the output. This is motivated by apparent differences
between two previous results: that of Valiant [1] and Terhal
and DiVincenzo [2], where the matchgate circuits act only
on computational-basis inputs but any number of qubits can
be measured at the end, and that of Jozsa and Miyake [6],
where the circuit can act on arbitrary product inputs but the
output consists of the measurement of a single qubit. Each of
these settings was chosen with a specific application in mind,
and it is not a priori clear whether there is a common cause
for the simulability of the different resulting computational
models. Here we argue that it is indeed possible to unify these
results; we show that matchgates can be simulated classically
even if the input is in an arbitrary product state and the output
consists of measurements of arbitrary subsets of the qubits, and
this remains true even if one is allowed to adapt subsequent
gates depending on intermediate measurement outcomes. By
considering a weaker, sampling-based, classical simulation,
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we are also able to extend these results to the case where mea-
surements can be performed in arbitrary single-qubit bases.

Besides refining our understanding of the computational
power of matchgates, our results have other consequences
that may be of more general interest. The first is that
they provide a no-go result for some types of magic-state
injection protocols, namely if the magic states are single-
qubit states. More specifically, universal quantum computation
with nearest-neighbor matchgates is possible when certain
auxiliary multiqubit states are available [10]. However, since
we show that matchgates are simulable for arbitrary product
inputs and adaptive measurements, this rules out a scheme
similar to that of [10] that only uses single-qubit ancillae.
Noticeably, since the previous simulations were restricted to
either computational-basis inputs or single-qubit outputs, they
could not be used to make this argument.

Our results can also be used to sharpen comparisons
between matchgates and other restricted models of quantum
computation. We are especially interested in two examples:
Clifford circuits and (bosonic) linear optics.

Clifford circuits are a particular class of quantum circuits
widely known to be classically simulable under certain
conditions [14], with some similarities to matchgates [7].
However, several results have made it clear that the complexity
of Clifford circuits is heavily dependent on the combined
choices of inputs and outputs that the circuit has access to. The
“complexity landscape” of Clifford circuits has recently been
mapped out in [15], where the authors consider all combina-
tions of (i) computational basis versus arbitrary product inputs;
(ii) single-qubit versus multiqubit measurements; (iii) adaptive
versus nonadaptive measurements; and (iv) weak versus strong
simulation. The authors find that, by varying these conditions,
the complexity of simulating Clifford circuits can go from
(sub-)classical, to BQP-hard (i.e., as hard as the hardest
problems solvable by a universal quantum computer), to #P -
hard (cf. Fig. 1 in [15]). This has also been extended to include
arbitrary single-qubit measurements and different notions of
strong simulation [16]. Our results consist, in a fashion, of
a similar mapping of the complexity landscape of matchgate
circuits, but with strikingly less diverse results; matchgates
are classically simulable in all possible combinations of the
choices of [15] and almost all of those in [16].

2469-9926/2016/93(6)/062332(10) 062332-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.93.062332


DANIEL J. BROD PHYSICAL REVIEW A 93, 062332 (2016)

Matchgates are also often compared to linear optics, due to
a common underlying physical connection. While linear optics
is identified with noninteracting bosons, matchgates are often
identified with noninteracting fermions (indeed, sometimes
referred to as “fermionic linear optics”). The mathematics
behind linear optical circuits and matchgate circuits are
surprisingly similar in some aspects (a point we return to often
throughout the paper; see also discussions in [2,3]) but, while
matchgate circuits are classically simulable, linear optics is
not (see, e.g., [17] for the KLM scheme for universal quantum
computing with adaptive linear optics or [18] for a model
based on nonadaptive linear optics known as BosonSampling).
However, these statements can be misleading if made without
care; the separation in computational power between bosons
and fermions is clear in the multiqubit output setting, but if
one is restricted to a single-output measurement, then bosonic
linear optics can be simulated [19] in almost the same way as
matchgates [7]. With the investigation we undertake here, we
aim to shed further light on this comparison.

Finally, we believe that our results could also be used to
inform the search for classical models of matchgates. More
specifically, recent results have shown that both Clifford
circuits [20] and linear-optical systems [21], if constrained
enough, can admit a classical probabilistic description. In
other words, it is possible to construct hidden variable
models for these systems which would preclude not only
a computational speedup, but also other signature quantum
features such as contextuality [22]. The classical simulability
of matchgates raises the natural question of whether a similar
classical model can be constructed for these circuits, and the
results obtained here could guide this search by suggesting
sets of states and measurements that are more likely to
introduce nonclassical behaviors.

This paper is organized as follows. In Sec. II we give
some preliminary definitions and background discussions.
More specifically, in Sec. II A we describe the Jordan-Wigner
transformation and the mapping between matchgates and
fermions, and in Sec. II B we define a few different notions of
classical simulation that we need. In Sec. II C we give a brief
outline of the simulation obtained by Valiant [1] and Terhal
and DiVincenzo [2], and in Sec. II D we do the same for the
simulation of Jozsa and Miyake [6]. In Sec. III we prove our
main result, which generalizes the two results discussed in the
preceding sections, and discuss some possible extensions. We
finish with some concluding remarks in Sec. IV, as well as
several open questions. The paper also contains an appendix
with some further technical details omitted from the main text.

Notation. We denote Xi , Yi , and Zi the usual Pauli matrices
acting on qubit i, and we omit tensor product signs throughout.
We denote the anticommutator by {A,B} = AB + BA. We
denote the all-zeroes state on n qubits by |0̄n〉 = |00 · · · 0〉.

Throughout this paper, we interchangeably refer to (unitary)
quantum gates and their generating Hamiltonian. Since we
always consider quantum computations in the circuit model
(i.e., in a discrete-time description), whenever we refer to a
gate by its generating Hamiltonian, we in fact mean any unitary
in the family generated by that Hamiltonian.

Finally, throughout the paper we use the following three
acronyms to describe three types of circuit: CI-MO (computa-
tional input and multiqubit output), PI-SO (product input and

single-qubit output), and PI-MO (product input and multiqubit
output). The precise corresponding definitions can be found in
Sec. II B.

II. BACKGROUND

A. Preliminary definitions: The Jordan-Wigner transformation

Let us begin with the following definition.
Definition 1: Matchgates. Let G(A,B) be the two-qubit gate

given by

G(A,B) =

⎛
⎜⎝

A11 0 0 A12

0 B11 B12 0
0 B21 B22 0

A21 0 0 A22

⎞
⎟⎠. (1)

Then G(A,B) is a matchgate if det A = det B.
The set of all two-qubit gates G(A,B) acting on qubits {i,j}

corresponds to those generated by

Ai,j = {XiXj ,XiYj ,YiXj ,YiYj ,Zi,Zj }. (2)

It is well known that the operators in Ai,i+1 are closely
connected to the physics of noninteracting fermions. To see
that, let us define the following Jordan-Wigner operators [23]
acting on n qubits,

a
†
j :=

(
j−1∏
k=1

Zk

)(
Xj − iYj

2

)
, (3a)

aj :=
(

j−1∏
k=1

Zk

)(
Xj + iYj

2

)
, (3b)

for j ∈ {1, . . . ,n}. These operators satisfy the anticommuta-
tion relations one would expect for fermionic operators,

{a†
i ,a

†
j } = 0, (4a)

{ai,aj } = 0, (4b)

{ai,a
†
j } = δi,j , (4c)

for all i,j ∈ {1, . . . ,n}. If we identify states |0〉 and |1〉 of
qubit i with the empty and occupied states of fermionic mode
i, respectively, then a

†
i (ai) behaves precisely as a fermionic

creation (annihilation) operator. From Eqs. (3) we also obtain

Zk = (a†
k − ak)(ak + a

†
k) (5)

for k ∈ {1, . . . ,n} and

XkXk+1 = −(ak − a
†
k)(ak+1 + a

†
k+1), (6a)

YkYk+1 = (ak + a
†
k)(ak+1 − a

†
k+1), (6b)

YkXk+1 = i(ak + a
†
k)(ak+1 + a

†
k+1), (6c)

XkYk+1 = i(ak − a
†
k)(ak+1 − a

†
k+1), (6d)

for k ∈ {1, . . . ,n − 1}. Equations (5) and (6) connect the
generators of nearest-neighbor matchgates, Ai,i+1, precisely
to quadratic fermionic Hamiltonians.

To avoid ambiguity, we should point out that the notion of
locality is not preserved by the Jordan-Wigner transformation.
In particular, a quadratic operator acting between distant

062332-2



EFFICIENT CLASSICAL SIMULATION OF MATCHGATE . . . PHYSICAL REVIEW A 93, 062332 (2016)

fermionic modes, e.g., (a1 − a
†
1)(a3 + a

†
3), maps to the multi-

qubit operator X1Z2X3, not to the two-qubit matchgate X1X3.
In fact, the most general multiqubit operators obtained from
quadratic fermionic operators are AiZi+1Zi+2 · · ·Zj−1Bj , for
i < j , where A and B are either X or Y . Since any such
Hamiltonian can be implemented by a poly-sized circuit
of nearest-neighbor matchgates,1 as shown in [6], they are
(computationally) equivalent to nearest-neighbor matchgates.
In contrast, almost any gate generated by Ai,j , where i and
j are non-neighboring qubits, leads to universal quantum
computation [13]. In light of these considerations, unless stated
otherwise, throughout this paper we restrict our attention to
circuits of nearest-neighbor matchgates in the qubit picture
or quadratic fermionic operators between arbitrary pairs of
modes in the fermionic picture, keeping in mind that these are
computationally equivalent.

A consequence of this observation, which will be useful
later on, is that the overall ordering of the qubits is irrele-
vant. More specifically, given any circuit of nearest-neighbor
matchgates M , we can find the corresponding transformation
in the fermionic picture, apply some permutation P on the
labels of the fermionic modes, then map everything back to
the qubit picture to obtain a different circuit M ′. However, by
the considerations of the previous paragraph, the new circuit
M ′ can be decomposed as a circuit of matchgates with only
polynomial overhead, and furthermore these matchgates now
act between nearest neighbors according to the relabeling of
the qubits induced by the permutation P .

An important property of quadratic gates, which is crucial
to the classical simulation schemes that follow, is that they
act linearly on creation and annihilation operators (hence,
matchgates are often called fermionic linear optics). More
specifically, if M is a unitary operator corresponding to a
circuit of nearest-neighbor matchgates, then we can write (for
a simple proof, see [6])

Ma
†
i M

† =
n∑

j=1

Rija
†
j +

n∑
j=1

R′
ij aj . (7)

If M further only consists of “number-preserving” matchgates,
i.e., those G(A,B) for which A is diagonal,2 then R′ = 0.
Curiously, an analogous version of Eq. (7) also holds for
bosonic linear optics; thus, we expect that, even if Eq. (7) is
behind the classical simulability of matchgates, it cannot be
the whole story. We return to this point several times as we
discuss the different types of simulation results throughout this
section.

B. Preliminary definitions: Classical simulation

Before moving to our main result, let us define precisely
what is meant by classical simulation. In particular, suppose

1This is the fermionic analogue of the well-known fact that any
photonic interferometer can be decomposed in terms of O(n2) nearest-
neighbor beam splitters [24].

2Equivalently, those corresponding to quadratic operators restricted
to the combinations aja

†
k and aka

†
j , or matchgates generated by

XkXk+1 + YkYk+1, XkYk+1 − YkXk+1, and Zk .

our model of computation consists of a uniform family of
quantum circuits, {Cn}, which act on yet-unspecified n-qubit
input states |ψn〉. Suppose also that the circuits are followed
by measurements of some subset of k of the n qubits in the
computational basis. Then, for any k-bit string ỹ corresponding
to some assignment of the k measured qubits, we write the
probability of observing measurement outcome |ỹ〉 as

Pr(ỹ|ψn) = tr 〈ỹ|Cn|ψn〉〈ψn|C†
n|ỹ〉, (8)

where the partial trace is taken over the unmeasured qubits.
We can now divide our notions of classical simulation into a
few convenient types (this is not an exhaustive list; see [25,26]
for more detailed discussions).

Definition 2: Strong simulation. The uniform family of
quantum circuits {Cn}, acting on the n-qubit input state |ψn〉, is
strongly simulable if, for every assignment of k output qubits
ỹ, and for every k, it is possible to compute Pr(ỹ|ψn) to m

digits of precision in poly(n,m) time on a classical computer.
Definition 3: Weak simulation. The uniform family of

quantum circuits {Cn}, acting on the n-qubit input state |ψn〉, is
weakly simulable if, for every choice of k out of n qubits to be
measured, for every k, it is possible to produce a sample from
the probability distribution defined by Pr(ỹ|ψn) in poly(n) time
on a classical computer.

Note that, as defined, strong simulation implies weak
simulation.3 Weak simulation is often considered to be more
physically motivated, since any quantum device only outputs
samples from a probability distribution, and requiring a
classical device to compute the probabilities to high precision
does not make for a fair comparison of their respective
computational powers. On the other hand, for part of the cases
considered in this paper, it will be simple enough to prove that
strong simulation is possible. We also define two variants of
the above.

Definition 4: Single-output strong simulation. The uniform
family of quantum circuits {Cn}, acting on the n-qubit input
state |ψn〉, is strongly simulable with a single output if
the quantity 〈ψn|C†

nZiCn|ψn〉, for any 1 � i � n, can be
computed to m digits of precision in poly(n,m) time on
a classical computer. Note that 〈ψn|Zi |ψn〉 = pi(0) − pi(1),
where pi(j ) is the probability that qubit i will be measured in
state |j 〉.

This definition is useful if one wants to characterize
some restricted computational model in terms of the decision
problems it can solve (i.e., problems with a single “yes” or
“no” answer), where the answer to the problem is encoded in
a single output qubit.

Definition 5: Adaptive simulation. Let {Cn} be a uniform
family of adaptive quantum circuits, that is, quantum circuits
where one is allowed to make intermediate measurements and
condition subsequent operations on their outcomes. Then {Cn},
acting on the n-qubit input state |ψn〉, is adaptively simulable
if (i) all intermediate measurements can be weakly simulated
(in the sense of Definition 3) and (ii) the final measurements on
the circuit determined by the outcomes of (i) can be strongly
simulated.

3However, the reverse is not true, since there are examples for which
weak simulation is easy, but strong simulation is #P -hard [25].
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We presented this hybrid definition of classical simulation
to capture more closely the workings of an adaptive protocol:
The complete circuit is not known at the beginning of the
computation, as it depends on intermediate measurement
outcomes. Then Definition 5 requires the classical computer to
randomly choose the outcomes of intermediate measurements
according to the correct distribution and, after the complete
circuit is determined, to calculate the probabilities of the
computational outcomes.4 This would be unnecessary if we
had a universal set of quantum gates at hand; we could simply
replace measurement adaptations by coherently controlled
gates, defer all intermediate measurements to the end of
the circuit, and perform a strong simulation of the resulting
circuit [27]. However, these controlled gates might not be
available in a given restricted model, and in fact measurement
adaption plays an important role in several models of quantum
computation, most notably bosonic linear optics [17], Clifford
circuits with magic-state injection [28], and measurement-
based quantum computation [29].

Since the main focus of this work is the interplay between
restrictions in the inputs and measurements of the circuits,
we also define the following nomenclature. A computational
input/multiqubit output, or CI-MO, simulation is a restriction
of Definitions 2, 3, or 5 to the case where the input state, |ψn〉,
is just a computational-basis state |x〉 for some bit string x.
A product input/single-qubit output, or PI-SO, simulation is a
restriction of Definition 4 to the case where the input |ψn〉 is
an arbitrary product state. Finally, a product input/multiqubit
output simulation, or PI-MO, is the natural extension where the
input can be an arbitrary product state and the measurements
are over any subset of the qubits.

C. CI-MO simulation of matchgates

Let us now describe the CI-MO simulation of matchgates
due to Valiant [1] and Terhal and DiVincenzo [2] (for
convenience we follow more closely the latter). We begin by
stating the following.

Theorem 1 [1,2]. Let {Mn} be a uniform family of (possibly
adaptive) quantum circuits composed of poly(n) nearest-
neighbor matchgates acting on n qubits, and let the input to
the circuit be a state |x〉 for any n-bit string x. Then, there are
polynomial-time classical algorithms to simulate the outcomes
of measurements over arbitrary subsets of the output qubits in
the weak, strong, and adaptive senses.

In the Appendix we outline the proof of Theorem 1 for the
particular case of “number-preserving” matchgates [i.e., when
R′ = 0 in Eq. (7)]. The crucial property of matchgates that
makes Theorem 1 true is the fact that all outcome probabilities
[cf. Eq. (8)] can be written in terms of matrix determinants.
For example, if y and ỹ are arbitrary n-bit and k-bit strings,
respectively, corresponding to a total or partial assignment of

4Note that Definition 5 does not require the classical computer
to strongly simulate the final measurement outcomes of Cn, which
would correspond to computing the average probabilities of the
final measurements weighed by the probabilities of all possible
intermediate outcomes.

the output qubits, we can write

Pr(y|x) =|〈y|Mn|x〉|2 = | det(Rx,y)|2, (9)

Pr(ỹ|x) = tr 〈ỹ|Mn|x〉〈x|M†
n|ỹ〉 = Pf(M̃), (10)

where Rx,y is a specific submatrix of the matrix R from Eq. (7)
and M̃ is a poly-sized antisymmetric matrix constructed out
of the matrix elements of R in a specific manner. We direct
the interested reader to the Appendix for a description of the
intuition behind these expressions or to the original paper [2]
for lookup tables that explain how to construct Rx,y and M̃ . The
Pfaffian Pf(A) that appears in Eq. (10) is a matrix polynomial
that, for an n × n antisymmetric matrix A, is 0 if n is odd and
satisfies the relation

Pf(A)2 = det(A)

if n is even. In the Appendix we give a small generalization of
Theorem 1, showing that it holds also for periodic boundary
conditions (i.e., if matchgates can also act between the first
and last qubits).

As discussed in Sec. II A, although the linearity of Eq. (7)
seems important for the simulation of matchgates, it is indeed
not the whole story: For a CI-MO simulation, the probabilities
in Eqs. (9) and (10) involve, a priori, the sum of an expo-
nentially large number of terms, and yet the final expressions
coalesce into easy-to-compute determinants. In fact, it is inter-
esting to contrast this CI-MO simulation of matchgates to their
bosonic counterpart. Bosonic linear optics includes Boson-
Sampling [18], a model for which there is strong evidence
that an efficient classical simulation is impossible, and when
imbued with adaptive measurements it is capable of universal
quantum computation [17]. Thus, bosons apparently display a
great computational advantage over fermions, and this seems
to be a consequence of the fact that, rather than determinants
(or Pfaffians), bosonic evolution is described by permanents,
which are dramatically harder to compute (in fact, they are
among the hardest problems in the complexity class #P [30]).

D. PI-SO simulation of matchgates

For completeness, we now provide a brief outline of the
simulation scheme used, e.g., by Jozsa and Miyake in [6],
although our main result in following sections is based on
Theorem 1. We begin by stating the following.

Theorem 2 [6]. Let {Mn} be a uniform family of quantum
circuits composed of poly(n) nearest-neighbor matchgates
acting on n qubits, and let the input be an arbitrary n-qubit
product state |ψ〉 = |ψ1〉|ψ2〉 . . . |ψn〉. Then we can efficiently
compute the expectation value 〈Zk〉 = 〈ψ |M†

nZkMn|ψ〉; i.e.,
there is an efficient strong simulation in the single-output sense
of Definition 4.

Theorem 2 is a consequence of the linearity of Eq. (7).
First note that, by Eq. (5), we can write Zk = a

†
kak − aka

†
k .

However, then, by Eq. (7) there are R and R′ such that

〈ψ |M†
na

†
kakMn|ψ〉

= 〈ψ |
n∑
j,l

(Rkja
†
j + R′

kj aj )(R*
klal + R′*

kla
†
l )|ψ〉, (11)
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and similarly for 〈ψ |M†
naka

†
kMn|ψ〉. Equation (11) consists of

a sum of a polynomial number of terms of the type 〈ψ |a†
j ak|ψ〉

for all quadratic combinations of creation and annihilation
operators. However, from Eqs. (5) and (6) and subsequent
discussion, all such quadratic terms are tensor products of Pauli
matrices. Since |ψ〉 is a product state, all expectation values
that appear in Eq. (11) factor into products of single-qubit
expectation values of Pauli matrices. Thus, it is clear that
〈Zk〉 can be computed with only poly(n) computational effort,
which essentially proves Theorem 2. This result was further
extended in [6] to allow for measurement of a logarithmic-
sized subset of the output qubits and in [13] to allow for
periodic boundary conditions.

In contrast to Theorem 1, the proof of Theorem 2 seems
to rely on the fact that Eq. (7) is a linear transformation
between creation and annihilation operators rather than on
any intrinsically fermionic property. This is further supported
by the fact that, for bosonic linear optics, a similar quantity to
〈Zk〉 can also be computed efficiently [31], and it is easy to
sample classically from a BosonSampling distribution if we
are restricted to a single output mode [19]. The proof of both
facts also seem to stem from the linearity of Eq. (7).

The interpretation of the single-output setting of Theorem 2
in terms of decision problems has also led to interesting
mappings between matchgate circuits and (classical) circuits
of linear threshold gates [32], or between matchgate circuits
and arbitrary logspace quantum computers [i.e., universal
circuits acting on O(log n) qubits] [33]. The latter result also
led to novel proposals for compressed simulation of spin
systems on small-scale quantum computers [34,35]. Since
there seems to be less difference between bosons and fermions
in the single-output setting, an interesting question arises as
to whether the results of [32–35] could have some nontrivial
bosonic analogue.

III. MAIN RESULT: EFFICIENT PI-MO SIMULATION
OF MATCHGATE CIRCUITS

The comparisons between fermionic and bosonic linear
optics at the ends of Sec. II C and Sec. II D seem to suggest
that efficient CI-MO and PI-SO simulations of matchgates
are possible for fundamentally different reasons; the former is
a consequence of fermionic probabilities being described by
determinants, whereas the latter seems to be a consequence of
the linear relation satisfied by free particles [i.e., Eq. (7)], and
in fact only the latter seems possible for free bosons.

In this section, we argue that this apparent difference is not
fundamental. More specifically, we show how to extend the
result of [2] to allow efficient classical simulation of matchgate
circuits with arbitrary product inputs and measurements of
arbitrary subsets of the output in the computational basis (that
is, a PI-MO simulation).

We begin by stating the following theorem.
Theorem 3. Let {Mn} be a uniform family of (possibly

adaptive) quantum circuits composed of poly(n) nearest-
neighbor matchgates acting on n qubits, and let the input be an
arbitrary n-qubit product state |ψ〉 = |ψ1〉|ψ2〉 · · · |ψn〉. Then
there are polynomial-time classical algorithms to simulate the
corresponding outcomes in the weak, strong, and adaptive
senses.

FIG. 1. By adding a |+〉 ancilla at the end of the circuit to act
as a catalyst, it is possible to sequentially prepare the qubits in an
arbitrary product state.

The first step to prove Theorem 3 is to replace the
arbitrary product state |ψ〉 = |ψ1〉|ψ2〉 · · · |ψn〉 with a circuit
of matchgates acting on a fiducial state. To that end, we use
the identities (see, e.g., [12,13])

G(H,H )|φ〉|+〉 = (H |φ〉)|+〉, (12a)

G(Z,X)|φ〉|0〉 = |0〉|φ〉, (12b)

G(Z,X)|0〉|φ〉 = |φ〉|0〉, (12c)

where |φ〉 is an arbitrary single-qubit state and H is the
usual single-qubit Hadamard matrix. Equation (12a) means
that G(H,H ) can induce an H gate on a qubit state |φ〉 when
it has access to an ancilla in the |+〉 state, and Eqs. (12b)
and (12c) mean that the fermionic SWAP gate, defined as
f-SWAP := G(Z,X), behaves exactly as the SWAP gate when
one of the qubits is in the |0〉 state. These identities are useful
because neither H nor SWAP are matchgates on their own. In
fact, either gate, when added to the set of matchgates, leads
to universal quantum computation [2,6], and so we clearly do
not expect to be able to replace them by matchgates in general.
Nevertheless, Eqs. (12) show how to do this in some particular
cases by a suitable use of ancilla states.5

Consider now the circuit of Fig. 1. By repeated application
of Eqs. (12), it starts from the (n + 1)-qubit state |0̄n〉|+〉
and prepares the desired state |ψ1〉|ψ2〉 · · · |ψn〉|+〉 via the
following procedure:

(i) Use the |+〉 ancilla to apply H gates to qubit n

via Eq. (12a), which, together with single-qubit Z rotations
(matchgates themselves), can be used to prepare qubit n in
state |ψ1〉.

(ii) Since all qubits from 1 to n − 1 are initially in the |0〉
state, use Eq. (12c) to effectively f-SWAP the state of qubit n

all the way up to qubit 1.
(iii) At this point, we have the state |ψ1〉|0̄n−1〉|+〉.
(iv) Repeat steps (i)–(iii) to sequentially prepare each state

|ψi〉 and f-SWAP it to the qubit at position i.
After following steps (i)–(iv) we are left with the state

|ψ1〉|ψ2〉 · · · |ψn〉|+〉. From this point on we can ignore qubit

5These simple identities provide quite a lot of leverage and were
crucial to show that matchgates are universal when acting on almost
all connectivity graphs in [12,13].
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n + 1 and perform the original matchgate circuit Mn from
Theorem 3.

The procedure above allows us to replace the initialization
of any input product state by the initialization of a standard
input state, |0̄n〉|+〉, followed by the matchgate circuit of Fig. 1,
which we denote by U . Our claim is that it is possible to
compute, with only twice the computational effort, the same
quantities as in the CI-MO simulation of Sec. II C. We can
do this by applying the same methods to the circuit MnU ,
although this is not immediately apparent since the input in
Fig. 1 is not in the computational basis. To show how this can
be circumvented, let ỹ be some assignment of a subset of k out
of the n qubits, for any k � n, and write

Pr(ỹ|ψ) = 〈ψ |M†
nPỹMn|ψ〉

= 1
2 〈0̄n+1|(1 + an+1)U †M†

nPỹMnU (1 + a
†
n+1)|0̄n+1〉,

(13)

where we rewrote state |+〉 as fermionic operators acting on
|0〉. Here Pỹ := |ỹ〉〈ỹ| is a projector that can be written as a
string of creation and annihilation operators as follows. First,
label the k qubits assigned by ỹ as {l1,l2, . . . ,lk}. Then, for each
bit ỹi assigned to qubit li , choose either (a†

li
ali

) if it is 1 or (ali
a
†
li
)

if it is 0. Finally, define Pỹ as the product of these operators.
For example, one could obtain Pỹ = (a†

l1
al1

)(a†
l2
al2

) · · · (alk
a
†
lk

),
for some bit string ỹ = 11 . . . 0.

Following the same steps that lead to Eq. (10) (which we
omit, but are outlined in the Appendix and worked out in full
detail in [2]), we can obtain

Pr(ỹ|ψ) = 1
2 〈0̄n+1|U †M†

nPỹMnU |0̄n+1〉
+ 1

2 〈0̄n+1|an+1U
†M†

nPỹMnUa
†
n+1|0̄n+1〉

= 1
2 [Pf(M̃1) + Pf(M̃2)], (14)

where M̃1 and M̃2 are defined as in Eq. (10) and can be easily
constructed using the lookup tables found in [2]. Intuitively,
this simplification is possible because matchgates preserve
parity, and so the combined circuit MnU acts independently
on |0̄n〉|0〉 and |0̄n〉|1〉; thus, these two parity branches never
interfere.

From Eq. (14) and Fig. 1, it is clear that the strong simulation
of Theorem 3 is possible, since tracking the parallel evolution
of the two parity branches of the state reduces to simulating
two independent CI-MO instances, as per Theorem 1.

The circuit of Fig. 1 is closely related to another trick, used
in [3,36], where one maps linear fermionic operators [i.e.,
those in Eqs. (3)] on n fermionic modes to quadratic operators
[i.e., those in Eqs. (5) and (6)] on n + 1 fermionic modes, by
adding one ancilla mode. Even so, the authors of [3,36] only
considered either PI-SO or CI-MO settings.

Another surprising aspect of this construction is the fact
that the two parity branches of state |ψ〉 can be obtained
using nearest-neighbor matchgates from a superposition of
the simplest bit strings of different parities. Since matchgates
preserve parity, we should of course have expected that the
two parity branches of |ψ〉 would evolve independently.
Nonetheless, if we start from an arbitrary product state |ψ〉
and look at its projection onto the even-parity subspace, say,
we are left with a complicated entangled state, and it is not

obvious that it would have an efficient description that would
preserve the classical simulability of matchgates. The circuit
of Fig. 1 shows that this is in fact the case.

Finally, let us show why the adaptive simulation of
Theorem 3 is possible, using a similar argument as for the
CI-MO case [cf. the discussion surrounding Eq. (A7)]. For
simplicity, suppose the whole adaptive circuit Mn we wish
to simulate consists of (i) an n-qubit matchgate circuit M ,
(ii) measurement of a single qubit y1, and (iii) either of two
matchgate circuits, which we represent by My1 depending on
the outcome of y1. As before, this circuit acts on some input
product state |ψ〉 = |ψ1〉|ψ2〉 · · · |ψn〉|+〉, and at the end we
wish to compute the probability of the k-bit string ỹ2 on some
assignment of k out of the n − 1 remaining qubits.

To do this, we first replace the state |ψ〉 with the circuit
of Fig. 1 acting on |0̄n〉|+〉, as before. Then we perform the
simulation as follows:

(i) Compute Pr(y1|ψ) by applying Eq. (14).
(ii) Classically sample according to the probabilities com-

puted in (i), and fix the corresponding outcome for y1.
(iii) Compute Pr(ỹ2,y1|ψ), given by

1
2 〈0̄n+1|U †M†Py1M

†
y1

Pỹ2My1Py1MU |0̄n+1〉
+ 1

2 〈0̄n+1|an+1U
†M†Py1M

†
y1

Pỹ2My1Py1MUa
†
n+1|0̄n+1〉,

(15)

where, again, both Py1 and Pỹ2 are strings of creation and
annihilation operators determined by the assignments y1

and ỹ2, respectively, as done for Eq. (13). Clearly, the main
difference between Eq. (15) and Eq. (14) is the introduction
of the projector Py1 between the two parts of the circuit.
However, this operator is also even in the fermionic operators,
so the same argument as before applies, and the probability
factors as the sum of the probabilities of two independent
(adaptive) CI-MO simulations.

Another way to state this result is that a projective mea-
surement of a single qubit on the computational basis is itself
a parity-preserving operation, so the adaptive measurement
preserves the structure of two parallel simulations of matchgate
circuits acting on well-defined parity states. Clearly, one can
extend this simulation to allow for a polynomial number of
rounds of measurements on different subsets of qubits, such
as done for the CI-MO case in [2].

Measurement on noncomputational bases

After extending the results of classical simulability of
matchgates to include arbitrary input product states, the next
natural question that arises is whether we can also change the
measurements to allow for arbitrary non-computational-basis
measurements. Conceptually, this could be framed as an even
stronger simulation than that of Definition 2, since we would
be able to compute the probabilities of a tomographically
complete set of measurements. (For comparison, note that this
is possible for Clifford circuits in all cases where they are
strongly simulable, since they include the gates that map the
computational basis to the X and Y bases.)

Currently, it is not clear how to perform this simulation
for the most general single-qubit measurements, or even only
in a tomographically complete set of measurement bases.
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FIG. 2. This circuit rotates the measurement basis of the last qubit
using a |+〉 ancilla and a sequence of matchgates. The outcome
controls classically control which variant of the f-SWAP gate, G(Z,X)
or G(−Z,X), is used to swap the postmeasurement states of qubits n

and n + 1. The notation is identical to Fig. 1.

Short of that, we show how to perform a weak simulation of
the circuits (cf. Definition 3). Although this provides a much
less precise description of the output state, it already suffices
to rule out the possibility that matchgates could leverage
arbitrary single-qubit measurements to perform universal
quantum computation.

The main idea behind this simulation is to use the circuit
of Fig. 1 in reverse, such as indicated in Fig. 2. The main
issue is that, in Fig. 1, we could use Eqs. (12b) and (12c) to
swap the states of the qubits only because we knew upfront
that one of the qubits being acted on was in the |0〉 state.
Now, in Fig. 2, we once again use these identities, but in the
postmeasurement states.

The simulation is very similar to the one described
previously for matchgate circuits with adaptive measurements.
We begin by using the |+〉 ancilla to implement an arbitrary
single-qubit gate on the final qubit, which effectively rotates
the measurement basis; then we compute the probability of
the corresponding measurement outcomes, Pr(y1|ψ), using
the method from the previous section. We sample classically
according to the computed probabilities, fix the outcome of y1,
and replace the measurement in the circuit by the projector Py1 .
Since the state of that qubit after the measurement is either |0〉
or |1〉, we then use either G(Z,X), as in Eq. (12b), or G(−Z,X)
[which satisfies an equation analogous to Eq. (12b), but when
one of the inputs is in state |1〉] to swap the states of the final
two qubits. We can now iterate this process to simulate the
measurement of the last k qubits, fixing the outcomes one by
one, which consists of a weak simulation.

Although this procedure seems to only allow for the
simulation of measurements on the last k qubits, it is in fact
completely general. Recall, from the discussion after Eq. (6),
that the overall ordering of the qubits is irrelevant. So, if the
circuit we wish to simulate is not restricted to measurements of
the last k qubits, we can just map it into the fermionic picture,
apply a permutation of the fermionic modes, and map it back,
resulting in an equivalent circuit in which the measured qubits
are the last k ones.

This concludes the proof that matchgate circuits remain
(weakly) simulable even after replacing measurements in the
computational basis by arbitrary single-qubit measurements.

IV. SUMMARY AND OPEN QUESTIONS

We have shown that matchgates are classically simulable,
in a strong sense, when the circuit acts on arbitrary product
input states, includes an arbitrary number of intermediate

measurements that condition the subsequent circuits, and is
followed by measurement of an arbitrary subset of the output
qubits, thereby generalizing previous known simulation results
[1,2,6]. We have also shown how to include measurements of
the qubits in rotated bases, but only by switching to a weaker
notion of simulation.

These results present an interesting parallel with other
restricted models of computation. It is well known that com-
plexity of simulation cannot be attributed only to the allowed
operations, but also to the allowed inputs and measurements,
as well as the strength of the required simulation. Clifford
circuits, for example, range from classically simulable, to
universal for quantum computation, to #P -hard to simulate
(strongly) [15,16]. Another example is linear optics, which can
be classically simulated if the quasiprobability distributions
of the input states and of the measurements satisfy certain
conditions [21,37,38], is hard to simulate classically if Fock
state inputs and number-resolving measurements are available
[18], and becomes universal for quantum computing if adaptive
measurements are allowed [17]. In contrast to these examples,
matchgates do not seem to gain any type of computational
advantage from the addition of arbitrary product input states,
even when adaptive measurements are allowed, and there is
evidence that they do not gain any advantage from (single-
qubit) non-computational-basis measurements either.

With these remarks in mind, we pose a few open questions,
both as continuations of the present work and as interesting
investigations on the parallels between the different models:

(i) Is it possible to extend the result of Sec. III to allow for
strong simulation of measurements in arbitrary bases?

(ii) Although matchgates do not seem to benefit from
arbitrary single-qubit inputs and measurements, we know that
they become universal when certain multiqubit input states
or measurements are allowed. Is it possible to repeat the
work done here, but to fully characterize the behavior of
matchgate circuits when supplemented with arbitrary two-
qubit resources?

(iii) The matchgate simulation was extended to include
periodic boundary conditions (i.e., extra matchgates between
the first and last qubit) in the PI-SO setting in [13] and
in the CI-MO setting in the Appendix. Can we also extend
the result of Sec. III to this geometry? Curiously, the circuit
that is equivalent to Fig. 1 for periodic boundary conditions
corresponds to a geometry where matchgates are universal, as
seen, e.g., in Fig. 4(b) of [12], although it might just use this
geometry in a very restricted manner that does not break the
simulability.

(iv) We have argued that, in the PI-SO setting, linear optics
are classically simulable for the same reasons as matchgates,
i.e., the linearity of Eq. (7). Can this parallel be extended
further, to allow simulation of linear optics with inputs
that are superpositions of photon numbers? What about to
obtain bosonic versions of other matchgate results such as
the mapping to logspace quantum computation [33] or the
compressed simulations of [34,35]?
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APPENDIX: FERMIONIC TRANSITION
AMPLITUDES AND PFAFFIANS

In this appendix, we give a few additional details on how
determinants and Pfaffians arise in the fermionic transition
amplitudes of Sec. II C, following mostly along the steps of [2].
Throughout this appendix we consider only a CI-MO scenario,
where an input bit string |x〉 is acted on by some matchgate
circuit M , and we wish to compute the corresponding outcome
probabilities. We restrict ourselves to the case where the circuit
of matchgates preserves the number of “fermions,” i.e., the
Hamming weight of the bit strings. This corresponds to taking
R′ = 0 in Eq. (7), but the argument is very similar in the more
general case.

As an illustration, suppose initially we want to compute
the transition amplitude between two n-bit strings x and y

(i.e., all qubits are measured), given by 〈y|M|x〉. Clearly, this
is nonzero only if x and y have the same Hamming weight,
which we denote by h. Also, let indices {i1,i2, . . . ,ih} label the
positions of the h ones in x. Then, by recalling that a

†
i act as

fermionic creation operators, we write

〈y|M|x〉 = 〈y|Ma
†
i1
a
†
i2

· · · a†
ih
|0̄n〉

=
∑

p1···ph

Ri1,p1Ri2,p2 · · · Rih,ph
〈y|a†

p1
a†

p2
· · · a†

ph
|0̄n〉.

If similarly we use indices {l1,l2, . . . ,lh} to label the positions
of the ones in y, it is easy to see that the only terms that survive
in this sum are those for which the pj ’s are some permutation
of the lj ’s. Furthermore, the anticommutation relations induce
a minus sign on all odd permutations. This leads to the simple
expression

〈y|M|x〉 = det(Rx,y), (A1)

where Rx,y is an h × h submatrix of R constructed as follows.
First, make an h × n matrix Rx by choosing the rows of R that
correspond to ones in x, and then construct Rx,y by choosing
the columns of Rx that correspond to ones in y. Since the
determinant of an h × h matrix, for h � n, can be computed
in poly(n) time, this gives a method for efficiently computing
〈y|M|x〉.

Let us now consider the probabilities when only a subset
of k out of n qubits is measured after the circuit M , which is
what we actually need for the strong simulation of Theorem 1.
Note first that, for any given qubit j , we can write

aja
†
j = |0〉〈0|j , (A2a)

a
†
j aj = |1〉〈1|j . (A2b)

Remarkably, the measurement projectors themselves are
quadratic in the fermionic operators, which has previously
been identified as a crucial difference between quantum
computing with fermionic and bosonic linear optics [3]. Let

us proceed by again indexing the h ones of x by {i1,i2, . . . ,ih},
and let li indicate the position of the qubit assigned by the ith
bit of ỹ. We can then write

Pr(ỹ|x) = tr 〈ỹ|M|x〉〈x|M†|ỹ〉 = 〈x|M†PỹM|x〉. (A3)

Here Pỹ is the projector |ỹ〉〈ỹ|, which can be replaced by a
string of creation and annihilation operators where, for each
index li , we chose ali

a
†
li

or a
†
li
ali

depending on whether ỹi is 0
or 1 [cf. the discussion just after Eq. (13)]. For example, for
ỹ = 01 . . . 0 we would have

Pỹ = (al1
a
†
l1

)(a†
l2
al2

) · · · (alk
a
†
lk

). (A4)

Using Eq. (7) (with R′ = 0) we can write

Pr(ỹ|x) =
∑

n’s and m’s

R*
l1,m1Rn1,l1 · · · Rlk,mk

R*
nk,lk

× 〈0̄n|aih
· · · ai1

(a†
n1

am1
· · · a†

mk
ank

)a†
i1

· · · a†
ih
|0̄n〉.

(A5)

In order to simplify the above equation, usually one resorts
to Wick’s theorem, which provides a systematic way of
rearranging creation and annihilation operators so as to reduce
the expectation values in Eq. (A5) to complex numbers. We do
not enter into the more arid details of Wick’s theorem here, as
the full procedure has already been carried out in [2]; we just
cite the final result:

Pr(ỹ|x) = Pf(M̃). (A6)

Here M̃ is a 2(h + k) × 2(h + k) antisymmetric matrix con-
structed in a specific manner from the matrix elements of R.
The interested reader can find lookup tables with the rules for
obtaining the matrix elements of M̃ in [2] (for a more direct
relation between Wick’s theorem and Pfaffians, although in
a somewhat different formalism, we direct the reader to [4]).
The Pfaffian Pf(A), which appears in Eq. (A6), is a matrix
polynomial related to the determinant. More specifically, if A

is an N × N antisymmetric matrix (as in our case), Pf(A) is 0
if N is odd, and for even N it satisfies the relation

Pf(A)2 = det(A).

Thus, once more the desired probabilities are given in terms of
determinants of matrices constructed out of elements of R and
thus can be computed efficiently. In fact, the original matchgate
simulation of Valiant [1] exploited the fact that probabilities
of matchgate circuits are given by Pfaffians, with no relation
to fermions or Wick’s theorem. Only later was this connection
made explicit by Terhal and DiVincenzo in [2].

One aspect of Theorem 1 introduced in [2] that was not
found in [1] is simulation in the adaptive setting. Let us give
an idea why the simulation remains possible in this case.
Suppose the circuit we wish to simulate consists of some initial
matchgate circuit M acting on an n-qubit state |x〉, followed
by a measurement of the first qubit, y1, and then one of two
circuits M1 or M0 corresponding to the two outcomes of y1.
We then wish to compute the probabilities of some k-qubit
outcome ỹ2 on a subset of the n − 1 remaining qubits. We can
do this as follows:

(i) Compute Pr(y1|x) using Eq. (A6) with k = 1.
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(ii) Classically sample according to the probabilities com-
puted in (i), and fix y1 accordingly.

(iii) We now wish to compute Pr(ỹ2|x,y1). To that end it
suffices to compute

Pr(ỹ2,y1|x) = 〈x|M†Py1M
†
y1

Pỹ2My1Py1M|x〉, (A7)

where Py1 is a1a
†
1 or a

†
1a1 if y1 is 0 or 1, respectively. It is

clear that this expression is amenable to exactly the same
treatment in terms of Wick’s theorem as Eq. (A3). In [2] it is
also shown how to rewrite this expression as the Pfaffian of
some efficiently computable antisymmetric square matrix.

Clearly, steps (i)–(iii) can be generalized to allow for any
number of rounds of intermediate measurements, with any
number of qubits being measured in each round.

One small extension of these arguments follows directly
from the work of [2], although it does not seem to be pointed
out anywhere: Efficient classical simulation remains possible
even if we allow for “periodic boundary conditions,” that
is, if we also allow matchgates to act between the first and
the last qubits. To see that, note that we can write, for

example,

X1Xn = −
(

n∏
i=1

Zi

)
Y1Z2Z3 · · · Zn−1Yn,

with equivalent equations for the other matchgate generators of
Eqs. (6). However,

∏n
i=1 Zi is just the operator that measures

the overall parity of the whole n-qubit state. Since a circuit of
matchgates preserves the parity of the initial state, whenever
the input is in the computational basis this operator can just
be replaced by +1 or −1 depending on the parity of the input.
Also recall that any gate generated by a Hamiltonian of the
type Y1Z2Z3 · · · Zn−1Yn can be decomposed into a circuit of
O(n2) nearest-neighbor matchgates [6]. Thus, any matchgate
circuit with periodic boundary conditions can be replaced by a
circuit of nearest-neighbor matchgates that has the same action
on that input state, with only polynomial overhead, and thus
Theorem 1 still holds. Remarkably, this is the only type of
non-nearest-neighbor matchgate we can add to the set without
leading to universal quantum computation [13].
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