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Probabilistic quantum teleportation in the presence of noise
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We extend the research program initiated in [Phys. Rev. A 92, 012338 (2015)] from noisy deterministic
teleportation protocols to noisy probabilistic (conditional) protocols. Our main goal now is to study how we can
increase the fidelity of the teleported state in the presence of noise by working with probabilistic protocols. We
work with several scenarios involving the most common types of noise in realistic implementations of quantum
communication tasks and find many cases where adding more noise to the probabilistic protocol increases
considerably the fidelity of the teleported state, without decreasing the probability of a successful run of the
protocol. Also, there are cases where the entanglement of the channel connecting Alice and Bob leading to
the greatest fidelity is not maximal. Moreover, there exist cases where the optimal fidelity for the probabilistic
protocols are greater than the maximal fidelity (2/3) achievable by using only classical resources, while the
optimal ones for the deterministic protocols under the same conditions lie below this limit. This result clearly
illustrates that in some cases we can only get a truly quantum teleportation if we use probabilistic instead of
deterministic protocols.
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I. INTRODUCTION

Quantum teleportation is a quantum communication task
devised to transfer the quantum state of a physical system
located at one place, say Alice’s, to a different quantum
system located at Bob’s [1–6]. Two important aspects of
the teleportation protocol are related to the fact that it
works without the knowledge of the quantum state to be
teleported and that the physical system originally described
by this quantum state is not sent from Alice to Bob. For the
perfect functioning of the teleportation protocol Alice and
Bob need to share a maximally entangled state (maximally
entangled quantum channel). In this case the protocol works
deterministically and with unity fidelity, i.e., every run of the
protocol ends up with Bob’s system being described exactly
by the original state teleported by Alice.

The requirement of a maximally entangled quantum chan-
nel connecting Alice and Bob is very difficult to achieve
or maintain in practice since the inevitable presence of
noise reduces the entanglement of the quantum state shared
between them. In practical implementations of the teleporta-
tion protocol one can either adopt entanglement distillation
techniques [7] or modify the original protocol in order to cope
with the reduced level of entanglement [8–20]. In the first case
Alice and Bob need to share several copies of partially entan-
gled states before implementing an entanglement distillation
protocol, whereby they obtain a maximally entangled state
at the expense of many copies of partially entangled states.
With this maximally entangled state, Alice and Bob are able
to execute with success the original teleportation protocol. In
the second case, the partially entangled state is used as is and
the protocol is modified in order to achieve the greatest fidelity
possible. In this last case, we can divide all strategies in two
groups. In the first group we have the deterministic protocols
and in the second group the probabilistic ones.

*rigolin@ufscar.br

The deterministic protocols [11–20] do not postselect any
measurement outcome at Alice’s and therefore are always
“successful” in the sense that any run of the protocol yields an
output state to Bob, even if his state is not exactly described
by the original (input) state with Alice. The probabilistic
protocols, on the other hand, are not always successful
as defined above since only certain measurement outcomes
obtained by Alice are accepted. In the probabilistic protocols
only those measurement outcomes leading to output states
closest to the input are considered valid. In this way, by
decreasing the success rate of the protocol one increases the
fidelity of the state with Bob (output) with respect to the
input state [8–10]. It is worth mentioning that the probabilistic
protocols given in Refs. [8–10] assume the nonmaximally
entangled state shared between Alice and Bob to be pure.

In this article we want to extensively study probabilistic
teleportation protocols where the quantum channel connecting
Alice and Bob are given by partially entangled mixed states.
Our benchmarks are the optimal deterministic protocols given
in Ref. [20], i.e., we want to find situations in which the
reduction of the success rate (postselection) of the protocols
in Ref. [20] gives considerable improvements in the fidelity of
the teleported state.

Being more specific, here we deal with several scenarios
involving the four most common types of noise one faces when
implementing a quantum communication protocol: the bit-flip,
the phase-flip or phase-damping, the depolarizing, and the
amplitude-damping noises. We also study situations in which
the state to be teleported is also subjected to noise. We show
that several of the interesting results obtained in [20] for the
deterministic protocols are also present in the probabilistic
case. For example, we show scenarios where more noise
increases the fidelity of the teleported state and where the
entanglement of the quantum channel connecting Alice and
Bob giving the greatest fidelity is not maximal. In addition
to this, we show that there exist situations in which the
probabilistic protocol outperforms the deterministic one in a
very important aspect. Indeed, we show that there are scenarios
where the optimal fidelity for the probabilistic protocol is not
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only greater than the optimal one for the deterministic protocol,
but the only one surpassing the maximal value achievable by
using only classical resources. This fact is a clear indication
that in some scenarios a truly quantum teleportation can only
be obtained by using probabilistic protocols.

II. TELEPORTATION IN THE DENSITY
MATRIX FORMALISM

The mathematical concept needed to deal with noise
and mixed states is the density matrix and thus the first
thing we need to do is to recast the original teleportation
protocol using density matrices. This was done in full detail
in Ref. [20], and here we only give the key results necessary
for the development of the ideas and concepts related to the
probabilistic teleportation protocol.

The input qubit’s density matrix, i.e., Alice’s qubit to be
teleported to Bob, |ψ〉in = a|0〉 + b|1〉, with |a|2 + |b|2 = 1,
is

ρin = |ψ〉in in〈ψ | =
(

|a|2 ab∗

a∗b |b|2
)

, (1)

where the subscript in denotes “input” and ∗ complex
conjugation. The initially noiseless entangled state shared
between Alice and Bob, |Bθ

1 〉 = cos θ |00〉 + sin θ |11〉, has the
following density matrix in the base {|00〉,|01〉,|10〉,|11〉}:

ρch = ∣∣Bθ
1

〉〈
Bθ

1

∣∣ =

⎛
⎜⎜⎜⎝

cos2 θ 0 0 sin θ cos θ

0 0 0 0

0 0 0 0

sin θ cos θ 0 0 sin2 θ

⎞
⎟⎟⎟⎠. (2)

Here ch means “channel” and the first and second qubits
are with Alice and Bob, respectively. Note that θ is a free
parameter that we can adjust to optimize the efficiency of
the probabilistic teleportation. When θ = π/4 we have the
maximally entangled state |�+〉, one of the four Bell states.
For any other value of θ ∈ [0,π/2] the entanglement of the
state is not maximal, being zero for θ = 0 and π/2 [21].

Using the above notation, the global state describing Alice’s
and Bob’s qubits before the beginning of the protocol or the
action of noise is

ρ = ρin ⊗ ρch. (3)

The protocol begins by Alice making a projective measure-
ment on her two qubits (the input state and her share of the
entangled state). These qubits are projected onto one of the
four states listed below that form a complete basis:

|Bϕ

1 〉 = cos ϕ|00〉 + sin ϕ|11〉, (4)

|Bϕ

2 〉 = sin ϕ|00〉 − cos ϕ|11〉, (5)

|Bϕ

3 〉 = cos ϕ|01〉 + sin ϕ|10〉, (6)

|Bϕ

4 〉 = sin ϕ|01〉 − cos ϕ|10〉. (7)

In the original protocol ϕ = π/4, with those states becoming
the usual Bell states, |�+〉,|�−〉,|�+〉, and |�−〉. Here ϕ is
also a free parameter that is chosen to maximize the efficiency
of the probabilistic teleportation. The projectors associated

with these four states are

P
ϕ

j = ∣∣Bϕ

j

〉〈
B

ϕ

j

∣∣, j = 1,2,3,4. (8)

After this measurement the global state, Eq. (3), changes to

ρ̃j = P
ϕ

j ρP
ϕ

j

Tr
[
P

ϕ

j ρ
] (9)

with probability

Qj (|ψ〉in) = Tr
[
P

ϕ

j ρ
]
, (10)

where Tr is the trace operation. Note that we have explicitly
written the dependence of Qj on the input state |ψ〉in, only for
maximally entangled channels this probability is independent
of the initial state [8–10].

In the second step of the protocol Alice tells Bob, using a
classical communication channel, which |Bϕ

j 〉 she measured.
After receiving this information, Bob knows that his state is
now described by

ρ̃
Bj

= Tr12[ρ̃j ] = Tr12
[
P

ϕ

j ρP
ϕ

j

]
Qj (|ψ〉in)

, (11)

where Tr12 denotes the partial trace on qubits 1 and 2 (those
with Alice).

In the third and last step of the protocol Bob implements
a unitary operation Uj on his state in order to recover exactly
the teleported state. After this unitary operation the final state
with Bob is given by

ρ
Bj

= Uj ρ̃Bj
U

†
j = Uj Tr12

[
P

ϕ

j ρP
ϕ

j

]
U

†
j

Qj (|ψ〉in)
. (12)

It is worth noting that the unitary operation that Bob im-
plements depends on Alice’s measurement result and on the
quantum channel used in the protocol. For ρch given by Eq. (2),
U1 = 1, U2 = σz,U3 = σx , and U4 = σzσx , where 1 is the
identity matrix and σz and σx the standard Pauli matrices.

III. TELEPORTATION IN THE PRESENCE OF NOISE

The operator-sum representation formalism [22,23] is the
mathematical concept we need to model in the simplest way
the action of noise on a qubit. The key concept behind
this formalism is that the noise can be described only by
quantum operations belonging to the qubit’s Hilbert space.
The operators Ek representing a particular kind of noise are
called Kraus operators, and for trace-preserving operations
(conservation of probability) they must obey the condition

n∑
j=1

E
†
jEj = 1, (13)

where 1 is the identity operator acting on the qubit’s Hilbert
space and 1 � n � 4. The action of the noise on the qubit k,
described by the density matrix ρk , is

ρk → 
k =
n∑

j=1

EjρkE
†
j . (14)

Throughout this section we follow closely the notation
and presentation of Ref. [20] and just list the most common
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TABLE I. Here p ∈ [0,1] is the probability that the noise has
acted on the qubit, and σj ,j = x,y, and z, are the standard Pauli
matrices.

Bit flip E1 = √
1 − p 1, E2 = √

p σx.

Phase flip E1 = √
1 − p 1, E2 = √

p σz.

(Phase damping)

Depolarizing E1 = √
1 − 3p/4 1, E2 = √

p/4 σx,

E3 = √
p/4 σy, E4 = √

p/4 σz.

Amplitude damping E1 = (1 0
0

√
1 − p

)
, E2 = (0

√
p

0 0

)
.

types of noise we usually find in any realistic modeling of a
qubit lying in a noisy environment. We consider four types of
noise, namely, the bit-flip, the phase-flip or phase-damping,
the depolarizing, and the amplitude-damping channels. The
physical meanings of each one of these noise channels are
extensively discussed in Refs. [22] and [23] and a brief
discussion can be found in Ref. [20]. The Kraus operators
representing the action of those noise channels are given in
Table I.

Assuming that each qubit in the teleportation protocol is
acted on by noise in an independent way, the global density
matrix describing the initial state, Eq. (3), becomes [20]


 =
n
I∑

i=1

n
A∑

j=1

n
B∑

k=1

Eijk(p
I
,p

A
,p

B
)ρE

†
ijk(p

I
,p

A
,p

B
). (15)

Equation (15) is obtained by applying Eq. (14) to each one
of the qubits in Eq. (3). Here Eijk(p

I
,p

A
,p

B
) = Ei(pI

) ⊗
Fj (p

A
) ⊗ Gk(p

B
), where Ei(pI

) = Ei(pI
) ⊗ 1 ⊗ 1,Fj (p

A
) =

1 ⊗ Fj (p
A
) ⊗ 1, and Gk(p

B
) = 1 ⊗ 1 ⊗ Gk(p

B
) are, respec-

tively, the Kraus operators related to the noise acting on
the input qubit and Alice’s and Bob’s qubits of the quantum
channel. In order to keep track that in general different types
of noises can act during different times (probabilities), we
explicitly show the dependence of the Kraus operators on those
probabilities: p

I
,p

A
, and p

B
. The density matrix 
, Eq. (15),

should be used instead of ρ in Eqs. (9) to (12) to get the relevant
quantities needed to analyze the probabilistic teleportation
protocol in the presence of noise.

IV. RATE OF SUCCESS AND EFFICIENCY OF THE NOISY
PROBABILISTIC TELEPORTATION

In the presence of noise [20], or when we deal with
nonmaximally entangled channels [8–10], the probability Qj

of Alice measuring a determined generalized Bell state |Bϕ

j 〉
depends on the input state |ψ〉in to be teleported. Thus, in
order to be as general as possible and to get results that are
independent of a specific input state, we assume a uniform
probability distribution

PX(x) = P(|ψ〉in) (16)

for those input states [20]. Here X is a continuous random
variable whose possible values x are all pure qubits that
define the sample space �. We will work with a probability

distribution PX(x) that is normalized,∫
�

PX(x)dx =
∫

�

P(|ψ〉in)d|ψ〉in = 1, (17)

and, as we said, uniform (Haar measure), i.e., PX(x) is the
same (constant) for all x. With this choice for PX(x) all qubits
have equal chances of being picked by Alice at each run of the
protocol.

Being more specific, writing an arbitrary qubit as

|ψ〉 = α|0〉 + βeiγ |1〉, (18)

with α, β, and γ positive real numbers such that α2 + β2 = 1
and γ ∈ [0,2π ], we can choose α2 and γ as our independent
variables. With this notation P(|ψ〉in) = P(α2,γ ) and the
normalization condition, Eq. (17), becomes∫ 2π

0

∫ 1

0
P(α2,γ )dα2dγ = 1. (19)

For a uniform probability distribution [P(α2,γ ) constant]
Eq. (19) implies

P(α2,γ ) = 1

2π
. (20)

We also have a discrete variable J whose values can be
j = 1,2,3, and 4 (or j = �+,�−,�+, and �−), with each j

representing one of the four possible generalized Bell states
|Bϕ

j 〉. The probability to measure a given |Bϕ

j 〉 is written as
PJ (j ). The conditional probability PJ |X(j |x) is the chance of
Alice measuring the Bell state j if she teleports the input state
x and it is given by Eq. (10),

PJ |X(j |x) = Qj (|ψ〉in). (21)

To determine PJ (j ) we first determine the joint probability
distribution PXJ (x,j ) by applying the well-known result of
probability theory that says that

PXJ (x,j ) = PJX(j,x) = PX(x)PJ |X(j |x). (22)

Thus, using Eq. (22) we get

PXJ (x,j ) = P(|ψ〉in)Qj (|ψ〉in). (23)

Now, since the marginal probability distribution is PJ (j ) =∫
�

PXJ (x,j )dx, we have

PJ (j ) =
∫

�

P(|ψ〉in)Qj (|ψ〉in)d|ψ〉in. (24)

At last, using Eq. (24) and again Eq. (22) with the roles of
X and J interchanged we get

PX|J (x|j ) = PXJ (x,j )

PJ (j )

= P(|ψ〉in)Qj (|ψ〉in)∫
�
P(|ψ〉in)Qj (|ψ〉in)d|ψ〉in

. (25)

Equations (24) and (25) are the relevant probability distri-
butions we need to quantitatively analyze the probabilistic
teleportation protocol. Indeed, PJ (j ) is the probability to
measure a given generalized Bell state j given a certain
distribution for the input states and it can be interpreted as
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the average chance of measuring |Bϕ

j 〉,

Q
j = PJ (j ) =

∫
�

P(|ψ〉in)Qj (|ψ〉in)d|ψ〉in. (26)

This quantity is independent of |ψ〉in and it is referred to
here as the success rate or probability of success of the
probabilistic teleportation protocol when we postselect a
particular measurement result j . PX|J (x|j ), as we will show
shortly, is the quantity we need to compute the input-state-
independent efficiency of the protocol once we fix our attention
to a given measurement outcome j . PX|J (x|j ) is the probability
distribution of the input states x when we consider only
(postselect) those measurement results at Alice’s yielding the
same generalized Bell state j .

To quantify the efficiency of the probabilistic teleportation
protocol we use the fidelity [24]. Since in our analysis the input
state (our benchmark) is initially pure, the fidelity is

Fj = Tr
[
ρin
Bj

] = in〈ψ |

Bj

|ψ〉in, (27)

where 

Bj

is the state with Bob at the end of a run of the
protocol, Eq. (12), with ρ changed to the noisy state 
, Eq. (15).
Equation (27) ranges from zero to 1, being 1 whenever the
output state (


Bj
) is equal (up to an irrelevant global phase)

to the input (|ψ〉in) and zero whenever the two states are
orthogonal.

Since Fj depends on the input state |ψ〉in, we must average
Fj over all possible input states to obtain a quantitative
description of the efficiency of the protocol that is independent
of |ψ〉in. Since the probability distribution for |ψ〉in within
a given fixed choice of measurement result j is PX|J (x|j )
[Eq. (25)], we get

F
j =

∫
�

Fj (x)PX|J (x|j )dx

=
∫
�

Fj (|ψ〉in)P(|ψ〉in)Qj (|ψ〉in)d|ψ〉in∫
�
P(|ψ〉in)Qj (|ψ〉in)d|ψ〉in

(28)

for the efficiency of the probabilistic teleportation protocol
when postselecting the measurement result j . Note that if we
consider all measurement outcomes as acceptable we recover
the deterministic protocol of Ref. [20]. In the present notation
the quantity employed in Ref. [20] to quantify the efficiency
of the deterministic protocol reads

〈F 〉 =
4∑

j=1

PJ (j )F
j =

∫
�

F (|ψ〉in)P(|ψ〉in)d|ψ〉in, (29)

where F (|ψ〉in) = ∑4
j Qj (|ψ〉in)Fj (|ψ〉in). One of our goals

in this work is to optimize Eq. (28) such that F
j

> 〈F 〉,
with 〈F 〉 being the optimal efficiency of the deterministic
protocol. In this case the probabilistic protocol outperforms
the deterministic one in terms of efficiency, i.e., the teleported
state with Bob is closer to the original one with Alice. The
price we pay is a reduction of the probability of success since
we have to discard measurement results different from j .

Summing up, Eqs. (24) and (28) are the relevant expressions
employed here to quantify, respectively, the probability of
success and the efficiency (fidelity) of the probabilistic
teleportation protocol, and Eq. (29), the efficiency of the

deterministic protocol, is the benchmark we want to surpass
by optimizing (28). With these equations and the ideas and
concepts here developed, we are now ready to move on to the
quantitative analysis of the interplay between probability of
success and efficiency for several noise scenarios in the next
section.

V. RESULTS

We study the efficiency of the probabilistic teleportation
protocol in the three noise scenarios presented in Ref. [20]
for the deterministic protocol. The first one assumes that only
Bob’s qubit is subjected to noise in addition to the input qubit,
which can suffer the action of the same or of a different type
of noise [see Fig. 1(a)]. Note that by choosing Alice’s qubit
of the quantum channel to be acted on by noise instead of
Bob’s leads to the same results [20]. The second scenario we
investigate is the one in which the entangled states shared by
Alice and Bob are subjected to the same kind of noise during
the same time, while the input qubit can suffer the action of
any one of the four types of noises explained in Sec. III [see
Fig. 1(b)]. This situation occurs when the quantum channel is
created by a third party symmetrically located between Alice
and Bob such that both qubits of the channel find similar noisy
environments during their flights to Alice and to Bob. In the
notation of Sec. III this implies that p

A
= p

B
= p. The third

scenario we investigate is the one in which all Alice’s qubits are
subjected to the same kind of noise while Bob’s qubit can suffer
the action of the same or of a different noise [see Fig. 1(c)].
This scenario is relevant when it is Alice that generates the
entangled channel. In such a case the input qubit and her share
of the entangled state lie in the same environment and therefore
are acted on by the same noise and during the same time. In
the notation of Sec. III it means that p

I
= p

A
= p.

Before we continue it is important to review and adapt the
notation introduced in Ref. [20] designed to concisely label
which qubits are subjected to a particular kind of noise in the
expressions for the probability of success and efficiency that
will follow. In this notation any quantity that depends on the
arrangement of the types of noise acting on the three qubits
of the teleportation protocol is written with three subindexes
representing each type of noise. For example, the average
probability (probability of success) of Alice obtaining a given

FIG. 1. The three noise scenarios studied here: (a) noise acting
on Alice’s input qubit and on Bob’s output qubit; (b) noise acting on
the input qubit and the same type of noise acting on the qubits of the
channel; and (c) noise on Bob’s qubit and the same type of noise on
Alice’s qubits. See text for details.
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Bell state j for a given noise configuration is written as

Q
j

X,∅,Y
, where the first subindex denotes that the input qubit is

subjected to noise X, the second one represents that Alice’s
qubit of the quantum channel lies in a noiseless environment,
and the third subindex tells us that Bob’s qubit is subjected to
noise Y .

A. Scenario 1

The first scenario we investigate is the one depicted in
Fig. 1(a), where only the input and Bob’s qubit are subjected
to noise. The input qubit can suffer the action of any one of the
four types of noise given in Sec. III as well as Bob’s. We thus
have 16 possible noise arrangements. For each one of these

arrangements we have optimized all four F
j

[Eq. (28)] as a
function of θ and ϕ, variables related, respectively, to the initial
entanglement (prior to the action of noise) of the quantum
channel and to the projective measurement implemented by
Alice. See Eqs. (2) and (4)–(7). Comparing within a given

noise arrangement the four optimal F
j

with the optimal 〈F 〉,
the efficiency for the deterministic protocol [Eq. (29)], we
noted that only four out of these 16 possibilities yielded at

least one j such that F
j

> 〈F 〉 (see Fig. 2).
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FIG. 2. Optimal efficiencies (average fidelities) as a function
of p

B
for the deterministic protocol when only the input qubit

is subjected to noise (circle–black curves), for the deterministic
protocol when both the input and Alice’s qubit are subjected to
noise (square–red curves), and for the probabilistic protocol with
both input and Bob’s qubit acted on by noise (star–blue curves).
The several noise arrangements and the value of p

I
are given in the

figure. The dashed-black curves mark the classical limit 2/3 for the
fidelity. The probabilistic optimal efficiencies are those obtained by

postselecting |�−〉. The optimal F
j

are the same for all possible
measurement results if Bob’s qubit is subjected to the bit-flip,
phase-flip, or depolarizing noise. When Bob’s qubit is subjected to the
amplitude-damping noise, the best results are obtained only if Alice

postselects |�+〉 or |�−〉. For the range of p
B

in which F
j

> 2/3, the

rate of success Q
j

for all four cases are of the order of 10%, with the
lowest values being around 5%. Here and in the following figures, all
plotted quantities are dimensionless.

A common feature among these four cases is the action
of the amplitude-damping noise on the input qubit. Indeed,
if the input qubit is subjected to any other type of noise, the

optimal probabilistic efficiency satisfies F
j = 〈F 〉 for all j .

Another feature shared by these four cases is the fact that
the initial entanglement of the quantum channel connecting
Alice and Bob giving the optimal efficiency is not maximal
whenever p

I
	= 0. This is a situation where less entanglement

leads to more efficiency. This same feature is seen for the
deterministic protocol when we also deal with the amplitude-
damping noise [18,20]. For the other 12 cases in this scenario,
the initial entanglement leading to the optimal efficiency is
maximal for both the deterministic and probabilistic protocols.

In Fig. 2 we show for these four cases the optimal values for
the efficiency of the probabilistic protocol versus the optimal
one for the deterministic protocol when p

I
= 0.8 and for

all values of p
B
. For other values of p

I
we have the same

qualitative behavior. Looking at Fig. 2 we notice another
important feature shared by all four cases. We can always

find a critical value for p
B

below which F
j

AD,∅,Y > 〈F 〉AD,∅,Y

and at the same time F
j

AD,∅,Y > 〈F 〉AD,∅,∅. In other words,
the optimal probabilistic efficiency is not only greater than
the optimal one for the deterministic protocol under the same
noise conditions but also greater than the optimal deterministic
protocol efficiency when Bob’s qubit is not subjected to noise.
This is an instance where more noise leads to more efficiency.

We also have two interesting results in those four noise
arrangements. The first one occurs for high values of p

I
.

Under this condition the fidelities of the deterministic protocols
almost always lie below 2/3, being slightly above this value
only for very small values of p

B
(see Fig. 2). Any fidelity below

2/3 can be achieved using only classical resources (no need
for entanglement) and the teleportation protocol is considered
genuinely quantum for a uniform probability distribution
(Haar measure) of input states only if we have fidelities
greater than 2/3 [25]. On the other hand, for the probabilistic
protocol we can significantly surpass the classical limit for a
considerable range of values for p

B
. For the noise arrangements

where Bob’s qubit is subjected to either the phase-flip or the
amplitude-damping noise, we obtain for almost all values
of p

B
fidelities greater than 2/3, clearly illustrating that the

probabilistic protocols are the only ones leading to a truly
quantum teleportation. The second interesting result occurs
when noise is unavoidable and Bob can choose in which noisy
environment to keep his qubit. In such a case subjecting his
qubit to a different kind of noise than that acting on the input
qubit can be beneficial. This does not change the probability of
success, since it only depends on what is happening at Alice’s,
but increases the efficiency of the protocol. For example,

looking at Fig. 2 we see that F
j

AD,∅,PhF > F
j

AD,∅,AD for high
values of p

B
. This is an illustration that different noises lead to

more efficiency.

B. Scenario 2

Let us now move to the case where both qubits of the
quantum channel are acted on by the same noise while
Alice’s input qubit is subjected to the same or a different
type of noise [see Fig. 2(b)]. In this scenario p

A
= p

B
= p,
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FIG. 3. Optimal efficiencies (average fidelities) as a function of
p

I
for the deterministic protocol when only the quantum channel

is subjected to noise (circle–black curves) and for the deterministic
(square–red curves) and probabilistic (star–blue curves) protocols
when all three qubits are subjected to noise. The noise arrangements
and the value of p = p

A
= p

B
are in the figures. The dashed-black

curves mark the classical limit 2/3 for the fidelity. The optimal
efficiencies for the probabilistic protocol are those obtained by
postselecting |�−〉. Note that for almost all values of p

I
the

probabilistic protocol outperforms the deterministic one. Moreover,
for small (� 0.1) and high (� 0.9) values of p

I
the probabilistic

protocol gives a better result, even when compared to the deterministic
protocol in which no noise acts on the input qubit (circle–black

curves). The success rate Q
j

for this to happen is of the order of
0.5% for the two values of p shown above. This is another example
where more noise leads to more efficiency.

and similarly to the previous scenario we have 16 possible
combinations of noise. In order to optimize the efficiency of
the probabilistic protocols we proceeded in the same way as
explained in scenario 1. Out of these 16 arrangements, only
those seven in which the amplitude-damping noise is present
yield probabilistic protocols with optimal efficiencies greater
than the optimal ones for the deterministic protocols. For these
seven cases the initial entanglement of the entangled state
shared by Alice and Bob giving the optimal efficiency is not
maximal, similarly to what we have seen in scenario 1. This
is again a situation where less entanglement leads to more
efficiency.

In Fig. 3 we show the optimal fidelities for the deterministic
and probabilistic protocols for the noise arrangement in
which the quantum channel is subjected to the amplitude-
damping noise and the input qubit to the phase-flip noise
(PhF,AD,AD). But to one feature the same qualitative
behaviors seen in this case are also present when the input qubit
is subjected to the bit-flip (BF,AD,AD) and depolarizing
(D,AD,AD) noises. The only notable qualitative difference
is related to the fact that while for the PhF,AD,AD case the
optimal efficiencies are symmetrical with respect to the line
p

I
= 0.5, this is not seen in the BF,AD,AD and D,AD,AD

cases. For these last two cases, the greater p
I

the lower the
efficiency.

We have also noted an important fact concerning the
numerical optimization of the efficiency for the probabilistic
protocols whenever the two qubits of the quantum channel
are acted on by the amplitude-damping noise. In this situation
the tradeoff between efficiency and rate of success plays a
crucial role in defining the range of values that θ (initial
entanglement of the channel) and ϕ (measuring basis) can
assume during the numerical search for the optimal efficiency.
Indeed, if we allow θ and ϕ to run over all their possible
values, i.e., from zero (no entanglement) to π/4 (maximal
entanglement) and to π/2 (no entanglement), we are faced with

solutions that give very high values for the efficiency (F
j ≈ 1)

while the rate of success is zero to the precision adopted
in the maximization algorithm (eight numerical figures). The
optimal θ in this case is almost zero, which means a quantum
channel with almost no entanglement. In order to avoid those
unphysical solutions, we have restricted the ranges of θ and
ϕ to be such that θmin � θ,ϕ � θmax. We observed that the
more we restricted the range of θ and ϕ, the greater the
probability of success and the lower the efficiency; and when
we set θmin = θmax = π/4, the probabilistic protocol gives
the same efficiency of the deterministic protocol. The results
presented in Fig. 3, in the circle-black curve of Fig. 5, and
in Fig. 6 were obtained by setting θmin = 0.05π/2 = 0.078 54
and θmax = 0.95π/2 = 2.984. For all the other optimal results
reported here, we have assumed 0 � θ,ϕ � π/2.

In Fig. 4 we show the results obtained when we have the
bit-flip noise acting on the qubits of the quantum channel
and the amplitude-damping noise acting on the input qubit.
The values of θ and ϕ employed to draw those curves

are the ones optimizing F
�+

AD,BF,BF . Now, contrary to the
case where the amplitude-damping noise acted on the qubits
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FIG. 4. Top panel: Optimal efficiencies (average fidelities) for
the deterministic and probabilistic protocols as a function of p

I
for

the noise arrangement involving the action of the bit-flip noise on
the quantum channel and the amplitude-damping noise on the input
qubit. Bottom panel: The probability of success associated to each
one of the four possible measurement results of Alice. The values of

θ and ϕ used to plot all F
j

and Q
j

are those that maximize F
�+

. The
dashed-black curve marks the classical limit 2/3 for the fidelity.
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FIG. 5. Optimal efficiencies for the probabilistic protocol when
different types of noise act on the qubits of the quantum channel.

of the channel, the optimal efficiency of the probabilistic
protocol does not surpass the optimal efficiency of the
deterministic protocol when no noise acts on the input qubit,

i.e., F
j

AD,BF,BF < 〈F 〉∅,BF,BF . However, we still get that

F
j

AD,BF,BF > 〈F 〉AD,BF,BF , showing that the probabilistic
protocol enhances the efficiency of the deterministic protocol
under the same noise conditions. Furthermore, for high values
of p

I
only the probabilistic protocol yields fidelities greater

than 2/3, highlighting the importance of the probabilistic
protocol in order to get a truly quantum teleportation.

In Fig. 5 we compare the optimal efficiency for a fixed type
of noise acting on the input qubit among all possibilities of
noise acting on the quantum channel. The greatest efficiency
occurs when all qubits suffer the amplitude-damping noise.
However, the probability of success in this case is the lowest
one.

A very interesting noise arrangement is the one shown in
Fig. 6, in which all qubits are acted on by the amplitude-
damping noise (we continue to assume p = p

A
= p

B
). The first

thing worth noticing is that we can always find a j such that

F
j

AD,AD,AD > 〈F 〉AD,AD,AD for any value of p
I

and p, i.e., the
probabilistic protocol always outperforms the deterministic
protocol under the same noise arrangements. We have also

noticed that the optimal F
�±

AD,AD,AD is always greater than the

optimal F
�±

AD,AD,AD . Another feature of this noise arrangement

is related to the fact that F
j

AD,AD,AD > 〈F 〉∅,AD,AD for the
whole range of p

I
whenever p � 0.5 (lower panel of Fig. 6).

For values of p � 0.5 we can also have the probabilistic
protocol beating the deterministic protocol with no noise acting
on the input qubit. This only happens, however, when p

I
is

small (upper panel of Fig. 6). Last, for certain values of p and
p

I
, the optimal parameters θ and ϕ for a given postselected

measurement result also yield high average fidelities for other
two possible measurement outcomes, high enough to beat the
optimal one of the deterministic protocol. In such cases Alice
and Bob can considerably increase the rate of success of the
probabilistic protocol, and still outperform the efficiency of
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FIG. 6. Optimal efficiencies (average fidelities) as a function of
p

I
for the deterministic protocol when only the quantum channel is

subjected to the amplitude-damping noise (circle–black curves) and
for the deterministic (square–red curves) and probabilistic (star–blue
curves) protocols when all three qubits are subjected to the amplitude-
damping noise. The dashed-black curves mark the classical limit 2/3
for the fidelity. The optimal efficiencies for the probabilistic protocol
are those obtained by postselecting |�−〉. For the two panels above,

the success rate Q
�−

is never lower than 0.4% in the whole range
of p

I
.

the deterministic protocol, by postselecting three out of four
measurement results.

C. Scenario 3

In this scenario the two qubits with Alice are acted on
by the same type of noise during the same amount of time
(p

I
= p

A
= p) and Bob’s qubit is subjected to the same or

a different type of noise [see Fig. 1(c)]. Again, we have 16
possible noise arrangements with only six out of these 16
possibilities yielding probabilistic protocols with greater opti-
mal efficiencies than the ones for the deterministic protocols.
Those six cases contain the amplitude-damping noise acting on
Bob’s qubit or on Alice’s qubits. It is worth noticing that in this
scenario there exists one case where the amplitude-damping
noise acts on Bob’s qubit without yielding a better performance
for the probabilistic protocol. In this case, where Alice’s qubits
are acted on by the phase-flip noise (PhF,PhF,AD), both the
probabilistic and deterministic optimal efficiencies coincide.
For the other six cases in which the amplitude-damping
noise is present the probabilistic protocol outperforms the
deterministic one under the same noise conditions. The
qualitative behavior of these six cases, as well as their most
important features, are similar to the ones already reported in
scenario 2. In particular, the optimal initial entanglement of the
quantum channel connecting Alice and Bob is not maximal.

It is important to mention that for all scenarios shown
in Fig. 1 and studied here we obtain nontrivial probabilistic
protocols, in the sense that they outperform the efficiency of
the corresponding deterministic protocols, if the amplitude-
damping noise is present. Whenever the amplitude-damping
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noise is absent, the efficiencies for the probabilistic and de-
terministic protocols coincide when optimizing the protocols
as functions of θ and ϕ, i.e., as functions of the initial
entanglement of the quantum channel and of the type of
projective measurement implemented by Alice. In those cases
where the coincidence occurs, the optimal θ is always the
one leading to the greatest initial entanglement (θ = π/4).
However, if we work with a one-parameter optimization
problem (ϕ) and fix θ such that θ 	= π/4, we can obtain
probabilistic protocols outperforming the deterministic ones
for noise arrangements in which the amplitude-damping noise
is not present. In other words, if we are constrained from the
start to work with nonmaximally entangled quantum channels
connecting Alice and Bob, other noise arrangements that do
not include the amplitude-damping noise lead to nontrivial
probabilistic protocols.

VI. CONCLUSION

We investigated the performance of the probabilistic (condi-
tional) quantum teleportation protocol in the presence of noise.
We have compared its optimal efficiency with the optimal one
for the deterministic protocol under the same noise conditions.
We analyzed several noise arrangements in which the qubits
employed in the execution of the teleportation protocol are
subjected to the most common types of noise encountered
in the implementation of a quantum communication task,
namely, the bit-flip, the phase-flip, the depolarizing, and the
amplitude-damping noise.

For all noise arrangements here investigated, a total of
48 distinct cases, only 17 cases have a probabilistic protocol
with an optimal efficiency (average fidelity) greater than the
optimal efficiency of the deterministic protocol. We observed
that a necessary condition for this to happen is that at least
one of the qubits employed in the teleportation protocol
must be subjected to the amplitude-damping noise. Moreover,
and similarly to the deterministic case, for those 17 noise
arrangements the initial entanglement (prior to the action of
noise) of the quantum channel connecting Alice and Bob
leading to the greatest efficiency is not maximal. This is an
example where less entanglement means more efficiency, a
feature already seen for deterministic protocols [18,20].

We also showed several noise arrangements where more
noise means more efficiency. This happens whenever the
efficiency of the probabilistic protocol, in which a certain
number of qubits are subjected to noise, is greater than the
efficiency of the corresponding deterministic protocol with
a noise arrangement where fewer qubits are acted on by
noise. In addition to this we also found situations in which
different noises mean more efficiency. Indeed, under certain
noise arrangements we showed that it is better to have the
qubits subjected to different types of noise instead of the same
noise in order to obtain the greatest efficiency.

We observed another important feature when comparing the
optimal average fidelities of the probabilistic and deterministic
protocols under the same noise arrangement. In this scenario
we found noise arrangements where only the probabilistic
protocol surpasses the classical threshold of 2/3 for the average
fidelity. This threshold means that a teleportation protocol
yielding fidelities lower than 2/3 can be simulated using
only local operations and classical communication (LOCC).
Teleportation protocols with fidelities lying below this limit
are not considered truly quantum [25]. Therefore, for some
noise arrangements we must employ the probabilistic instead
of the deterministic protocol in order to obtain a quantum
teleportation that is genuinely quantum.

Finally, for all the protocols here investigated we noted a
tradeoff between the rate of success and the efficiency. Indeed,
the optimal protocols here reported were obtained maximizing
the average fidelity without any constraint on the value of the
probability of success. We can increase the rate of success,
however, if we decrease the efficiency of the protocol. This
is achieved by imposing a constraint on the lowest acceptable
value for the probability of success.
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