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Flexible quantum circuits using scalable continuous-variable cluster states
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We show that measurement-based quantum computation on scalable continuous-variable (CV) cluster states
admits more quantum-circuit flexibility and compactness than similar protocols for standard square-lattice CV
cluster states. This advantage is a direct result of the macronode structure of these states—that is, a lattice structure
in which each graph node actually consists of several physical modes. These extra modes provide additional
measurement degrees of freedom at each graph location, which can be used to manipulate the flow and processing
of quantum information more robustly and with additional flexibility that is not available on an ordinary lattice.
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I. INTRODUCTION

Quantum information processing using measurement-
based quantum computing (MBQC) [1] is divided into two
steps: (1) preparation of a universal, highly entangled resource
state (the standard choice is a cluster state with a square-lattice
graph [2]), followed by (2) a sequence of single-site projective
measurements with feedforward.

The last 15 years have seen the emergence of numerous
extensions, improvements, and generalizations of this basic
model. Important for this work is its generalization from cluster
states made of qubits to those made of continuous-variable
(CV) quantum systems [3]. Unlike their photonic-qubit coun-
terparts [4,5], optical CV cluster states can be generated
both deterministically and on a large scale with minimal
experimental equipment. They need only offline squeezing
and linear optics [6], all of which can be implemented
using a single optical parametric oscillator (OPO) [7–10].
Extremely large cluster states of this type can be made with
existing technology based on either frequency modes [11,12]
or temporal modes [13,14].

Using CV cluster states for quantum computation comes
with a price. Ideal states are infinitely squeezed [3,15];
thus noise is introduced into the computation due to the
fact that only finite squeezing resources (and hence, finite
energy) can be used in generating the state [15–17]. If left
unchecked, this noise limits the length of computation possible
using these states [18,19]. Nevertheless, it is still possible
to achieve universal fault-tolerant quantum computation with
CV cluster states [20] by employing known quantum-error-
correction protocols [21], provided that the experimentally
achievable squeezing levels are high enough. The current
best-recorded squeezing level in an optical setup is 12.7 dB of
squeezing [22], while the lowest theoretical upper bound on
the required squeezing for fault-tolerant quantum computing
is 20.5 dB [20].

Closing this squeezing gap in scalable CV cluster state
implementations is of paramount importance for their use
in large-scale, fault-tolerant quantum computation. A signif-
icant step in this direction is the development of resource-
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customized measurement-based protocols that capitalize on
the available squeezing in order to minimize the noise per
gate [10,17,23].

In the same vein, here we give a measurement protocol
that is customized for a type of universal CV cluster state
that is particularly scalable, known as the quad-rail lattice
(QRL) [12,14]. The generation procedure of the QRL is
particularly simple owing to the fact that its graph [12,14] is
self-inverse and bipartite [8,9]. Indeed, it needs only two-mode
squeezed states (TMSSs) and a single four-port linear-optics
gate (known as a foursplitter) as building blocks [12,14].
This state’s graph contains within it a square-lattice topology
(making it universal) with respect to four-mode lattice sites
known as macronodes. Our protocol leverages extra degrees
of freedom present in each macronode, resulting in improved
circuit compactness and flexibility. This work extends the
macronode protocol presented in Ref. [17], which applies to
the one-dimensional (1D) resource state known as the CV
dual-rail wire [11–14,17].

The structure of this article is as follows: In Sec. II
we review some basics of Gaussian pure states and the
QRL [12,14]. In Sec. III we introduce the basic components of
our measurement protocol, including encoding, unitary gates,
and measurement readout. In Sec. IV we describe how these
elements can be composed, allowing for flexible design of
quantum circuits. In Sec. V we compare this protocol to
previous work. We conclude in Sec. VI.

II. BACKGROUND

Throughout this article, we adopt the following conven-
tions for all modes: q̂ = 1√

2
(â + â†), p̂ = 1

i
√

2
(â − â†). Using

[â,â†] = 1, this implies that [q̂,p̂] = i with � = 1.

A. Symplectic formalism and gate definitions

The Heisenberg action of an N -mode Gaussian unitary Û

acting on the vector of Heisenberg-picture operators x̂ = (q̂
p̂

)
can be written as

Û †x̂Û = SÛ x̂, (2.1)
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where we have ignored displacements and

SÛ =
(

A B
C D

)
(2.2)

is a 2N × 2N real, symplectic matrix. Some useful examples
are given below.

The phase-delay gate is defined to be

R̂(θ ) := exp(iθ â†â)

= exp

[
iθ

2
(q̂2 + p̂2 − 1)

]
. (2.3)

Its Heisenberg action on x̂ = (q̂,p̂)T is given by the symplectic
matrix

R(θ ) =
(

cos θ − sin θ

sin θ cos θ

)
. (2.4)

Note that R̂(−ω δt) implements forward time evolution for an
oscillator with frequency ω over a small time interval δt > 0.
Thus, for positive θ , the gate R̂(θ ) will delay the oscillator by
a time interval θ/ω. This motivates our choice of terminology
and sign convention for this gate.

In the Schrödinger picture, a phase delay by θ [i.e., R̂(θ )]
rotates the state’s Wigner function counterclockwise by an
angle θ . Viewed instead from the Heisenberg picture, this
operation rotates the vector x̂ of quadrature operators in the
same fashion—i.e., counterclockwise by θ .

The single-mode squeezing gate we use has the following
(nonstandard) definition:

Ŝ(s) := R̂(Im ln s) exp

[
−1

2
(Re ln s)(â2 − â†2)

]

= R̂(Im ln s) exp

[
− i

2
(Re ln s)(q̂p̂ + p̂q̂)

]
, (2.5)

where s ∈ R\{0} is called the squeezing factor. This is related
to the more commonly used squeezing parameter r through

|s| = er . (2.6)

This gate differs from the ordinary squeezing gate only by an
additional π phase delay when s < 0. Its Heisenberg action
on x̂ is given by the symplectic matrix

S(s) =
(

s 0
0 s−1

)
. (2.7)

In the Heisenberg picture, this evolution multiplies the q̂

quadrature by s and the p̂ quadrature by s−1. We define this to
be what is meant by “squeezing by a factor of s.” (In addition
to the π phase delay when s < 0, this operation antisqueezes
q̂ and squeezes p̂ when |s| > 1, and vice versa if |s| < 1.)

The beamsplitter gate is defined to be

B̂ij (θ ) := exp[−θ (â†
i âj − â

†
j âi)]

= exp[−iθ (q̂i p̂j − q̂j p̂i)], (2.8)

where sin θ is the reflectivity of the beamsplitter. Its Heisenberg
action on x̂ = (q̂i ,q̂j ,p̂i ,p̂j )T is given by

Bij (θ ) =

⎛
⎜⎝

cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 cos θ − sin θ

0 0 sin θ cos θ

⎞
⎟⎠. (2.9)

While this beamsplitter is often defined in the literature with
additional phase delays incorporated (in order to match the
physics more closely), the definition here matches that in
Refs. [14,17,24] and is more suitable for analysis of CV
quantum-computing applications.

A useful property of this gate is that up to displacements, it
commutes with the action of the same single-mode Gaussian
unitary gate on two modes, i.e.,

[B̂ij (θ ),ÛiÛj ] = 0, (2.10)

where Û is a single-mode Gaussian unitary gate without
displacements.

Proof of Equation (2.10). It suffices to check that their
symplectic matrix representations commute. Denote the sym-
plectic matrix representation of Û by U. Then the symplectic
matrix representation of ÛiÛj can be represented as U ⊗ I,
where ⊗ is a Kronecker product and I is the 2×2 identity
matrix. Note similarly that B(θ ) = I ⊗ R(θ ). Clearly, these
matrices commute. �

The 50:50 beamsplitter gate is defined as

B̂ij := B̂ij

(
π

4

)
, (2.11)

i.e., it is a special case of the above-defined beamsplitter
where θ = π

4 , and the dependence on the angle is dropped

for notational convenience. Note that B̂
†
ij = B̂ji .

Finally, the foursplitter gate is defined to be

Âjklm := exp

[
π

4

(
(â†

k + â
†
l )(âj − âm) − H.c.

)]

= exp

[
−i

π

4

(
(q̂j − q̂m)(p̂k + p̂l)

+ (q̂k + q̂l)(p̂m − p̂j )
)]

, (2.12)

where “H.c.” abbreviates the Hermitian conjugate (†) of the
first term in the exponent. Its Heisenberg action on x̂ =
(q̂i ,q̂j ,q̂k,q̂l ,p̂i ,p̂j ,p̂k,p̂l)T is given by

Aijkl :=
(

Ã 0
0 Ã

)
, (2.13)

where 0 denotes the 4×4 matrix of zeros and

Ã = 1

2

⎛
⎜⎝

1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1

⎞
⎟⎠. (2.14)

This gate admits the following convenient decompositions into
four 50:50 beamsplitters [12,14]:

Âijkl = B̂ij B̂klB̂ikB̂j l = B̂ikB̂j lB̂ij B̂kl . (2.15)

062326-2



FLEXIBLE QUANTUM CIRCUITS USING SCALABLE . . . PHYSICAL REVIEW A 93, 062326 (2016)

B. Graphical calculus for Gaussian pure states

In this article, we will be describing the properties of a
Gaussian pure state (the QRL). For convenience, we will
represent this state by its graph [24], which is defined using
the graphical calculus for Gaussian pure states, summarized
below.

1. Graphs

Given an undirected, complex-weighted graph on N nodes
with adjacency matrix Z (= ZT) and Im Z > 0 [24], Z uniquely
defines the position-space wave function

ψZ(q) := (det Im Z)1/4

πN/4
exp

[
i

2
qTZq

]
(2.16)

of the N -mode Gaussian pure state |ψZ〉, where q is a column
vector of c-numbers. It also gives a compact description of the
nullifiers of |ψZ〉:

(p̂ − Zq̂) |ψZ〉 = 0, (2.17)

where q̂ = (q̂1, . . . q̂N )T and p̂ = (p̂1, . . . p̂N )T are column
vectors of operators. Every Gaussian pure state uniquely
defines (up to phase-space displacements and overall phase)
an associated graph Z [24].

2. Graph update rule

In the language of the graphical calculus, Schrödinger-
picture evolution of a Gaussian unitary Û can be represented
up to displacements and overall phase by a graph update rule

Û |ψZ〉 = |ψZ′ 〉 (2.18)

with

Z′ = (C + DZ)(A + BZ)−1, (2.19)

where the submatrices A, B, C, and D are defined via the
Heisenberg action of Û , as in Eq. (2.2).

3. Simplified graphs

The Gaussian pure states that we consider in this article
are specified by few graphical parameters, i.e., edge and
self-loop weights in Z. When representing such states by their
corresponding graph, it is convenient to use a simplified set
of rules known as the simplified graphical calculus [14]. It
makes use of the following conventions: no self-loops are
drawn, and the color of an edge indicates the sign of its edge
weight [see Figs. 1(a) and 1(b)]. In addition to these (standard)
conventions, we will use differently colored nodes—green
instead of black—to denote the inclusion of an input state
localized to a single graph node, as shown in Fig. 1(c). The
self-loops (not shown) on all noninput graph nodes have weight

iε := i sech 2r, (2.20)

where the squeezing parameter r gives the amount of vacuum
squeezing used in preparing the state [12,14]. All edge weights
between different nodes are

±Ct := ±C tanh 2r, (2.21)

which is the product of the edge-weight coefficient C (specified
on each figure) and a squeezing-dependent factor t , along with

FIG. 1. (a) Two-mode continuous-variable cluster state repre-
sented using the full graphical calculus [24] (left) and the simplified
graphical calculus [14] (right). Edge weights ε and t are defined in
Eq. (2.20) and Eq. (2.21), respectively. (b) We similarly represent a
four-mode square CV cluster state. (c) Seven-mode state containing
two inputs (green nodes)—one is disconnected (tensor product with
the rest of the state), and the other is attached to a three-mode Gaussian
pure state.

a sign ± denoted by blue or yellow, respectively. Note that
ε → 0 and t → 1 as the squeezing parameter r → ∞, which
corresponds to the high-squeezing limit.

Although our use of the graphical calculus strictly applies
only when the input states (green nodes) are themselves
Gaussian pure states, this choice is purely for representational
convenience. All results presented here hold for general input
states, including non-Gaussian and/or mixed states.

C. The quad-rail lattice

The QRL can be generated from a collection of two-mode
cluster states [defined in Fig. 1(a)]1 arranged along edges of
a square lattice by applying a foursplitter gate [Eq. (2.12)]
to each four-mode lattice site, a.k.a. a macronode [12,14].
The resulting QRL is defined by its four-layered square-lattice
graph, as shown in Fig. 2(b). Further details about the
generation of this state can be found in Refs. [14] and [12].

The QRL is universal for MBQC. To see this, consider
measuring the top three layers of modes in q̂ basis. Note
that such measurements can be implemented experimentally
via homodyne detection [12,14]. Graphically, this action is
represented by node deletion [24], resulting in a square-
lattice CV cluster state as shown in Fig. 2(c). Up to dis-
placements, this is the canonical resource state for universal
MBQC with CVs [3,15]. Unwanted displacements (due to
q̂ measurements on the top three layers) can be straightfor-
wardly taken into account in the measurement protocol by
feedforward.

Achieving universal quantum computation this way is not
optimal, however, because projecting down to a canonical CV
cluster state results in an ordinary lattice with C = 1

4 (instead
of C = 1), which introduces excessive noise when used in
a computation [17]. We use the remainder of this article
to introduce a different—and much more favorable—MBQC
protocol that runs directly on the full QRL [Fig. 2(b)].

1Equivalently, two-mode squeezed states can be used by incorpo-
rating a π

4 phase delay into the measurement of all nodes [25].
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FIG. 2. Simplified graphical-calculus representation [14] of the
construction of the quad-rail lattice and conversion to an ordinary
continuous-variable cluster state. (a) A collection of two-mode
continuous-variable cluster states. These pairs are “stitched” together
by a foursplitter gate [Eq. (2.12)] at each macronode (indicated
by the red ovals) in order to construct the quad-rail lattice. (b)
This graph defines the quad-rail lattice state. (c) Measuring the top
three layers (faded) of the quad-rail lattice in the q̂ basis produces
a square-lattice continuous-variable cluster state as shown. Note
that each site (red circle) contains only one mode. In the original
proposal [14], universal quantum computation proceeded via the
standard measurement-based protocol [15]. Removing the extra nodes
and links from (b), however, wastes squeezing resources [17]. Instead,
our proposal directly employs the state shown in (b), making more
efficient use of the available resources (the advantages are discussed
in Sec. V).

III. USING MACRONODES FOR MBQC

The basic idea for our protocol is that quantum computation
can proceed via measurements on the QRL directly (rather than
first reducing to the square-lattice cluster state). We break this
section into five parts: encoding (Sec. III A), measurements
(Sec. III B), single-mode gates (Sec. III C), two-mode gates
(Sec. III D), and measurement readout (Sec. III E).

A. Encoding

In MBQC, once the resource state is prepared, the only
allowable operations are local measurements. In our protocol,
local measurements implement logic gates on macrolocally
encoded input states. This means that input states are localized
with respect to a particular macronode, but they are distributed
nonlocally between the four physical modes that make it up.
(The reason for this will become evident once we present our
protocol.)

Each macronode admits two natural tensor-product decom-
positions. The first is the usual one defined in terms of the
physical modes (P). The second—which is more useful for our
purposes—is to define four distributed modes (D) as balanced
linear combinations of the physical modes. Specifically, in the
Heisenberg picture,

âD := A−1âP, (3.1)

where âP := (â1,â2,â3,â4)T and âD := (âa,âb,âc,âd )T. Note
that numerical (alphabetical) subscripts are used for the
physical (distributed) modes.

The mapping in Eq. (3.1) is exactly the inverse of a
foursplitter gate [Eq. (2.12)]. Figure 3 displays the QRL with
respect to the physical modes (a) and with respect to the
distributed modes (b). Notice that the former has fencelike
connections between adjacent macronodes, while the latter
consists merely of disjoint pairs. Also notice that the graphs

FIG. 3. (a, b) Two equivalent ways to represent the quad-rail
lattice using the simplified graphical calculus [14]. The left graph
represents the state using the physical-mode decomposition of each
macronode, while the right graph represents the exact same state using
the distributed-mode decomposition, with Eq. (3.1) connecting the
two. Red ellipses indicate the macronodes (four-mode subsystems)
that are left invariant by the change of mode decomposition. (c) Birds-
eye view of the quad-rail lattice with respect to distributed modes
with mode label conventions shown in the bottom left macronode.
We include three input states and highlight three examples of
input configurations within a macronode. In A, we have a “blank”
macronode that contains no input states. In B and C, respectively, one
and two of the two-mode cluster states have been replaced with an
input state.

in Figs. 2(a) and 3(b) are visually identical. Nevertheless, they
represent different physical states because they are defined
with respect to different mode decompositions (physical and
distributed, respectively).

For the rest of this article, we will use distributed modes
exclusively because this allows for the simplest description
of information propagation through the QRL. We allow input
states to occupy any of the four possible distributed modes
(a,b,c,d) within a macronode. Unless otherwise specified,
we assume that a maximum of two of the distributed modes
within a given macronode are occupied by an input state. This
guarantees that there is at least one two-mode cluster state per
input that connects to an adjacent macronode. This condition
is required in order to implement unitary gates (otherwise
the output has no place to go). Three examples of input-state
configurations are given in Fig. 3(c).

B. Macronode measurements

Our protocol implements Gaussian unitary gates on en-
coded input states by locally measuring the physical modes
that make up each macronode in a rotated quadrature ba-
sis p̂(θ ) := p̂ cos θ − q̂ sin θ . We vectorize the measurement
bases for a given macronode measurement using

p̂P(θ ) := (
p̂1(θ1),p̂2(θ2),p̂3(θ3),p̂4(θ4)

)T
, (3.2)

where θ := (θ1,θ2,θ3,θ4). Note that local measurements with
respect to the physical modes will generally correspond
to nonlocal (four-body) measurements with respect to the
distributed modes (and the inputs).

To characterize the effective logic gate implemented by
macronode measurement, we consider the two-input case [as
in C in Fig. 3(c)]. This case is the most general, as the no-
and single-input cases are special cases with both or one of the
inputs replaced by half of a two-mode CV cluster state.

There are
(4

2

) = 6 different two-input macronode configura-
tions (as shown in Fig. 4) and thus 12 total input configurations
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FIG. 4. Birds-eye view of six macronode configurations with two
input states and two adjacent output modes (inside the purple boxes).
We assign distributed-mode labels {a,b,c,d} consistent with Fig. 3.
Each input can be assigned to one of the two green modes, and each
can also be mapped to either output, resulting in a total of 24 distinct
processes. We omit macronode labels and labels on the output modes.

with distinct input states. In addition, each input must be paired
with a two-mode cluster state that contains the corresponding
output mode. There are two possibilities, resulting in 24
distinct input-to-output mode configurations. It suffices to
characterize the single case shown in Fig. 5 because all other
configurations are related to this by applying a permutation
on the distributed modes prior to measurement, and this can
be taken into account by a simple change to the homodyne
angles.

To see this, define a generic permutation gate via its four-
mode symplectic matrix representation,

σ =
(

σ̃ 0
0 σ̃

)
, (3.3)

where σ̃ is some 4×4 permutation matrix (a single 1 entry in
each row and column and all other entries 0). It is sufficient
to check the commutation properties of the foursplitter gate

FIG. 5. (a) A specific case of a single macronode with two
input states and two adjacent output modes equivalent to Fig. 4(e).
The output mode for a is c′ and the output mode for b is d ′.
(b) Quantum circuit for macronode measurement of a general
two-input macronode for arbitrary inputs |ψ〉 and |φ〉 encoded within
distributed modes a and b, respectively. Locally measuring the phys-
ical modes is exactly equivalent to first applying a foursplitter gate on
the distributed modes and then doing the desired measurements. Up to
measurement-dependent displacements and finite-squeezing effects,
the output state is given in Eq. (3.5).

with each element of any generating set of all four-mode
permutation gates. Let σ jk denote the permutation gate that
swaps modes j and k. Then we have that

A−1σ 1,2A = σ 2,4,

A−1σ 1,3A = σ 3,4, (3.4)

A−1σ 1,4A = σ 2,3R2(π )R3(π ),

where R(π ) is defined in Eq. (2.3). Thus, by commuting
through the foursplitter gate, each four-mode permutation gate
σ is mapped to a combination of a new permutation gates
and some single-mode π phase delays. These gates can be
incorporated directly into the macronode measurements by
permuting the choice of measurement angles (e.g., θi ↔ θj )
and adding π phase delays (e.g., θi 
→ θi + π ).

For the case shown in Fig. 5 and neglecting measurement-
dependent displacements and finite-squeezing effects (which
are discussed in the proof below), the most general Gaussian
unitary that can be applied on the two encoded input modes
|ψ〉 and |ϕ〉 by measuring in p̂P(θ) is

|ψ〉a |ϕ〉b 
→ Ĝc′d ′ (θ) |ψ〉c′ |ϕ〉d ′ , (3.5)

where θ1 �= θ3, θ2 �= θ4, and

Ĝjk(θ) := B̂
†
jkV̂j (θ1,θ3)V̂k(θ2,θ4)B̂jk. (3.6)

Sandwiched between the pair of 50:50 beamsplitters is the
single-mode unitary gate

V̂j (x,y) := R̂j

(
x + y

2

)
Ŝj

(
tan

[
x − y

2

])
R̂j

(
x + y

2

)
.

(3.7)

Notice that the output states automatically emerge at dis-
tributed modes (c′,d ′) of adjacent macronodes.

Proof of Equation (3.5). We start with Fig. 6, which shows
a macronode measurement circuit where the foursplitter is
decomposed into four beamsplitters [using Eq. (2.15)]. To go
from Figs. 6(b) to 6(c) we used an interferometric symmetry of
the pair of two-mode cluster states on modes (c,c′) and (d,d ′)
derived in Appendix C of Ref. [10]: acting with B̂cd on this
state is equivalent to acting with B̂d ′c′ instead [25].

Figure 6(c) shows that macronode measurement is equiva-
lent to two copies of a gate teleportation circuit [10,17] conju-
gated by beamsplitters (B̂ab and B̂d ′c′ ). The gate teleportation
circuits each implement

V̂ (r,mj ,mk,θj ,θk) := N̂ (r)D̂(mj,mk,θj ,θk)V̂ (θj ,θk), (3.8)

where j and k are 1 and 3 (2 and 4) for the top (bottom)
subcircuit in Fig. 6(c), V̂ is defined in Eq. (3.7), and

D̂(mj,mk,θj ,θk) = D̂

[−ieiθkmj − ieiθj mk

sin(θj − θk)

]
(3.9)

is a phase-space displacement [D̂(α) = eαâ†−α∗â] that depends
on the homodyne angles and measurement outcomes mj and
mk associated with measuring modes j and k. Finally,

N̂ (r) = e−εq̂2/2e−εp̂2/2t2
Ŝ(t−1) (3.10)
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FIG. 6. (a) Two-mode circuit representation of 50:50 beamsplitter B̂ij and B̂ji . The overall effect of this circuit on modes i and j is to
implement the identity gate. (b) Macronode measurement as in Fig. 5 but with the foursplitter gate Âabcd replaced with four 50:50 beamsplitters,
as in Eq. (2.15). (c) Restructured macronode measurement circuit equivalent to (b) (see text for details). The vertical ordering of the modes has
been changed. Modes enclosed within the red box belong to the measured macronode. Note that the two subcircuits within the green regions
are identical up to the choice of measurement angles. Each of these subcircuits can be individually interpreted as a CV teleportation protocol
with generalized homodyne measurements [26]. Equivalently, they are each a single macronode measurement on the CV dual-rail quantum
wire, discussed in Ref. [17].

is a nonunitary operator that applies the noise from finite
squeezing to the state (after which the state must be renor-
malized ) [17].

The macronode measurement maps

|ψ〉a |ϕ〉b 
→ Ĝc′d ′ (r,m,θ ) |ψ〉c′ |ϕ〉d ′ , (3.11)

where m = (m1,m2,m3,m4), θ = (θ1,θ2,θ3,θ4), and

Ĝjk(r,m,θ )

:= B̂kj V̂j (r,m1,m3,θ1,θ3)V̂k(r,m2,m4,θ2,θ4)B̂jk. (3.12)

In the limit of large squeezing and when all measurement
outcomes are zero, we have

V̂ (θj ,θk) = lim
r→∞ V̂ (r,0,0,θj ,θk), (3.13)

and so

Ĝ(θ) = lim
r→∞ Ĝ(r,0,θ ). (3.14)

In the more general case, the displacements can either be
actively corrected at each step or merely accounted for
using feedforward [15]. From this, Eq. (3.5) can be seen as
the large squeezing limit of Eq. (3.11). In the rest of this
article, we ignore displacements and finite-squeezing effects
for simplicity of presentation. �

Note that for θ1 = θ3 or θ2 = θ4, Eq. (3.7) diverges in the
squeezing factor and thus cannot represent a physical unitary
operation. Nevertheless, the case where all four angles are
equal (θ1 = θ2 = θ3 = θ4) will later be shown to correspond to
measurement readout; see Sec. III E. Next we consider some
examples of single- and two-mode Gaussian gates that are
special cases of Eq. (3.6).

C. Single-mode Gaussian unitary gates

The first examples we consider are single-mode Gaussian
unitary gates. Consider restricting the homodyne angles so that

θ2 = θ1 and θ4 = θ3. (3.15)

In this case, the single-mode gates sandwiched between the
beamsplitters above in Eq. (3.6) are identical. Using Eq. (2.10),
the beamsplitters cancel, resulting in

Ĝjk(θ)
∣∣∣θ2 = θ1
θ4 = θ3

= V̂j (θ1,θ3)V̂k(θ1,θ3), (3.16)

which implements a pair of single-mode gates on the input
states. As the same gate gets implemented on both inputs, a
single macronode measurement does not allow for the two
input states to evolve independently.

Independent single-mode gates can still be applied in
the single-input case by ignoring the effect on the unused
distributed mode. A single-mode V̂ gate is sufficient to
generate arbitrary single-mode Gaussian unitary gates up to
displacements (and only two applications are required for all
of them) [17].

Applying further restrictions so that θ3 = ±θ1 implements
a pair of phase delays and squeezers, respectively:

Ĝjk(θ)
∣∣∣
θ4 = θ3 = θ2 = θ1

= R̂j (2θ1)R̂k(2θ1), (3.17)

and

Ĝjk(θ )
∣∣∣
θ4 = θ3 = −θ2 = −θ1

= Ŝj (tan θ1)Ŝk(tan θ1). (3.18)

D. Two-mode Gaussian unitary gates

Here we provide different restrictions on the homodyne
measurement angles θ that yield interesting examples of two-
mode gates from Eq. (3.6). Setting

θ3 = −θ1 and θ4 = −θ2 (3.19)

implements the two-mode-squeezing operation

Ĝjk(θ )
∣∣∣θ3 = −θ1
θ4 = −θ2

= B̂
†
jkŜj (tan θ1)Ŝk(tan θ2)B̂jk. (3.20)

We can also implement a linear-optics gate by setting

θ3 = θ1 − π

2
and θ4 = θ2 − π

2
. (3.21)

This implements

Ĝjk(θ)
∣∣∣θ3 = θ1 − π

2
θ4 = θ2 − π

2

= B̂
†
jkR̂j

(
2θ1 + π

2

)
R̂k

(
2θ2 + π

2

)
B̂jk

= R̂j (θ+)R̂k(θ+)

[
R̂j

(
π

2

)
B̂jk(θ−)R̂k

(
π

2

)]
, (3.22)

where θ± = θ1 ± θ2. Thus, up to some additional phase delays,
the above gate implements a variable beamsplitter.
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FIG. 7. (a) Here we show a macronode measurement circuit with
respect to the distributed modes. In the special case of restricting
measurement angles such as in Eq. (3.23), we can commute the phase
delays past the foursplitter gate using Eq. (3.24), indicated by the
red arrow. (b) Acting with a foursplitter gate immediately before
a collection of p̂ measurements is equivalent to only measuring in
p̂ and then classically taking linear combinations of the outcomes
(postprocessing).

E. Measurement readout

In addition to implementing unitary gates, we must also
be able to perform projective measurements on the encoded
states. This can be implemented directly on the QRL, and
we allow up to (all) four of the distributed modes to be
filled with inputs. Each input that shares a macronode during
measurement readout will be measured in the same homodyne
basis. (This means that modes to be measured in different bases
must be located within different macronodes.)

To measure each distributed mode within a single macron-
ode in the homodyne basis p̂(θ ), one simply has to apply the
following restriction on the measurement angles:

θ = θ1 = θ2 = θ3 = θ4, (3.23)

as we now show. By decomposing the foursplitter gate Â

using Eq. (2.15) and applying the beamsplitter commutation
relations in Eq. (2.10), it is straightforward to verify that

[Âijkl,R̂i(θ )R̂j (θ )R̂k(θ )R̂l(θ )] = 0. (3.24)

Thus, with these restricted measurements, the foursplitter in
the standard macronode measurement circuit as shown in
Fig. 7(a) can be commuted through the phase delays as shown.

Measuring p̂ on all physical modes after the gate Â is
equivalent to just measuring the modes in p̂ and taking linear
combinations (given by Ã) of the measurement outcomes:

Â
†
1,2,3,4

⎛
⎜⎝

p̂1

p̂2

p̂3

p̂4

⎞
⎟⎠Â1,2,3,4 = Ã

⎛
⎜⎝

p̂1

p̂2

p̂3

p̂4

⎞
⎟⎠. (3.25)

The physical foursplitter that is applied can be undone
by classical postprocessing (applying Ã−1) on the actual
measurement outcomes. Thus this macronode measurement
can be implemented by measuring all of the distributed modes
locally in the basis p̂(θ ), as shown in Fig. 7(b).

IV. CONSTRUCTING FLEXIBLE QUANTUM CIRCUITS

In the previous sections, we saw how input states can
be encoded macrolocally [defined by Eq. (3.1)] and how

FIG. 8. (a, b) Rather than labeling the modes within each
macronode to indicate how inputs are mapped onto outputs, we
introduce additional red lines that partition each macronode such that
the pairs of labels {α,γ } and {β,δ} share a partition. (a) and (b) above
show two examples of this. (c) A connected sequence of macronodes
{i,j,k,l} on the quad-rail lattice. Embedding of a quantum wire within
the quad-rail lattice. We use light-blue macronode coloring to indicate
the use of the restricted measurements [as in Eq. (3.15)].

homodyne measurements on macronodes are sufficient to
implement a variety of Gaussian unitary gates [of the form
of Eq. (3.6)], as well as measurement readout. Now we
briefly describe how connected regions of macronodes can
be measured in order to implement quantum circuits.

We will start with how to construct quantum wires. In
Sec. III C we showed that for a specific configuration of
input and output modes (a 
→ c′,b 
→ d ′), restricting the
measurement angles so that θ1 = θ2 and θ3 = θ4 ensures
that the input states that share a macronode do not interact,
i.e., only single-mode gates are applied. This result can be
generalized for arbitrary input and output mode configurations
by employing the permutation freedom discussed in Sec. III B.
By appropriately modifying the homodyne angles, we can
apply the same single-mode gates and teleport inputs at sites
α and β to γ ′ and δ′, respectively, for any valid assignment
of {α,β,γ,δ} 
→ {a,b,c,d}. We represent this graphically as
shown in Figs. 8(a) and 8(b).

By restricting measurements like this on a connected
sequence (i,j,k, . . . ,l) of macronodes on the QRL, (up to
displacements and finite-squeezing effects) we can implement
a single-mode Gaussian unitary V̂l · · · V̂kV̂j V̂i (omitting de-
pendence on homodyne angles) on an input initially encoded
within macronode i and have it propagate through the sequence
of macronodes (i,j,k, . . . ,l), outputting into macronode l. We
illustrate this by way of example in Fig. 8(c). These sequences
thus act as embedded quantum wires, equivalent to the CV
dual-rail wires described in Ref. [17].

Multiple wires can be embedded within the QRL provided
that no two wires overlap on a lattice edge. Because we allow
for up to two input states to share any macronode at a given
time, these wires are free to intersect and cross one another.
Note that when two wires meet at a macronode, the same
single-mode Gaussian unitary gate gets applied to both inputs
at that macronode.

Alternatively, the macronodes that act as junctions between
two wires can be used to implement a two-mode Gaussian
unitary, as discussed in Sec. III D. Therefore, wires and
intersection sites can be used to implement single- and two-
mode Gaussian unitary gates, respectively, and these compo-
nents are sufficient to generate arbitrary multimode Gaussian
unitaries. Measurement readout (homodyne detection) can

062326-7



RAFAEL N. ALEXANDER AND NICOLAS C. MENICUCCI PHYSICAL REVIEW A 93, 062326 (2016)

FIG. 9. (Above) An example measurement scheme on the quad-
rail lattice. There are five encoded input states on the left-hand side,
which we label by different arrow symbols. We label lattice edges
to indicate how these inputs propagate along the lattice. Light-blue
macronode coloring indicates application of single-mode Gaussian
unitaries only [of the form Eq. (3.16)]. Green macronode coloring
indicates the application of a two-mode Gaussian unitary, such as
those described in Sec. III D. Orange macronode coloring is used to
describe a measurement readout step on the lattice, as in Sec. III E.
(Below) A quantum-circuit description of the overall Gaussian
unitary implemented above. Light-blue small boxes are single-mode
Gaussian unitary gates and connected green boxes are two-mode
Gaussian unitary gates. Measurement operations are colored orange.

be implemented by connecting up to four wires to a given
macronode and measuring it with restrictions as in Eq. (3.23).

By combining these results, we have a highly flexible means
for implementing quantum circuits on the QRL. See Fig. 9
for an example. This is analogous to a field-programmable
gate array (FPGA), since the QRL is a versatile resource that
can be configured by the user at the “software level” into
many different gate networks by the choice of measurement
bases. With access to vacuum input states and arbitrary
displacements, these operations are sufficient to implement
arbitrary Gaussian computations.

Non-Gaussian resource

Gaussian operations alone are known not to be universal for
quantum computing [27]. Full universality can be achieved,
however, by diverting a subset of the QRL nodes to photon

counters instead of homodyne detectors [14,15]. Depending
on the particular practical implementation—which could
even include encoded qubits and error correction [20]—it
might be more favorable to periodically inject non-Gaussian
resources [20,28] instead of counting photons. We leave further
discussion of such elements to future work.

V. COMPARISON WITH PREVIOUS WORK

How does our scheme compare with other previously
established CV cluster-state protocols? Below, we compare
it with three alternatives, focusing on the following four
features: (1) circuit flexibility, which is the maneuverability
of the quantum wires; (2) compactness, which is the minimum
number of sites that must be measured in order to implement a
desired class of gates; (3) noise per gate due to finite squeezing;
and (4) scalability.

Canonical CV cluster state. The original CV-measurement-
based protocol introduced in Refs. [3] and [15] uses a single-
rail C = 1 square-lattice CV cluster state. Circuit flexibility
is limited because the wires are generally constrained to
run horizontally along the lattice, and two-mode gates can
only be applied between nearest-neighbor wires. In general,
single-mode Gaussian gates will require four steps along the
lattice [17,29], thus limiting compactness as well. The natural
two-mode gate is limited to the ĈZ gate. Noise due to finite
squeezing is known to depend on the edge weight (C = 1) [17].
As such, the amount of noise per single-mode Gaussian unitary
gate is roughly similar between this protocol and the QRL
protocol introduced here. This resource state is theoretically
convenient to analyze, which is why it is often used for initial
studies [3,15,20], but it is less amenable to scalable design than
macronode-based approaches (see Ref. [10] and references
therein).

Projected quad-rail lattice. The original CV-measurement-
based protocol can be modified to run on a C = 1

4 square-lattice
cluster state [14,17]. This resource state has the advantage that
it can be generated scalably (by the process shown in Fig. 2).
This protocol has the same features as in the C = 1 case except
with poorer noise properties [17]. Specifically, the lower edge
weight C = 1

4 means that using the QRL in this projected
fashion will introduce significantly more noise (due to finite
squeezing) than will applying the full QRL protocol introduced
here.

Bilayer square lattice. We also consider the highly scalable
bilayer-square-lattice (BSL) resource state recently introduced
in Ref. [10] (on which we are authors). Like the QRL, this
state affords a similar macronode-based protocol, which we
refer to here as the BSL protocol. Like with the above two
cases, circuit flexibility is limited because quantum wires
are restricted to run horizontally, and the natural two-mode
gates (which includes, but is not limited to, the ĈZ gate) can
only be applied between nearest-neighbor wires. In terms of
compactness, the BSL protocol is similar to the QRL protocol
since the individual wires themselves are actually CV dual-rail
wires [17]. For technical reasons, however, these wires require
twice as many steps to implement each single-mode gate (four,
as compared to the usual two). This results in poorer noise
performance than the QRL protocol.
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Thus our protocol shares the strengths of the others. It has
relatively good noise performance (similar to the canonical CV
cluster state), compactness (similar to the BSL), and scalability
(similar to projected QRL and the BSL). In addition, it is
the only protocol that allows highly flexible quantum-circuit
design: the extra degrees of freedom per site allow for the
quantum wires to be more flexibly directed and even to
crisscross and intersect one another, thus simplifying two-
mode interactions between initially distant wires. In addition,
the broad class of two-mode gates that can be implemented
with a single macronode measurement includes two-mode
squeezing and a variable beamsplitter. Thus the QRL protocol
is especially well suited to quantum-optics applications.

VI. CONCLUSION

In this article we generalized CV measurement-based
protocols to a scalable cluster state known as the quad-rail
lattice. This came with several advantages. In particular, we
found that quantum wires can be threaded through the lattice
sites, allowing for greater flexibility in implementing quantum
circuits on the cluster. Unlike single-rail CV cluster-state
wires [15], these wires are embedded versions of the CV
dual-rail wire (discussed in Ref. [17]), and thus they are
more compact and do not introduce excessive levels of noise
due to finite squeezing [17]. Our protocol is also well suited
to implementing a variety of two-mode gates at the inter-
section points of these wires—such as two-mode-squeezing
and beamsplitter gates. Thus we have generalized the one-

dimensional macronode protocols introduced in Ref. [17] to
the two-dimensional case.

Several features that our protocol exhibits—including non-
local input states and the ability to reroute wires—are similar
to those found in generalizations of measurement-based
quantum computing based on tensor networks [30,31]. These
similarities likely stem from their shared use of entangled
pairs as basic building blocks. It is curious that these extra
features are naturally exhibited in experimentally favorable
schemes for implementing CV cluster-state computations. It is
worth considering the possibility that macronode-based qubit
resource states might show similar advantages.

This work highlights the importance of focusing on
macronode-based construction methods of CV resource states
for quantum computing [10–14], which also have the ad-
vantage of being the most scalable methods available to
date. Adapting the measurement protocol to the quad-rail
lattice—rather than converting it to the standard square-lattice
resource—yields a richer, more dynamic mode of computation
and opens further research avenues towards closing the gap be-
tween theoretical models and experimental implementations.
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