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Quantum correlations in a physical system are usually studied with respect to a unique and fixed decomposition
of the system into subsystems, without fully exploiting the rich structure of the state space. Here, we show several
examples in which the consideration of different ways to decompose a physical system enhances the quantum
resources and accounts for a more flexible definition of quantumness measures. Furthermore, we give a different
perspective regarding how to reassess the fact that local operations play a key role in general quantumness
measures that go beyond entanglement—as discordlike ones. We propose a family of measures to quantify the
maximum quantumness of a given state. For the discord-based case, we present some analytical results for
2 × d-dimensional states. Applying our definition to low-dimensional bipartite states, we show that different
behaviors can be reported for separable and entangled states vis-à-vis those corresponding to the usual measures
of quantum correlations. We show that there is a close link between our proposal and the criterion to witness
quantum correlations based on the rank of the correlation matrix, proposed by Dakić, Vedral, and Brukner
[Phys. Rev. Lett. 105, 190502 (2010)].
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I. INTRODUCTION

Contemporary physics’ recent technological and theoretical
progress shows that quantum computation is a feasible and
not-so-far-away perspective (see Refs. [1] and references
therein). Novelties would bring significant improvement in
the performance of information processing tasks, and the
main ingredient involved resides in (quantum) correlations
that cannot be implemented with classical systems. Hence,
the study of quantum correlations have been one of the most
pursued issues in quantum physics of the last decade (see,
e.g., the excellent reviews of the Horodeckis [2] and Modi
et al. [3]). Quantum entanglement and quantum discord (QD)
are two of the main families of quantum correlation measures,
which are closely related to the way in which a system can be
decomposed as a mixture of product states. A nonentangled
(or separable) state ρAB

sep over the Hilbert space HA ⊗ HB ,
with respect to the bipartition A|B, can be written as a convex
combination of product states as ρAB

sep = ∑
k pkρ

A
k ⊗ ρB

k , with
pk � 0 and

∑
k pk = 1. In turn, a classically correlated (CC)

state ρAB
clas, with respect to the same bipartition, can be

expressed as a mixture of local orthogonal projectors as ρAB
clas =∑

ij pij |iA〉 〈iA| ⊗ |jB〉 〈jB |, where pij � 0,
∑

ij pij = 1 and
〈iA(B)|i ′A(B)〉 = δii ′ , with 0 � i � dim(HA(B)). That is, ρAB

clas is
diagonal in a product basis {|iA〉 ⊗ |jB〉}. A state that is not
CC is said to be quantum correlated (QC).

What is the main difference between a noncorrelated (or
product) state, ρAB

prod = ρA ⊗ ρB , and a CC one (as ρAB
clas

given above), with regard to their quantum capabilities? One
may suspect that a CC state is as useless as a product one
when performing an information task that necessarily involves
quantum resources. However, this is not true. Let us consider
that one has ρAB

clas and also one has access to other local degrees
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of freedom, i.e., that our initial system + environment state is
ρext = ηĀ ⊗ ρAB

clas ⊗ ηB̄ , where ηĀ (ηB̄) depicts the state of the
environmental degrees of freedom in A (B). Now, it is easy
to show that there are local observables with respect to whom
the state is quantumly correlated. It suffices to notice that
ρA′B ′ = TrenvUρextU † is, in general, QC with respect to A′|B ′,
where “env” denotes the environment degrees of freedom and
U denotes a local unitary operation (LU) that respects that
local bipartition, i.e., U = UĀA ⊗ UBB̄ , and accounts for the
inspection of local observables.

Consideration of different observables of a quantum system
leads to alternative descriptions, and quantum correlations
are relative to such observables election. Zanardi [4] noticed
the effect of this relative character vis-à-vis the quantum
entanglement of multiqubit states and proposed a formal-
ization under a general algebraic framework [5]. Later,
Barnum et al. [6] gave a subsystem-independent notion of
entanglement. Harshmann and Ranade [7] proved that all
pure states of a finite-dimensional (and unstructured) Hilbert
space are equivalent as entanglement resources in the ideal
case that one has complete access and control of observables
(see also [8] for alternative presentations of the problem).
Given that CC implies separability and given that the question
about separability becomes relative to the preferred observ-
ables (the ones that determine the local subsystems), the
question about the correlations on CC states becomes relative
too. It is worth noting that these ideas have been successfully
applied, for example, to the investigation of quantum phase
transitions [9–11] and to quantum entanglement in systems of
indistinguishable particles [12].

In this work, we focus on the less studied situation of mixed
states under a locality restriction: we allow only local unitary
operations (over the enlarged Hilbert space) in order to explore
the observables’ subspaces of each local subsystem. In the pure
state scenario, global unitary operations lead to equivalence
regarding quantum correlations (in that case, entanglement).
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As expected, mixedness and locality impose some restrictions
on the achievable quantum correlations when considering the
mentioned relative character (see Appendix A for a discussion
on the role of mixedness on discordlike measures under global
unitaries, for states in C4).

We adopt here the distinction between quantum correla-
tions and quantumness of correlations, previously discussed
by Giorgi et al. in terms of genuine and nongenuine quantum
correlations [13] and by Gessner et al. [14]. It is interesting to
note that Ollivier and Zurek, in their seminal paper [15], have
already coined the idea that QD accounts for the quantumness
of correlations, and not to the amount of quantum correlations
per se.

The paper is organized as follows. In Sec. II we discuss
our main thesis, namely the way in which general quantum
correlations depend on the subsystem decomposition of a given
quantum system. In Sec. III we advance a proposal in order
to quantify the mentioned effect from an information-theoretic
viewpoint, which we call potential quantumness, and we prove
several interesting properties of such a measure, showing its
adequacy as a faithful quantum correlation measure. Finally, in
Sec. IV we specialize our study to discordlike correlations. We
present some analytical results for 2 × d dimensional states
and display some of their features when applied to simple
low-dimensional models. Section V is devoted to a summary
and conclusions.

II. QUANTUMNESS AND SUBSYSTEMS

Let us give a concrete example. We begin with a CC
state of two qubits as ρAB

clas = p |0A〉 〈0A| ⊗ |0B〉 〈0B | + (1 −
p) |1A〉 〈1A| ⊗ |1B〉 〈1B |, with 0 � p � 1, where {|i〉}i=0,1

is the standard (computational) basis. If we have access
to one auxiliary qubit on each location, we can set the
extended state to be ρext = |0Ā〉 〈0Ā| ⊗ ρAB

clas ⊗ |0B̄〉 〈0B̄ |. Now,
any LU operation UĀA ⊗ UBB̄ accounts for different par-
titions of the local subsystems Ā|A (B|B̄) into new sub-
systems Ā′|A′ (B ′|B̄ ′) (see Fig. 1). For example, if UĀA =
UcHUS = (UBB̄)†, where UcH is a controlled Hadamard gate

FIG. 1. For a composite system A + B, CC with respect to that
bipartition, coupling auxiliary uncorrelated local systems (Ā and B̄),
and performing LU operations generally produces a QC state (see
Proposition 1 for details). Here, the local unitaries have the form
UĀA ⊗ UBB̄ and act by rearranging the local degrees of freedom,
thus yielding “new” subsystems A′,Ā′,B ′,B̄ ′. In other words, the local
unitaries induce new decompositions of ĀA and BB̄ into different
“primed” subsystems. (See text for details.)

and US is a swap gate, the transformed reduced state
is ρA′B ′ = p |0A′ 〉 〈0A′ | ⊗ |0B ′ 〉 〈0B ′ | + (1 − p) |+A′ 〉 〈+A′ | ⊗
|+B ′ 〉 〈+B ′ |, where |±A′(B ′)〉 = 1√

2
(|0A′(B ′)〉 ± |1A′(B ′)〉). The

new state, ρA′B ′
, is not CC anymore. Thus, we have revealed

some hidden or “potential” quantumness of ρAB
clas, just by

considering a transformation over local degrees of freedom.
This cannot be done if the state is uncorrelated: for ρAB

prod, it is
straightforward to show that the same procedure gives a new
uncorrelated state ρA′B ′

prod . This result clearly distinguishes ρAB
clas

from ρAB
prod with regards to quantum information processing

capabilities. Such feature holds for every nonproduct (i.e.,
correlated) state: if ρAB is a bipartite correlated state and A

and/or B has local access to auxiliary degrees of freedom,
then it is possible to find quantum correlations between new
subsystems A′ and B ′ defining ρA′B ′

. As we are going to discuss
in Sec. III, this property is nothing but a reinterpretation of
the already known fact that quantum correlations (others than
entanglement) can be created by local operations [14,16–18].
We take this result to be our first proposition.

Proposition 1. Let ρAB be a nonproduct density operator
over HA ⊗ HB . Let ηĀ and ηB̄ be the “ready” states of two
ancillary systems. Then, for the extended state ηĀ ⊗ ρAB ⊗ ηB̄

it is possible to find a subsystem decomposition that preserves
the local bipartition and possesses quantum correlations.

Proof. The statement can be proved straightforwardly. If
ρAB is nonproduct state then it can be CC or QC. If it is QC
then there is no need to extend our system, it already possesses
quantum correlations. If it is CC, we can choose the auxiliary
states to be pure, ηĀ = ηB̄ = |0〉 〈0|. Then, over the extended
state |0〉 〈0| ⊗ ρAB ⊗ |0〉 〈0|, we can apply LU operations
UĀA ⊗ UB̄B that correspond to different decompositions of
each part (A and B) into subsystems. Finally, tracing out
the auxiliary degrees of freedom results in a modified state
ρA′B ′

. The action of the unitaries over the reduced state is
equivalent to a local quantum trace-preserving operation (see,
e.g., Ref. [19]). But, performance of arbitrary local channels
can convert any CC state into a QC one [20]. This observation
ends the proof. Note, however, that for product states there is
not a local operation that correlates both parts, neither quantum
nor even classically. �

Another way of assessing this important difference (be-
tween CC and noncorrelated states) with regard to the
quantum correlations arising from the possible reduction of
CC states exists: when the A and B subsystems have nonprime
dimensions, it is possible to find reductions of ρAB that
respect the local bipartition A|B and yet possess nonclas-
sical correlations. For example, the two-qubits’ QC state
ρA1B1 = p |0A1〉 〈0A1 | ⊗ |0B1〉 〈0B1 | + (1 − p) |+A1〉 〈+A1 | ⊗
|+B1〉 〈+B1 | (the same as in the previous example) can
be regarded as a reduction of the four-qubits’ one ρAB =
p |0A2〉 〈0A2 | ⊗ |0A1〉 〈0A1 | ⊗ |0B1〉 〈0B1 | ⊗ |0B2〉 〈0B2 | + (1 −
p) |1A2〉 〈1A2 | ⊗ |+A1〉 〈+A1 | ⊗ |+B1〉 〈+B1 | ⊗ |1B2〉 〈1B2 |. The
latter is clearly CC with respect to the bipartition
A1A2|B1B2

∼= A|B. Thus, ρAB is a CC state with QC
reductions, always preserving the same prescription for the
local degrees of freedom. Again, this result is very general:
if ρAB is a bipartite correlated state for which A and B are
composites, then it is possible to find a reduction that possesses
quantum correlations:
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Proposition 2. Let ρAB be a nonproduct density operator
over HA ⊗ HB , with dimHA and/or dimHB given by non-
prime numbers. Then, it is possible to find a reduced state
that preserves the local bipartition and possesses quantum
correlations.

Proof. The proof is rather trivial from our first proposition.
If ρAB has the properties of the statement, we can regard ρAB as
the (already) extended state. Thus, applying local unitaries and
tracing out some degrees of freedom yields the desired result.
Being correlated is a necessary condition, since the reduction
of any product state is trivially noncorrelated with respect to
that fixed bipartition. �

As pointed out in the Introduction, the relative character of
quantum correlations with respect to the chosen partition of a
system into subsystems has been carefully studied in the case
of pure states [4–7]. In our presentation, we focus on the case
of mixed states under a locality restriction: only local unitary
operations are allowed (over the enlarged Hilbert spaces) to
explore the observables’ subspaces of each local subsystem.

Summing up, possession of CC states already implies some
degree of quantumness in the correlations of both parts, in the
following sense:

(i) CC states supplied with uncorrelated ancillas exhibit
quantum correlations, in general, when alternative local
observables are specified and,

(ii) reductions of CC states exhibit, in general, quantum
correlations.

Consideration of these scenarios leads us, in the following
section, to a notion of potential quantumness.

Remark. Local unitaries act over HĀA ⊗ HBB̄ by rear-
ranging the local degrees of freedom to give an alternative
decomposition into subsystems preserving the original local
bipartition. For the reduced state ρAB , the transformation is
equivalent to a local operation. The impact of local operations
on quantum correlations has been seriously studied in the
last years. Both properties of quantum correlations, stated in
Propositions 1 and 2, rely on the more general one that quantum
correlations can be created by local noise (i.e., local quantum
channels) [16,21,22]. When one chooses this channel to be
the trace operation, the above relations between classical and
quantum correlations of composite systems arise.

We propose next a measure that attempts to quantify these
facts from an information-theoretic point of view.

III. MEASURING THE POTENTIAL QUANTUMNESS

The two propositions discussed so far refer to closely
related facts that can be quantified by consideration of
appropriate information-theoretic measures of quantum corre-
lations. Given the previous analysis, we give a straightforward
operational definition for our potential quantumness (PQ)
measure.

Definition 1. Let ρAB be a density operator overHA ⊗ HB ,
and η

Ā(B̄)
0 = |0〉 〈0| the “ready” state over HĀ(B̄) = Cd of an

auxiliary system. The PQ of ρAB , of rank d, with respect to
the bipartition A|B is

PQ
d (ρAB) = max

U∈LU
QA|B(

UηĀ
0 ⊗ ρAB ⊗ ηB̄

0 U †), (1)

where QA|B(ρ) := Q(TrHĀ,B̄
ρ) implies tracing out the auxil-

iary systems, and QA|B is any measure of bipartite quantum
correlations between A and B.

Usually, a measure Q of quantum correlations is such that,
for any bipartite state ρAB ,

(i) Q(ρAB) � 0,
(ii) Q(ρAB) = 0 if ρAB is a CC state (or in particular, a

product state),
(iii) Q(ρAB) is maximal if and only if ρAB is a maximally

entangled (pure) state,
(iv) Q(ρAB) is invariant under local unitary operations, and

matches an entanglement monotone whenever ρAB is a pure
state.

Those properties are fulfilled by every entanglement and
discordlike measures. In those cases, the corresponding PQ
measure satisfies some basic properties that make it suitable
as a measure of quantum correlations:

(i) (positivity) PQ
d (ρAB) � 0 for every state ρAB and any

dimension d of the auxiliary parts;
(ii) (minimum) for any value of d,PQ

d (ρAB) = 0 if and only
if ρAB = ρA ⊗ ρB ;

(iii) (maximum) PQ
d (ρAB) is maximal if and only if ρAB is

a maximally entangled state.
Positivity holds because Q itself is semidefinite positive.

Indeed, from Definition 1 one deduces the stronger relation
PQ

d (ρAB) � Q(ρAB) � 0. Regarding the second property,
PQ

d (ρA ⊗ ρB) = 0 holds because the unitaries involved do not
mix AĀ with BB̄ degrees of freedom, and there is no LU that
can correlate them, not even in a classical sense. On the other
hand, if ρAB is not a product state, thenPQ

d (ρAB) 	= 0 [23]. The
third property is fulfilled because Q itself saturates only for
maximally entangled states, even when no extension or local
operation is performed. Thus, PQ

d (ρAB) attains its maximum
if and only if TrHĀ,HB̄

(UηĀ
0 ⊗ ρAB ⊗ ηB̄

0 U †) is a maximally
entangled state. Extension, local unitaries, and partial trace
are equivalent to local operations. But local operations cannot
create entanglement. Thus, PQ

d (ρAB) attains its maximum if
and only if ρAB is already a maximally entangled (pure) state.

The defined measure exhibits many other interesting prop-
erties but, before presenting them, we prove the following
proposition that provides an equivalent definition for PQ

d

without making any explicit reference to auxiliary systems.
Proposition 3. For every state ρAB and any dimension d as

in Definition 1, the PQ of ρAB , of rank d, with respect to the
bipartition A|B, is

PQ
d (ρAB) = max

E∈LO(d)
Q(E[ρAB]), (2)

where E ∈ LO(d) is any local operation of rank at most d,
and QA|B is any measure of bipartite quantum correlations
between A and B.

Proof. The equivalency is straightforwardly proven re-
membering that, by Stinespring’s dilation theorem [24], any
quantum operation can be reproduced by adding an ancilla,
performing a unitary operation over the enlarged Hilbert space,
and finally tracing out the ancilla. In our case, the restriction
regarding local unitaries imposes the corresponding locality
condition on the quantum operations of Proposition 3. �
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Proposition 3 offers a concise interpretation for our mea-
sure:PQ

d (ρ) quantifies the quantumness of the correlations of ρ

attainable by local operations. Among the vast family of local
operations, we can identify, for example, the local unitaries,
the local unitals, and the local classical-quantum channels, etc.
As we show below, while the local unitaries do not change the
value of PQ

d , our measure is nonincreasing under arbitrary
local operations.

Remark. The measurePQ
d depends on the value of d, which

can be regarded as a restriction on the class of accessible
local operations (LOs) or a restriction on the dimension of the
accessible auxiliary systems (see Definition 1). As LO(d ′ <

d) ⊂ LO(d), it is straightforward to show that PQ
d ′<d (ρAB) �

PQ
d (ρAB) for any ρAB . However, it is interesting to consider

the following particular d-independent scenario. If ρAB is
such that max{dim(HA), dim(HB))} = dmax, then any LO over
that state can be implemented with auxiliary extensions of
dimensions at most d2

max. Thus, PQ
d (ρAB) → PQ

d2
max

(ρAB) when
d → ∞. We shall refer to the later as the maximum-PQ
or PQ

max. It is clear that it accounts for the no-restriction-
over-LO case. Finally, the case d = 0 trivially matches the
corresponding Q measure, i.e., PQ

d=0(ρ) = Q(ρ).
It is noteworthy that this measure, PQ

d , does not (necessar-
ily) involve a dynamical interpretation. Instead, the unitaries
appearing in Definition 1 attempt to capture the relative
character of the correlations with respect to the partition of
a given system into subsystems. That is, if ρAB is the state
of a system (bi)partitioned according to A|B, and if there
are auxiliary systems such that ηĀ

0 ⊗ ρAB ⊗ ηB̄
0 is a possible

joint state (as in Definition 1), then the operations U ∈ LU
can be thought of as a resetting of the local subsystems (see
Appendix B for a more detailed discussion).

A. Properties of the PQ measures

As expected, PQ
d inherits some particular properties of

the chosen Q measure. For example, if Q is the usual
QD then PQ

d is an asymmetric measure relying on one-
partite measurements, while becoming symmetric if Q is
the symmetric QD. But, even before specializing things for
a certain Q, we can prove additional properties of the PQ
measure.

First, it is interesting to note that PQ
d matches an entangle-

ment monotone for pure states, ρAB = |ψAB〉 〈ψAB |, and for
every measure Q that complies with the previous characteri-
zation. Indeed, by Proposition 3, PQ

d (|ψAB〉) is the maximum
value of Q(E[|ψAB〉]) over E ∈ LO(d). Now, using that (i) for
pure states, Q decreases monotonically under local operations
and classical communication (LOCC), and (ii) that LO ⊂
LOCC, we have PQ

d (|ψAB〉) = maxE∈LO(d) Q(E[|ψAB〉]) �
maxE′∈LOCC Q(E′[|ψAB〉]) � Q(|ψAB〉). On the other hand,
taking E to be the identity map, we have that Q(E[|ψAB〉]) =
Q(|ψAB〉), saturating the above inequality. Accordingly,
PQ

d (|ψAB〉) = Q(|ψAB〉) for every pure state |ψAB〉 and any
value of d, proving that PQ

d is, for pure states, no more than
the corresponding entanglement monotone defined by Q.

Next, we prove certain properties concerning the behavior
of any PQ measure under different classes of local operations.

First, that PQ
d is invariant under LU operations, as one would

expect for any reasonable measure of quantum correlations.
Second, that sufficiently low-ranked LOs cannot increase PQ

d ,
implied from its very definition by the optimization over LO
operations. Third, that PQ

d takes into account the quantum
correlations from the possible reductions of a certain state. We
sum up all this in the following proposition.

Proposition 4. For any PQ measure of rank d, PQ
d , the

following properties are fulfilled:
(1) PQ

d is invariant under LU operations;
(2) PQ

d is nonincreasing under a LO of rank equal or lower
than d;

(3) given a bipartite state ρAB where A and B are also com-
posites, A = {Ai} and B = {Bj }, PQ

d (ρAB) is lower bounded
by the Q measure over all the possible (fine-grained) reduc-
tions ρAiBj = TrHcompρ

AB , with Hcomp = ⊗
m	=i,n	=j HAm

⊗
HBn

, such that dim(HAi
) × dim(HBj

) � d.
Proof. (1) Let UA|B be a unitary operation acting locally

over HA ⊗ HB bipartition. For any state ρ over HA ⊗ HB ,
the corresponding transformation is ρ 
→ ρ1 = UA|BρUA|B .
From Definition 1,

PQ
d (ρ1) = max

V ∈LU
QA|B(

V ηĀ
0 ⊗ ρ1 ⊗ ηB̄

0 V †)

= max
V ∈LU

QA|B(
V UA|BηĀ

0 ⊗ ρ ⊗ ηB̄
0 UA|BV †)

= max
V ′∈LU

QA|B(
V ′ηĀ

0 ⊗ ρ1 ⊗ ηB̄
0 V ′†) ,

which is equal to PQ
d (ρ). In the third line, we use the fact that

the composition of a unitary operation V , that is local over
ĀA|BB̄, and another unitary operation UA|B that is local on
A|B, yields a unitary V ′ that is local over ĀA|BB̄.

(2) Let E′ ∈ LO(d ′) and E′[ρ] = ρ ′ be the corresponding
transformations of ρ, with d ′ � d. Then, for ρ ′ it holds that

PQ
d (ρ ′) = max

E∈LO(d)
Q(E[ρ ′])

= max
E∈LO(d)

Q(E ◦ E′[ρ])

� max
E∈LO(d)

Q(E[ρ]) = PQ
d (ρ),

where “◦” indicates composition of operations. We used, in
the third line, the fact that operations of the form E ◦ E′ span
a subset of LO(d).

(3) Any reduction ρAiBj is the result of a LO of the
form TrHAi

◦ TrHBj
◦ 1Hcomp over the state of the full system.

Such a LO is thus included among those considered in the
maximization procedure involved in the definition of PQ

d , if
dim(HAi

) × dim(HBj
) � d. �

Regarding property (2) of Proposition 4, it is worth
emphasizing that one does not expect PQ

d to coincide with
an entanglement monotone for general mixed states. Indeed,
in most cases Q � 0 for separable states and then PQ

d � 0
for those states, while any entanglement monotone is, by
definition, null for any separable state.

As stated before, Proposition 4 establishes that the PQ
measure takes into account the second fact mentioned in
Sec. III, namely that even CC states can have QC reductions,
a phenomenon that is not captured by the usual discordlike
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measures. For a given CC state, however, any reduction is
a separable state for the same bipartition [25–28]. As a
consequence, the PQ of a given CC state is upper bounded
by that of the separable states. From now on, we are going
to concentrate efforts on the case of nonrestricted local
capabilities, for which the situation is well described by PQ

max.
In that case, the propositions above assert that

(a)PQ
max matches an entanglement monotone for pure states,

(b)PQ
max is non-increasing under general LO and is invariant

under LU,
(c) PQ

max takes into account the quantum correlations of
every possible reduction of the considered state.

Further insight demands a specification of a particular class
of functionals Q, as we are going to do with discordlike
measures in Sec. IV. Before that, we recall some related
works to remark on their similarities and differences with our
proposal.

B. Relations to other measures of quantumness

Some quantum correlations’ measures involving local
unitary operations have recently appeared in the literature.
They can be related, to some extent, to our above proposal.

Let us start by considering the interesting measure of
quantumness advanced by Devi and Rajagopal (DR) [29].
Given a bipartite state ρAB , they consider (i) all the pos-
sible extensions ρĀAB to a larger Hilbert space, such that
TrĀρĀAB = ρAB , and (ii) the set of projective measurements
over ĀA. Hence, quantumness is defined as the minimum
Kullback-Liebler relative entropy between the original state
and the postmeasurement state. As in the potential discord
(PD) case, this measure involves an enlarged Hilbert space.
However, since DR’s measure is computed via a minimization,
this quantity is expected to be lower than, for example, QD.
Indeed, the authors have shown that their measure is an upper
bound to the relative entropy of entanglement.

As a second example, we refer again to the work of Dakić
et al. [20], where the authors show that the rank of the correla-
tion matrix of a bipartite state serves as a witness of quantum
correlations. Any bipartite state can be written in terms of
arbitrary bases {Ai} and {Bj } of Hermitian operators of the
local Hilbert spaces, HA and HB , as ρAB = ∑

ij rijAi ⊗ Bj .
The number of nonzero singular values of the matrix (rij )
is L � d2

min, with dmin = min{dim(HA), dim(HB)}. For CC
states, L � dmin. Hence, L � dmin implies quantum correla-
tions. Nonetheless, there are states with nonzero QD and L <

dmin. In particular, any separable state that can be created by
local operations on CC states has L < dmin. In our treatment,
this implies that any CC state displays the same degree of
quantumness that the most QC separable state that can be
locally created from it (the latter has the same L that the
original CC state).

Another closely related work is the one by Guo and Wu [30],
where the authors define a quantifier of quantum correlations
computed via measurements over mutually unbiased bases. As
in our case, product states are the only ones that exhibit zero
quantumness within this framework.

Finally, we look at another related work, due to Gharib-
ian [31], who defines a measure of nonclassicality as the mini-
mal distance between the state and all its possible local unitary

transformations. From our perspective, the LU operations
accounts for a switch in local observables. Thus, Gharibian’s
measure captures the minimal disturbance suffered by a given
state when changing the local observables. It turns out that
Gharibian’s measure is also a discordlike one, that is nonzero
if and only if the state is not a CC state.

None of the above measures captures what our measure of
potential quantumness does, namely the nonclassical correla-
tions present in CC states. Next, so as to be able to present
some numerical results and obtain deeper insight into these
matters, we specialize things by regarding QD as our quantum
correlation measure.

IV. QUANTUM POTENTIAL DISCORD

Definition (1) determines a family of correlation measures
that depends on the particular functional Q : L(H) → R that
one chooses to quantify the quantum correlations, where L(H)
denotes the corresponding space of density matrices. For
example, we can take Q equal to the usual QD [15,31],

δ(ρ) := I(ρ) − max
�

I(�[ρ]), (3)

with I the quantum mutual information and �[ρ] the
postlocal-measurement state. The measure δ attempts to
capture the minimal disturbance suffered by the state under
a local nonselective measurement, where max� I(�[ρ]) is
interpreted as the classical information accessible by local
measurements. Also, QD is an essential resource in the perfor-
mance of many quantum tasks such as, for example, quantum
state merging [32,33], entanglement distribution [34,35],
quantum measurements [36], and unambiguous quantum state
discrimination [37].

Thus, potential discord (PD) should be defined as

Pδ(ρ) := max
E∈LO

δ(E[ρ]), (4)

where δ(ρ) is the usual QD given by Eq. (3). We are
going to consider local measurements over A, i.e., �[ρ] =∑

i (�A
i ⊗ 1B)ρ(�A

i ⊗ 1B), for some local projective mea-
surement {�A

i }. Analogous results can be found using bilocal
measurements, or considering generalized (instead of projec-
tive) measurements.

A. Analytical bounds and results for PD

A careful observation of Eqs. (3) and (4) reveals a dual role
of the local operations on the to-be-measured party. Indeed,

Pδ(ρ) = max
E

{I(E[ρ]) − I(�E[ρ])}. (5)

Invoking the monotonicity of mutual information under
quantum operations, one sees that both terms (the mutual
information and the classical information) decrease under the
action of E but, as they are subtracted, the net result could
be greater or lower than the original discord of the state ρ.
Moreover, from its definition, it is straightforward to observe
that PD is an intermediate measure between QD and mutual
information for any state ρ:

δ(ρ) � Pδ(ρ) � I(ρ). (6)
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In particular, for pure states, both QD and PD collapse to the
entropy of entanglement (see Sec. III A) and one has

S(ρA) = δ = Pδ � I = 2S(ρA), (7)

with S(ρA) = S(ρB) the von Neumann entropy of the reduced
state. On the other hand, for CC states, QD vanishes and
one has 0 � Pδ � I. Finally, all three measures are zero for
product states.

States with maximally mixed marginals. Let us con-
sider the family of states with maximally mixed marginals
in dA × dB dimensions, that is ρAB with TrA(B)ρAB ∝
1A(B). Bell-diagonal states, including Werner and isotropic
states, are particular examples of these. Their mutual infor-
mation reads I(ρAB) = ln(dAdB) − S(ρAB). Moreover, lo-
cal projective measurements leave the marginals invariant,
yielding for the QD δ(ρAB) = min� S(�[ρAB]) − S(ρAB) =
min� S(ρAB ||�[ρAB]), where S(·||·) is the quantum relative
entropy. Now, we prove that local unital channels cannot in-
crease the quantum correlations of states included in this class.

Proposition 5. Discord for states with maximally mixed
marginals in 2 × d dimensions is nonincreasing under local
unital operations.

Proof. Local unital operations preserve the maximally
mixed marginals. Thus, for a local unital � one
has δ(�[ρ]) = min� S(�[ρ]||� ◦ �[ρ])= min� S(�[ρ]||� ◦
�̃[ρ])� min� S(ρ||�̃[ρ]) � δ(ρ), where �̃ is the measure-
ment defined by the original projectors transformed by the dual
of �. That is, if {Ak} are the Kraus operators defining � and
{�i} a set of orthogonal projectors, then �̃i = ∑

k A†
k�iAk

determines �̃. As unital channels in C2 preserve orthogonal-
ity [16], �̃ is a well-defined projective measurement. Also, in
the third step we have made use of the monotonicity of the
relative entropy under quantum operations. �

Hence, performing a local unital operation on a state
with maximally mixed marginals in 2 × d dimensions cannot
enhance its quantumness. As a corollary, PD restricted to a
maximization over local unital operations coincides with the
usual QD. Besides, in a similar manner we can show that the
same holds for CC states, namely that local unital channels
cannot increase their quantumness as measured by QD.

Streltsov et al. [16] have proved that local unital chan-
nels cannot create quantum correlations for 2 × d states
as measured by the most of the distance-based measures
of quantumness, as the relative entropy of discord or the
geometric measure of quantumness defined in terms of the
fidelity. Proposition 5 implies that the same holds for the usual
QD when considering states with maximally mixed marginals.

Families with PD equal to QD. There are some special
families of states whose symmetries and other particular
properties suggest that PD must be equal to their QD. For
example, for isotropic states in d × d dimensions, of the
form ρI

η = (1 − η)(1/d2) + η |β〉 〈β|, with 0 � η � 1, QD
is analytically calculated and the optimal measurement is
universal, in the sense that any local measurement maximizes
the postmeasurement mutual information. A local operation E

over an isotropic state is such that

δ(E[ρI ]) = I(E[ρI ]) − max
�

I(� ◦ E[ρI ])

= min
�

{
δ�(E[ρ]) − S

(
E

[
ρI

A

]||� ◦ E
[
ρI

A

])}
,

where δ� denotes the nonoptimized version of δ. Now, suppose
that we choose the measurement �E , given by the local
eigenbasis of E[1/4]. (In the particular case of E being unital,
�E becomes arbitrary.) Using the joint convexity of relative
entropy, one has

Pδ(ρI ) = max
E

δ(E[ρI ])

� max
E

p{δ�E (E[|β〉]) − pS(E[1/d]||�E[1/d])}

max
E

pδ�E

(E[|β〉]).

Although not tight—except in the trivial cases: p = 0 or p =
1—this bound suggests that maximizing PD for isotropic states
involves quantum operations maximizing the QD of E[|β〉].
As β is a maximally discordant state, there is no local operation
that can increase its QD and, in turn, provide a higher lower
bound to the corresponding PD. Moreover, our numerical
computations for random isotropic and Werner states of two
qubits suggest that S(E[ρI ]||�E[E[ρI ]]) � S(ρI ||�E[ρI ])
for any LO, although we have been unable to find an analytical
proof of this inequality.

Another interesting example is given by 2 × 2 dimen-
sional states of the form ρα = α

2 |β〉 〈β| + 1−α
2 (|01〉 〈01| +

|10〉 〈10|), with 0 � α � 1 (see Ref. [38]). As those are the
ones that maximize discord for given values of entanglement
of formation for a wide range of α (namely, α such that
the entanglement is �0.620), and observing that, for ρα

states, discord is a monotonic nondecreasing function of the
entanglement of formation, one concludes that any LO cannot
enhance discord, since no LO can increase the entanglement
of formation.

B. Numerical calculations for states of two qubits

In order to understand the role played by the maximization
procedure involved in a PD computation, consider the one-
parameter family of fully CC states ρC

η = (1 − η) |00〉 〈00| +
η |11〉 〈11|, with 0 � η � 1. (Herein, in order to simplify
notation, we use |ij〉 instead of |iA〉 ⊗ |jB〉.) For any value
of η, the state is a mixture of product and mutually orthogonal
(i.e., fully distinguishable) states. Thus, Q(ρC

η ) = 0 for any
reasonable measure of quantum correlations Q. However,
for any η 	∈ {0,1}, a local operation will create quantum
correlations with respect to the bipartition. As seen in Fig. 2,
PD captures this idea, distinguishing the quantumness of
the different members of the ρC

η family depending on the
amount of quantum correlations that can be created under
a LO. Highly symmetric families given by isotropic and
Werner states have the same amount of PD than QD. We
parametrize isotropic states as ρI

η = (1 − η)(1/4) + η |β〉 〈β|,
with |β〉 a Bell-type state, and Werner states are given by
ρW

η = (η/3)P+ + (1 − η)P−, with P± = (1 ± P)/2 and P =∑
ij |ij〉 〈ji|.
In Fig. 3, the upper bound is given by mixtures of a

rank-2 CC state, ρclass = (|00〉 〈00| + |11〉 〈11|)/2, with the
maximally entangled state |β〉, i.e., by the family ρM

γ =
(1 − γ )ρclass + γ |β〉 〈β|, with 0 � γ � 1. Separable states
with QD � 0.2018 cannot be reached from CC states by LO,
as a direct consequence of (i) the nature of the maximal QD of
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FIG. 2. Classically correlated states can exhibit some quantum-
ness revealed by PD. That is the case for the ρC

η family of fully CC
states (orange circles), which attains maximal PD when η = 1/2.
Isotropic (green dotted line) and Werner (red dashed line) families
have a PD that equals their QD, as no LO can increase quantum
correlations for them (see Sec. IV A for a detailed discussion).
PD for states of the ρC

η family fits very well with the function
Pδ(η) ≈ 0.2018 − 0.6979(η − 0.5)2 − 0.4204(η − 0.5)4.

separable states with fixed rank [27] and (ii) the local creation
of quantum correlations from CC states [14]. Figure 4 shows
how entanglement, QD, and PD behave differently for the
states ρM

γ . The left border of Fig. 3 is reproduced by mixtures

FIG. 3. Any separable state with QD � 0.2018 can be reached
from a CC state of two qubits, performing local operations. Nonethe-
less, there are separable states with QD above 0.2018. The comparison
between QD and PD displays this behavior. The upper bound is
given by the ρM

γ family (orange circles; see text for details). Green
data points correspond to ∼105 randomly generated states. The (red
shaded) region at the left of the vertical dashed line corresponds to
the values of QD achievable by separable states. Inset: detail of the
bottom leftmost region.

FIG. 4. Different measures of quantum correlations for the ρM
γ

family. Entanglement of formation (red dashed line) is finite for any
γ > 0. QD (green dotted line) behaves in the same qualitative way
as entanglement, while PD (orange circles) exhibits a transition:
below γ = 1/2 PD takes a constant minimum value and grows
monotonically with γ for γ � 1/2.

of rank-2 CC states with the maximally mixed state. Finally,
the lower bound is given by isotropic states.

It is important to note that, as seen in Fig. 3, for those states
of two qubits with QD �0.2018, arbitrary local operations
cannot increase their quantumness. An open question is
whether for arbitrary quantum states there is a lower bound
for quantumness above which there would not exist a local
operation that increases their quantumness.

Application: PD and local amplitude damping. In Ref. [18],
the authors show how local noise—in particular, a local
Markovian amplitude-damping channel (AD)—can enhance
quantum correlations for a two-qubit system initially in
the fully CC state, ρ0 = (|+0〉 〈+0| + |−1〉 〈−1|)/2. Taking
E0 = |0〉 〈0| + √

1 − p |1〉 〈1| and E1 = √
p |0〉 〈1| as the

corresponding Kraus operators for the AD channel, with p =
1 − e−�t and � the relaxation rate, QD selects an intermediate
value of p as the one that maximizes quantumness. Indeed,
the authors find that, when the state is transformed under the
local AD channel, QD reaches a maximal value of 0.07 when
p ≈ 0.8. On the other hand, PD sets p = 0 (when no operation
is performed at all) as the one of maximum quantumness (see
Fig. 5): the state ρ0 has maximal PD among all CC states of
two qubits, Pδ(ρ0) = 0.2018, as it can be determined by a
local unitary transformation of ρC

η with η = 1/2 (see Fig. 2).
The model can be interpreted in two different ways. First,

we can assume that we are dealing with a system of two qubits,
A and B, immersed in an environment of, at least, another two
qubits Ā and B̄. In that context, we can ask about the maximal
quantumness we can obtain if we perform local operations
in our laboratories with the aid of Ā and B̄. Then, what the
calculations show is that performing local AD channels is not
the optimal election, since QD cannot reach its maximum in
that case. Further, if we are restricted to that family of local
operations, the best option is to set p ≈ 0.8.
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FIG. 5. Under an amplitude damping channel, QD (green dotted
line) and PD (orange dashed-dotted line) exhibit different behaviors,
indicating the fact that both measures reflect different aspects of the
quantumness of a given state. Inset: QD and PD as a function of time
(in units of the inverse of the relaxation rate �).

Alternatively, we can adopt a dynamic interpretation,
where our system evolves in time according to the AD local
channel. In that case, observing the behavior of the PD,
one can conclude that the quantumness of our resources
decrease monotonically with time, since the maximum of PD
corresponds to t = 0.

In both cases, PD appears as a useful notion to understand
the quantumness of the state of our composite system.

V. CONCLUSIONS

Summing up, we have investigated the relative character
of quantum correlations in bipartite states with respect to
the local observables of both parts, emphasizing that the
question is closely related to that of the effect of local
operations on quantum correlations. Those results have been
summarized in Propositions 1–3. We have proposed a family
of measures of what we call potential quantumness, which
takes into account this relative character. These quantifiers
involve a maximization procedure over any measure of
bipartite quantum correlations that, in principle, makes it
hard to compute it—considering that the usual measures
of correlations involve an optimization procedure too [39].
However, in some low-dimensional or highly symmetrical
situations, our quantumness measure can be simplified by
taking advantage of known results. In particular, we have
applied the measure to special families of states of 2 × d

dimensional states, showing that unital operations cannot
enhance the quantumness of states with maximally mixed
marginals for the discord-based version of our measure. Also,
as an application to a typical situation, we have compared our
quantumness measure’s behavior with that of quantum discord
for the case of two qubits evolving under the effect of a local
amplitude-damping channel.

We stress the fact that our presentation is not in contradic-
tion with the ones of Dakic et al. [20] and Gessner et al. [14],

who state that quantum correlations of those separable states
that can be produced from CC states by local operations are
not genuinely quantum. Indeed, our results highlight this fact:
we observe a collapse of the quantum correlations of those
separable states to a constant value of what we call the potential
quantumness. Moreover, we point out that this quantumness
degree is already present in those states, without (and before)
considering any kind of operation, as can be confirmed by
measuring the appropriate local observables.

In conclusion, we have analyzed an alternative quantifica-
tion of quantum correlations, based on the local capabilities
of a given system, which may shed some light on the subject.
Besides some specific analytical and numerical results that we
have presented, it would be interesting to study if distance-
based measures can provide less hard-to-compute versions.
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APPENDIX A: QUANTUM CORRELATIONS UNDER
GLOBAL UNITARY OPERATIONS

When we remove the locality restriction, we are allowed
to explore the whole observables’ space. This situation was
previously studied by Zanardi [4], where he distinguishes
between virtual and real subsystems. Also, in Zanardi et al. [5],
the authors studied the role of the relevant observables in the
tensor product structure of the Hilbert space. Harshmann and

FIG. 6. Under global unitary operations, QD of a fixed state can
be increased by an amount depending on the mixedness of the state. In
particular, pseudopure states can be transformed into isotropic states
(black dots), maximizing the QD for a certain value of entropy. Werner
states (grey line) provide the upper bound for almost every value of
entropy. Orange data points correspond to ∼105 random states. Inset:
original QD for the same states. The region between isotropic and
Werner states is upper bounded by families of two parameters (see
Ref. [41] for details).
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Ranade [7] gave a formal proof of the fact that, in the pure
states case, one can tailor the observables so as to go from
a situation with no entanglement to a maximal entanglement
one, for any fixed state. However, for mixed states the situation
is radically different—as it can be seen, for example, taking the
maximally mixed state, which is the same for any observables
we choose—and the tailoring of observables cannot place all
the states on an equal footing. Nonetheless, consideration of
global unitary operations tends to accumulate the values of
discord near the maximums for given values of entropy (Fig. 6).

Here, an important role is played by pseudopure states
(weighted mixtures of a maximally mixed state with a
pure state), namely ρa,ψ = (1 − a)(1/d) + a |ψ〉 〈ψ |, with
0 � a � 1. For a fixed value of a, one can maximize the
QD by taking |ψ〉 = |β〉 as the maximally entangled state,
so as to convert ρa,ψ into an isotropic state. This can be
accomplished applying a (global) unitary operation over |ψ〉,
i.e., there is always a unitary Uψ such that Uψ |ψ〉 = |β〉.
Hence, Uψρa,ψU

†
ψ = (1 − a)(1/d) + a |β〉 〈β| = ρa,β .

APPENDIX B: OBSERVABLES AND THE STRUCTURE
OF THE HILBERT SPACE

The simplest case may be a four-qubit system, where
A and B, with HA

∼= C4 ∼= HB , are subsystems of two
qubits. The state space is determined by density operators
over HAB

∼= (C2)⊗4 ∼= (C4)⊗2 ∼= C16. If we impose a locality
restriction for the A|B partition, then any unitary operation
UA|B = UA⊗UB over C4 ⊗ C4 acts locally over the A and
B degrees of freedom. Thus, the action of UA⊗UB can be
interpreted in two alternative ways:

(a) as a bilocal unitary transformation over the space of
states;

(b) as a transformation over the spaces of local observable
operators, that is a reconfiguration of the local degrees of
freedom.

Indeed, for any state ρAB and any observable O, its
expectation value is

〈O〉
UA|BρABUA|B † = Tr[(UA|BρABUA|B †

)O]

= Tr[ρAB(UA|B †
OUA|B)]

= 〈UA|B †
OUA|B〉ρAB .

What determines that ρAB has subsystems A and B? The
determination of these subsystems is certainly not unique

and usually relies on the accessible degrees of freedom of
our joint system. A qubit is an abstract entity, well-suited
for the description of quantum bistable systems, as, e.g.,
a spin one-half particle. For two independent particles for
which the only relevant degrees of freedom are their one-half
spins, the “natural” description is given by a density operator
over C2 ⊗ C2. The situation is better understood from the
observables perspective. The natural observables are the spin
operators in A and B, represented by the corresponding Pauli
matrices σA

i and σB
i , with i = x,y,z. If they represent the

relevant degrees of freedom, the description of our system
can be given in terms of the algebra spanned by them,
O = span{1 ⊗ 1,σi ⊗ 1,1 ⊗ σj }, where i,j = x,y,z and 1

is the identity operator for C2. We removed the A and B

superscripts so as to simplify the notation. The algebra O
induces a tensor product structure over the Hilbert space
of the joint system, i.e., HAB = HA ⊗ HB [5]. But these
“natural observables” are not necessarily natural at all: any
unitary transformation O 
→ OU := UOU † could a priori be
regarded, without any further physical assumption, on an equal
footing with the presumed natural spin one.

For example, the pure noncorrelated state |ψ〉 = |00〉 is
unitarily equivalent to the maximally entangled state |β+〉 =
(|00〉 + |11〉)/√2 via a transformation Uψ . Alternatively, one
can assert that |β+〉 is the representation of |ψ〉 in terms of
the algebra UψOUψ

† of observables. Harshman and Ranade
gave in Ref. [7] the formal proof that, for any pure state in CN ,
where N ∈ N is not a prime, the observables can be “tailored”
to induce a subsystem decomposition for which the state has
a desired level of entanglement, from a product state to a
maximally entangled one. The situation is rather different for
mixed states.

When dealing with mixed states, the unitaries do not
allow one to surf the whole space of states. In particular,
a unitary transformation cannot change the eigenvalues of
a given state, thus preserving its original entropy. Let us
suppose that we start with the mixed separable—indeed,
CC—state ρAB

p = p |00〉 〈00| + (1 − p) |11〉 〈11|. A unitary
transformation ρAB

p 
→ UρAB
p U † will preserve the purity and

orthogonality of both components. For example, applying the
Uψ defined above, we have UψρAB

p Uψ
† = p |β+〉 〈β+| + (1 −

p) |β−〉 〈β−|, with |β±〉 := (|00〉 ± |11〉)/√2 two orthogonal
maximally correlated states. For p = 0 or p = 1, ρAB

p is pure
and its transformed version becomes a Bell-type state. When,
p ∈ (0,1), ρAB

p is never pure and its transformed version is not
maximally entangled.
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