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Entangled Bloch spheres: Bloch matrix and two-qubit state space
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We represent a two-qubit density matrix in the basis of Pauli matrix tensor products, with the coefficients
constituting a Bloch matrix, analogous to the single qubit Bloch vector. We find the quantum state positivity
requirements on the Bloch matrix components, leading to three important inequalities, allowing us to parametrize
and visualize the two-qubit state space. Applying the singular value decomposition naturally separates the degrees
of freedom to local and nonlocal, and simplifies the positivity inequalities. It also allows us to geometrically
represent a state as two entangled Bloch spheres with superimposed correlation axes. It is shown that unitary
transformations, local or nonlocal, have simple interpretations as axis rotations or mixing of certain degrees of
freedom. The nonlocal unitary invariants of the state are then derived in terms of local unitary invariants. The
positive partial transpose criterion for entanglement is generalized, and interpreted as a reflection, or a change
of a single sign. The formalism is used to characterize maximally entangled states, and generalize two qubit
isotropic and Werner states.

DOI: 10.1103/PhysRevA.93.062320

I. INTRODUCTION

Probabilistic mixtures of single qubit quantum states can be
represented by a density matrix [1]. The density matrix may be
written in the Pauli matrix basis, with the coefficients making
up the Bloch vector [2]. The latter has the simple geometry
of a vector inside a unit Bloch sphere, whose magnitude
indicates the state’s purity, and whose rotations are unitary
transformations.

The simplicity of this representation motivated many au-
thors to generalize it to quantum systems of higher dimensions.
In three dimensions, the basis of Gell-Mann matrices [3] led
to an irregularly shaped Bloch vector space [4–6]. Generalized
Gell-Mann matrices have been used as the basis in the
four-dimensional (two-qubit) case [7–9], again leading to a
space without much symmetry. Two-qubit state space has
also been analyzed through Hopf fibrations [10], and steering
ellipsoids [11,12].

In this work, we make use of tensor products of Pauli
matrices as our four-dimensional system basis, with the
coefficients representing entries of a Bloch matrix. Numerous
authors have used a similar approach [11–24]. We go further by
studying the properties of this representation, and in particular,
deriving the positivity conditions.

The positivity of the quantum states leads to three inequal-
ities that allow us to parametrize and visualize the state space.
The inequalities suggest a singular value decomposition,
which simplifies the positivity conditions and reproduces
known unitary invariants [16] with additional insights. The
conditions also allow us to generalize the positive partial
transpose criterion for entanglement [25,26], and strikingly
interpret it as a reflection, or a change of a single sign. We also
find that the most basic nonlocal transformations [27] reduce
to a family of two-dimensional rotation matrices which mix
various degrees of freedom of the Bloch matrix representation.
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The paper is organized as follows; Secs. II and III
review the Bloch vector representation, with the former on
qubits and qutrits, and the latter on two-qubit systems. The
positivity inequalities, a key result of this paper, are derived
in Sec. IV. The singular value decomposition, along with its
simplification of the positivity conditions and representation
of a quantum state as a pair of entangled Bloch spheres
are presented in Sec. V. The actions of unitary operations,
local and nonlocal, and their invariants are expressed in
the Bloch representation in Sec. VI. Section VII provides
a novel geometric interpretation and generalization of the
positive partial transpose entanglement criterion. Section VIII
applies the formalism to the characterization of maximally
entangled, pure states, and generalized isotropic/Werner states.
Geometric visualization of the quantum state space, indicating
separability and entanglement, takes place in Sec. IX. Finally,
we recapitulate and propose future extensions in Sec. X.

We make use of Einstein summation notation where
repeated indices in the subscript are summed over, unless
otherwise indicated. Greek indices α,β,γ,δ,μ,ν run from 0 to
3, and Roman indices i,j,k, run from 1 to 3, unless otherwise
indicated. Column vectors are denoted with an over right
arrow (�u), while row vectors are given a conjugate transpose
dagger (�v†). The Bloch matrix is denoted

↔
r , with the two-sided

over arrow indicating its two-dimensional tensorial nature.
The identity matrix is denoted I , with the context implying
dimensionality.

We take a thorough approach, reproducing some known
results to keep this work reasonably self-contained, and
relegating some detail to the appendixes.

II. BLOCH REPRESENTATIONS OF SINGLE SYSTEMS

A quantum state may be represented by a density matrix ρ

containing all its observable information [1]. The expectation
value of any observable O is given by 〈O〉 = Tr[ρO], where
the latter is the trace operator. The time evolution of a quantum
system, governed by the Schrödinger equation for a pure state
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[28], is given by a unitary transformation on the density matrix
for a mixed state, ρ → UρU †, with U a unitary matrix.

However, it is insightful to complement the density matrix
with an alternative representation of the quantum state space.
To this end, we examine the Bloch vector and its generalized
representation.

A. Pauli spin matrices

For two-level systems, we study the extended Pauli matri-
ces; with the identity matrix added,

σ0 =
(

1 0
0 1

)
= I, σ1 =

(
0 1
1 0

)
,

σ2 =
(

0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
. (1)

The Pauli matrices form a set of generators for the group of
2 × 2 special unitary matrices SU(2). Along with the identity,
they constitute a complete basis of the space of 2 × 2 Hermitian
matrices over the real numbers.

Pauli matrices satisfy the following well-known product,
commutation, and anticommutation relations:

σiσj = δij I + iεijkσk, (2)

[σi,σj ] = 2iεijkσk, (3)

{σi,σj } = 2δij I, (4)

respectively, where δij is the Kronecker delta and εijk is the
Levi-Civita symbol. To generalize to higher dimensions, we
wish to extend (2), (3), and (4) to include σ0. One can verify by
trial that the four matrices in (1) satisfy the following product
identity:

σασβ = (θαβγ + iεαβγ )σγ , (5)

where the third-order tensors θαβγ and εαβγ are defined

θαβγ ≡
{

1 one index is 0, the other two equal

0 otherwise,
(6)

and

εαβγ ≡

⎧⎪⎨
⎪⎩

1 αβγ ∈ {123,231,312}
−1 αβγ ∈ {321,213,132}

0 repeated indices, or any index is 0.

(7)

Of the 43 = 64 entries in each of the two ten-
sors, θαβγ takes the nonzero value of 1 for 10 en-
tries, αβγ ∈ {000,011,101,110,022,202,220,033,303,330},
and εαβγ takes a nonzero value for the six entries defined
in (7). Note that εαβγ is just the Levi-Civita symbol extended
to take the value zero if any index is zero. The tensor θαβγ is
symmetric under the exchange of any two indices, while εαβγ

is antisymmetric.
Also note that θαβγ satisfies

θαβ0 = δαβ, (8)

θαβi = δα0δβi + δ0βδαi, (9)

where δαβ is the Kronecker delta extended to zero index value.
Equation (5) implies the commutation and anticommutations
relations,

[σα,σβ] = 2iεαβγ σγ , (10)

{σα,σβ} = 2θαβγ σγ . (11)

Taking the trace of (5) we can also derive the orthogonality
relation,

Tr(σασβ) = (θαβγ + iεαβγ )2δγ 0

= 2(θαβ0 + iεαβ0)

= 2δαβ, (12)

where we made use of (8) in the last line.

B. Single qubit

After characterizing the matrices in (1), we can now express
the 2 × 2 density matrix in the basis they create,

ρ = 1
2 (I + riσi) = 1

2 rμσμ, (13)

where the scalar r0 is always unity to ensure Tr ρ = 1, and
scalars r1, r2, and r3 are the components of the Bloch vector
[2], denoted �r = (r1,r2,r3). Since ρ is Hermitian, ri are always
real. Because of the orthogonality relation (12), the Bloch
vector is given by

rμ = Tr(ρσμ). (14)

As an alternative representation of the quantum state, the
Bloch vector has some advantages over the density matrix. For
one, it is easier to visualize the quantum state space in which
Bloch vector exists. To see this, recall that the purity of the
density matrix, Tr ρ2, is at most unity. Using (13) we have

1 � Tr ρ2 = rμrν Tr(σμσν)/4 = (1 + ‖�r‖2)/2, (15)

implying ‖�r‖ � 1. Hence, the Bloch vector lies inside a sphere
of unit radius, known as the Bloch sphere.

Unitary transformations on the density matrix are inter-
preted as rotations in the Bloch vector picture. Any unitary
operator U in two dimensions can we written,

Uâ,α = cos
α

2
I − i sin

α

2
aiσi, (16)

where α is an angle and â = (a1,a2,a3) is a unit vector.
A unitary transformation on the density matrix in (13)

leaves I unchanged, but modifies the Bloch vector term
riσi . Making use of (16), writing c = cos α

2 , s = sin α
2 , and

suppressing subscripts on U , we find the effect of a unitary
transformation on the Bloch vector term to be

UrjσjU
† = (cI − isaiσi)(rjσj )(cI + isakσk)/2

= rj (c2σj − icsai[σi,σj ] + s2aiakσiσjσk)

= rj (c2σj + 2csεijkaiσk + 2s2ajaiσi − s2σj )

= rj (cos ασj + (1− cos α)ajaiσi + sin αεijkaiσk)

= (cos αδij + (1− cos α)aiaj + sin αεkjiak)rjσi,

(17)
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where in the third line, we used (3) and the iden-
tity σiσjσk ≡ δij σk − δikσj + δjkσi + iεijkI . Setting r ′

iσi ≡
UrjσjU

†, where r ′
i are the entries of the transformed Bloch

vector, we see that r ′
i is equal to the terms that multiply σi in

the last line. In vector notation,

�r ′ = (cos αI + (1 − cos α)ââ† + sin α�â�×)�r
= Q(â,α)�r, (18)

where ââ† is an outer product, and �â�× = [
0 −a3 a2
a3 0 −a1

−a2 a1 0
]

is the cross product matrix of â (i.e., �â�×�b = â × �b, ∀�b). We
identified the bracketed terms as the rotation matrix Q(â,α),
which rotates vectors by the angle α around â.

The rotation is more evident if we rewrite (18) as

�r ′ = (�r · â)â + cos α(�r − (�r · â)â) + sin αâ × �r. (19)

The first term is the projection of �r onto â, left unchanged
by the rotation. The two other terms are of equal magnitude,
perpendicular to each other and to the first. They constitute the
rotated component of �r .

A final interesting property of the Bloch vector is that
expectation values become inner products. A generic qubit
observable can be written O = sI + �c · �σ , for some scalar s

and vector �c. Its expectation value is

〈O〉 = Tr[ρO] = 1
2 (2s + ricj Tr[σiσj ]) = s + �r · �c. (20)

C. Single qutrit

Given the usefulness of the Bloch vector representation,
some authors have generalized it to a qutrit system [4–6].
They write the 3 × 3 density matrix ρ as

ρ = 1

3

(
I +

8∑
m=1

rmGm

)
, (21)

where Gm are the Gell-Mann matrices [3] in Appendix A 1, and
the real coefficients rm are the components of the generalized
Bloch vector, still denoted �r . The Gm are Hermitian, traceless,
and satisfy the orthogonality relation Tr [GmGn] = 2δmn.
However, they are not unitary like the Pauli matrices. More
fundamentally, writing their commutation relations,

[Gm,Gn] = 2i

8∑
l=1

flmnGl, m,n = 1,...,8. (22)

The antisymmetric tensor fijk takes the nonzero val-

ues f123 = 1, f458 = f678 =
√

3
2 , f147 = f165 = f246 = f257 =

f345 = f376 = 1
2 [29]. The flmn are the structure constants of

the Lie algebra induced by the Gell-Mann matrices [30,31].
Comparing (22) with (3), the structure constants induced by
Pauli matrices are given simply by the Levi-Civita tensor,
which up to antisymmetry, takes only a single nonzero value of
1. This simplicity creates the symmetry underlying the Bloch
sphere. Conversely, the complexity of the fijk implies a lower
level of symmetry, and a more complex qutrit Bloch vector
space.

Indeed, the space of allowable three-level Bloch vectors
is a complicated region lying inside an eight-dimensional
hypersphere without filling it. Representative cross sections

FIG. 1. Cross sections of the qutrit Bloch vector space. Allowed
regions in the hypersphere are shaded.

of this complex eight-dimensional space are shown in Fig. 1,
simplified from Kimura [4].

In addition, three-level unitary operators do not have a
simple decomposition as in the two-level case in (16), and
the equivalence between unitary transformations and rotations
does not hold. Though the Bloch vector representation of
qutrits helps quantify purity and polarization [32,33], the lack
of symmetry limits its usefulness. As we demonstrate in the
remainder of the paper, much symmetry and utility can be
recovered in a four-level system.

III. TWO-QUBIT SYSTEM

A. Dirac matrices

A 4 × 4 density matrix may represent a single four-level
system, or more commonly, a pair of coupled two-level
systems: two qubits. Several authors analyzed the Bloch vector
space of this system [7–9]. However, the basis they used is a
generalization of the Gell-Mann matrices with complicated
structure constants, resulting in a 15-dimensional space of
allowable Bloch vectors with little useful symmetry.

We investigate the same system using the Dirac matrices,
denoted Dμν , as our basis. They are defined as

Dμν = σμ ⊗ σν. (23)

We have named them after Dirac as he used several of
them in his eponymous equation on the theory of relativistic
electrons [34,35]. The 16 matrices are explicitly shown in
Appendix A 2. The Dirac matrices satisfy the orthogonality
relation,

Tr(DαβDγδ) = 4δαγ δβδ. (24)

From (5), one can calculate the product, the commutator,
and the anticommutator, respectively, given by

DαβDγδ = (θαγμ + iεαγμ)(θβδν + iεβδν)Dμν, (25)

[Dαβ,Dγδ] = 2i(θαγμεβδν + εαγμθβδν)Dμν, (26)

{Dαβ,Dγδ} = 2(θαγμθβδν − εαγμεβδν)Dμν. (27)

In the right-hand sides of (26) and (27), at most one of the
two bracketed terms is nonzero for any index values. Since
the tensors θ and ε are either zero or have absolute value 1,
the bracketed terms themselves, up to a sign, can take a single
nonzero value, unity. That is, the structure constants of the
Dirac matrices are simple, since they are derived from the
Pauli matrices. We then expect the representation of two-qubit
density matrices in the Dirac basis to yield useful symmetries
in the Bloch vector space.
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B. The Bloch matrix

Writing the density matrix in the Dirac basis,

ρ = 1
4 rμνDμν, (28)

where the scalar coefficients rμν constitute the 16 entries of
the Bloch matrix

↔
r .

The orthogonality relation (24) implies the Bloch matrix
entries are accessible as the expectation values of tensor
products of local observables, as per

rμν = Tr
(
ρDμν

) = 〈σμ ⊗ σν〉. (29)

For ρ to be a density matrix, it is necessary and sufficient
that it be Hermitian, of unit trace, and positive semidefinite.
The first two conditions imply

↔
r is real and r00 = 1. Translating

positivity to a condition on
↔
r is involved, and we defer it to

Sec. IV.
It is instructive to split the Bloch matrix

↔
r into four compo-

nents; a scalar of value unity, two three-dimensional vectors,

and a 3 × 3 matrix. We write

↔
r =

⎡
⎢⎣

1 r01 r02 r03

r10 r11 r12 r13

r20 r21 r22 r23

r30 r31 r32 r33

⎤
⎥⎦ ≡

[
1 �v†

�u R

]
, (30)

where ui = ri0, vj = r0j , and Rij = rij .
The vector �u = Tr2[ρ] (�v = Tr1[ρ]) is the local Bloch

vector of the first (second) subsystem once the other subsystem
is traced out, while R is the correlation matrix between the
two subsystems. Bloch matrix components are used by many
authors [6,11–21]. However, we go further in our analysis and
characterization.

For a density matrix with entries ρij , its Bloch matrix
↔
r is,

explicitly,

↔
r =

⎡
⎢⎢⎢⎣

1 2Re(ρ12+ρ34) −2Im(ρ12+ρ34) ρ11 − ρ22 + ρ33 − ρ44

2Re(ρ13+ρ24) 2Re(ρ23+ρ14) 2Im(ρ23−ρ14) 2Re(ρ13−ρ24)

−2Im(ρ13+ρ24) −2Im(ρ23+ρ14) 2Re(ρ23−ρ14) −2Im(ρ13−ρ24)

ρ11 + ρ22 − ρ33 − ρ44 2Re(ρ12−ρ34) −2Im(ρ12−ρ34) ρ11 − ρ22 − ρ33 + ρ44

⎤
⎥⎥⎥⎦,

where Re and Im are, respectively, the real and imaginary components of what follow. Conversely, given a Bloch matrix
↔
r with

components �u, �v, and R, defined in (30), the density matrix ρ it constructs is given by

ρ = 1

4

⎡
⎢⎢⎢⎣

1+R33+u3+v3 R31−iR32+v1−iv2 R13−iR23+u1−iu2 R11−iR12−iR21−R22

R31+iR32+v1+iv2 1−R33+u3−v3 R11+iR12−iR21+R22 −R13+iR23+u1−iu2

R13+iR23+u1+iu2 R11−iR12+iR21+R22 1−R33−u3+v3 −R31+iR32+v1−iv2

R11+iR12+iR21−R22 −R13−iR23+u1+iu2 −R31−iR32+v1+iv2 1+R33−u3−v3

⎤
⎥⎥⎥⎦.

C. Example states

Here we consider the Bloch matrices of common quantum
states. The maximally mixed state, ρ = I/4, has a Bloch matrix
where all the entries except r00 are zero.

For a product state, ρ = ρ1 ⊗ ρ2, there are no classical or
quantum correlation between the two subsystems. Supposing
the single-qubit density matrices ρ1 and ρ2 have the Bloch
vectors �u and �v, respectively, then the Bloch matrix of the
product state is given by

↔
r prod =

[
1 �v†

�u �u�v†

]
=

[
1
�u
][

1 �v†]. (31)

That is, the correlation matrix is equal to the outer product
of the two Bloch vectors, R = �u�v†, and the Bloch matrix

↔
r prod

itself is an outer product of two 4-vectors. Hence the interesting
algebraic property of the Bloch matrix representation: Tensor
products of operators become outer products of vectors.

A separable state is one that can be written as a convex sum
of product states, and therefore exhibits classical correlations,
but no quantum correlations. A state that is not separable is
said to be entangled. Given an arbitrary state, it is not practical
to judge whether it is separable or entangled by attempting to
write it as a convex sum of product states. In practice, one uses
the powerful entanglement criterion discussed in Sec. VII.

The four maximally entangled Bell states are given
by |�±〉 = 1√

2
(|00〉 ± |11〉),|�±〉 = 1√

2
(|01〉 ± |10〉) [36,37].

Their density matrices are ρ�± = |�±〉〈�±| and ρ�± =
|�±〉〈�±|. We find their Bloch matrices to be

↔
r�+ =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎤
⎥⎦,

↔
r�− =

⎡
⎢⎣

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦,

↔
r�+ =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤
⎥⎦,

↔
r�− =

⎡
⎢⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎦. (32)

As expected for the Bell states, the local Bloch vectors for the
individual systems are always zero, since the partial trace of
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a maximally entangled state yields a maximally mixed state
on the subsystem. The singlet state, |�−〉, has a correlation
matrix that is the negative identity, often making it simpler to
deal with algebraically than the other Bell states. However, this
is a superficial distinction; the singlet state has no fundamental
properties not shared by other maximally entangled states.

We can additionally find the Bloch matrices of generalized
Bell states, 1√

2
(|00〉 + eiθ |11〉) and 1√

2
(|01〉 + eiθ |10〉), also

maximally entangled. Recall that an orthogonal matrix Q

is real matrix that satisfies Q†Q = QQ† = I , and hence
has determinant ±1. Interestingly, one finds the correlation
matrices of all the aforementioned maximally entangled states
to be orthogonal with determinant −1. We shall see in
Sec. VIII A that these are in fact defining properties of
maximally entangled states.

D. Observables

To complete our understanding of the Bloch matrix repre-
sentation, it is instructive to represent observables in the Dirac
basis as well. We write an observable A as

A = [
↔
A]αβDαβ, (33)

with [
↔
A] the Dirac basis representation of A. Note that (33)

lacks the factor of 1
4 present in the Bloch matrix definition

(28). Since A is Hermitian, [
↔
A] is real.

The expectation value of A is

〈A〉 = rμν[
↔
A]μν ≡ ↔

r · [
↔
A]. (34)

The result is reminiscent of the qubit inner product expectation
value in (20). As an example, suppose we seek the expectation
value of local spins measured in the singlet state. The
observable B = (ĉ · �σ ) ⊗ (d̂ · �σ ) is represented in the Dirac
basis as [

↔
B] = [0 0

0 ĉd̂†]. The expectation value is given by

〈B〉�− = ↔
r�− · [

↔
B] = Tr(−I d̂ĉ†) = −ĉ · d̂.

For the singlet state, expectation values of local observables
reduce to inner products because its correlation matrix is the
negative identity. This algebraic convenience is the reason it is
more common than other Bell states.

It is sometimes useful to take the inner product of operators,
which can be shown to yield

Tr[AB] = 4[
↔
A] · [

↔
B]. (35)

We also examine the representation of the square of an
observable, which will later help us derive the positivity
inequalities. The square of A is

A2 = 1
2 {A,A} = 1

2 [
↔
A]αβ[

↔
A]γ δ{Dαβ,Dγδ}

= [
↔
A]αβ[

↔
A]γ δ(θαγμθβδν − εαγμεβδν)Dμν,

≡ [
↔
A2]μνDμν, (36)

where we substituted (27) in the second line, which also serves
as a definition of [

↔
A2]μν . Applying (8) and (9) to the definition,

we find the components of [
↔
A2] to be

[
↔
A2]00 = [

↔
A] · [

↔
A],

[
↔
A2]i0 = 2([

↔
A]00[

↔
A]i0 + [

↔
A]ij [

↔
A]0j ),

[
↔
A2]0j = 2([

↔
A]00[

↔
A]0j + [

↔
A]i0[

↔
A]ij ),

[
↔
A2]ij = 2([

↔
A]00[

↔
A]ij + [

↔
A]i0[

↔
A]0j )

− εi1i2iεj1j2j [
↔
A]i1j1 [

↔
A]i2j2 . (37)

IV. THE POSITIVITY CONDITION

In this key section, we translate the positivity condition
on ρ, to a set of conditions on

↔
r , or more precisely, on its

components �u, �v, and R.

A. The characteristic polynomial and Newton’s identities

We begin with the general procedure employed by Kimura
[4] for the derivation of positivity conditions. For a 4 × 4 den-
sity matrix ρ with eigenvalues λl to be positive, it must satisfy

λ1, λ2, λ3, λ4 � 0. (38)

We consider the characteristic polynomial of ρ, defined
as c(λ) ≡ det (ρ − λI ). We can write this polynomial as a
factorized product of terms involving its roots (the eigenvalues
of ρ), or as a sum of powers of λ, as per

c(λ) =
4∏

l=1

(λ − λl) =
4∑

m=0

(−1)mamλ4−m, (39)

where the coefficients am are themselves functions of the roots
λl . If one expands (39) and compares coefficients of λ, one
finds the am are the elementary symmetric polynomials, given
by Vieta’s formulas [38],

a0 = 1,

a1 = λ1 + λ2 + λ3 + λ4,

a2 = λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4,

a3 = λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4,

a4 = λ1λ2λ3λ4.

Descartes’ rule of signs colloquially states that the roots
of a polynomial are all positive if and only if its coefficients
alternate signs. More precisely, and given the manner in which
the am were defined in (39), we have

λl � 0, ∀l ⇔ am � 0, ∀m. (40)

Next, we note that the power sums of the eigenvalues are
equivalent to the trace of the power of the density matrix, as per

sn ≡ λn
1 + λn

2 + λn
3 + λn

4 = Tr ρn, n = 1,2,3,4. (41)

The elementary symmetric polynomials am and the power
sums sn are related by Newton’s identities [38]:

1!a1 = s1,

2!a2 = s2
1 − s2,

3!a3 = s3
1 − 3s1s2 + 2s3,

4!a4 = s4
1 − 6s2

1s2 + 8s1s3 + 3s2
2 − 6s4. (42)
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Making the substitutions sk = Tr ρk, s1 = 1 in the identities
(42), and making use of (40), we find that the positivity of ρ,
defined by (38), is equivalent to the truth of the following four
inequalities:

0 � 1,

0 � 1 − Tr ρ2, (43a)

0 � 1 − 3 Tr ρ2 + 2 Tr ρ3, (43b)

0 � 1 − 6 Tr ρ2 + 8 Tr ρ3 + 3(Tr ρ2)2 − 6 Tr ρ4. (43c)

The three nontrivial inequalities above depend on the trace
of the powers of ρ, which we now need to write in terms of
the Bloch matrix and its components.

B. The density matrix as an observable

We proceed to calculate Tr ρ2, Tr ρ3, and Tr ρ4 in terms of
↔
r and its components �u, �v, and R.

To this end, we define R̃ as the cofactor matrix of R. It
is the 3 × 3 matrix whose (i,j ) element is (−1)i+j times the
(i,j ) minor of R. Recall the minor is the determinant of the
2 × 2 submatrix obtained from R once the i th row and j th

column have been removed. The cofactor matrix satisfies the
following identity:

RR̃† = R̃†R = (det R)I. (44)

The above implies R̃† is proportional to the inverse of R,
if the latter is invertible. Explicitly, the entries of R̃ are given
by [39]

R̃ij ≡ 1
2εi1i2iεj1j2j ri1j1ri2j2 . (45)

We now define an observable proportional to the density
matrix,

A ≡ 4ρ, (46)

which along with (28) and (33) implies that in the Dirac basis
representation,

[
↔
A]αβ = rαβ, [

↔
A] =

[
1 �v†

�u R

]
. (47)

That is, A is the observable whose Dirac basis representation
is equivalent to the Bloch matrix of ρ.

We also find the Dirac basis representation of A2.
Substituting the components from (47) into (37) and
simplifying, we have

[
↔
A2] =

[ ‖↔
r‖2 2(�v† + �u†R)

2(�u + R�v) 2(�u�v† + R − R̃)

]
, (48)

where we have used the cofactor matrix definition (45), and
‖↔
r‖2 is the square magnitude of the Bloch matrix

↔
r . The latter

satisfies

‖↔
r‖2 = 1 + ‖�u‖2 + ‖�v‖2 + ‖R‖2, (49)

and ‖R‖2 = Tr (R†R), using the Hilbert-Schmidt inner
product.

Additionally, note that (46) implies

Tr ρn = 1

4n
Tr An. (50)

C. The trace of the powers of ρ

We now have the tools we need to calculate the trace of the
powers of ρ. Starting with (50) for n = 2,3,4, we split An to
products of A and A2, apply (35) to find the result in terms of
inner products of [

↔
A] and [

↔
A2]. Then we use the expressions

(47) and (48) to find the trace in terms of �u, �v, and R.
Proceeding in this manner we have for n = 2,

Tr ρ2 = 1

42
Tr A2= 1

42
Tr(AA)=1

4
[

↔
A]·[ ↔

A]=1

4
‖↔
r‖2.

(51)

For n = 3,

Tr ρ3 = 1

43
Tr A3 = 1

43
Tr(A2A) = 1

42
[

↔
A2] · [

↔
A]

= 1

16
(‖↔

r‖2 + 2(�v† + �u†R)�v

+ 2�u†(�u + R�v) + 2 Tr[R(�u�v† + R − R̃)†])

= 1

16
(3‖↔

r‖2 − 2 + 6�u†R�v − 6 det R), (52)

where in the last line we used (44) and (49). Finally, for n = 4
we have

Tr ρ4 = 1

44
Tr A4 = 1

44
Tr(A2A2) = 1

43
[

↔
A2] · [

↔
A2]

= 1

64
(‖↔

r‖4 + 4(�v† + �u†R)(�v† + �u†R)†

+ 4(�u + R�v)†(�u + R�v)

+ 4 Tr[(�u�v† + R − R̃)(�u�v† + R − R̃)†])

= 1

64
(‖↔

r‖4 + 4(‖↔
r‖2 − 1 + ‖�u‖2‖�v‖2 + ‖�u†R‖2

+‖R�v‖2 + ‖R̃‖2 + 6�u†R�v − 2�u†R̃�v − 6 det R)),

(53)

and again we made use of (44) and (49), as well as �v†R†�u =
�u†R�v, and ‖R̃‖2 ≡ Tr(R̃R̃†).

D. Final positivity conditions

To conclude this section, we plug the expressions for
Tr ρn from (51), (52), and (53) into (43). Doing so yields
three inequalities, which constitute necessary and sufficient
conditions for the positivity (i.e., physicality) of the underlying
quantum state. These inequalities are the first of the principal
results of this paper, and are given by

4 − ‖↔
r‖2 � 0, (54a)

2(�u†R�v − det R) − (‖↔
r‖2 − 2) � 0, (54b)

8(�u†R�v − det R) + (‖↔
r‖2 − 2)2 + 8�u†R̃�v

− 4(‖�u‖2‖�v‖2 + ‖�u†R‖2 + ‖R�v‖2 + ‖R̃‖2) � 0. (54c)

To recapitulate,
↔
r is the Bloch matrix, �u,�v, the local Bloch

vectors of the first and second subsystems, respectively, R

the correlation matrix between the two subsystems, and R̃
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the cofactor matrix of R. The positivity inequalities (54) are
equivalent to those independently derived in Ref. [40].

The inequality (54a) is analogous to (15), setting a limit on
the magnitude of the Bloch matrix. The matrix entries lie inside
a 15-dimensional hypersphere, but don’t fill it due to the other
inequalities (54b) and (54c). The vector �u (�v) of the first (sec-
ond) subsystem always multiplies R and R̃ from the left (right).
This will facilitate an important simplification in Sec. V.

It is instructive to operationally interpret some terms. We
write the three Cartesian canonical (column) unit vectors as
ê1,ê2, ê3. The i th row of R (i.e., ê

†
i R) can be thought of

as a pseudo-Bloch vector of the second subsystem provided
we simultaneously measure the operator êi · �σ = σi on the
first subsystem. Hence, measurements along êi in the first
subsystem are correlated with those along ê

†
i R in the second.

The j th column of R (i.e. Rêj ) has the analogous interpretation
as a pseudo-Bloch vector of the first subsystem.

Therefore, det R can be thought of as the triple product of
the three pseudo-Bloch vectors for either subsystem, equiva-
lent to the signed volume of the parallelepiped they subtend.
This volume can be contrasted with the volume of the unit cube
subtended by ê1,ê2, ê3, since the latter volume in one subsys-
tem is in some sense correlated with the former volume in the
other. Even though these volumes do not correspond to actual
regions of space, the ratio between them quantifies the overall
correlation of the subsystems in three-dimensional space. This
is particularly true when dealing with a spin- 1

2 system and the
êk correspond to directions along which spin is measured.

The term �u†R�v is the expectation value if each subsystem
is simultaneously measured along its local Bloch vector. In the
case of an uncorrelated product state (R = �u�v†), this reduces
to ‖�u‖2‖�v‖2. Hence its departure from this latter quantity is a
gauge to what extent the two subsystems are correlated.

Similar to the interpretation of the rows of R, the term
�u†R is the pseudo-Bloch vector of the second subsystem,
provided we simultaneously measure the operator �u · �σ on
the first subsystem. That is, the local Bloch vector �u in the
first subsystem is correlated with �u†R in the second. Also the
Bloch vector �v in the second subsystem is correlated with R�v
in the first.

V. SINGULAR VALUE DECOMPOSITION

A. Definitions

To further simplify the representation of the two-qubit
quantum state, we apply the singular value decomposition
(SVD) to the correlation matrix R [41]. Any real matrix R

can be written as the following matrix product,

R = M�N †, (55)

where M and N are orthogonal corresponding to the two
subsystems, and � is non-negative diagonal. The diagonal
entries of � = diag(x1,x2,x3) are the singular values of R.
The rank of R is the number of nonzero xi .

One may write the matrices in terms of their column vectors,
M = [m̂1 m̂2 m̂3], N = [n̂1 n̂2 n̂3]. Each set of column vectors
is an orthonormal basis for three-dimensional space. The unit
vector m̂i is the left singular vector and n̂i is the right singular
vector of the singular value xi . We may write (55) as a sum of

singular vector outer products weighted by the singular values,

R = x1m̂1n̂
†
1 + x2m̂2n̂

†
2 + x3m̂3n̂

†
3. (56)

The three singular values are uniquely defined for a given
R, however, they may always be reordered arbitrarily as long
as the columns of M and N (i.e., the singular vectors) are
reordered in the same manner. There is additional freedom in
defining M and N , in that we may always flip the signs of both
the left and right singular vectors for a given singular value.
If some singular values are degenerate (i.e., equivalent), then
an arbitrary orthogonal transformation may be applied to both
the subspaces spanned by the degenerate right and left singular
vectors. If a singular value is zero (implying R has rank 2 or
less), then the sign of either one of its singular vectors may be
flipped.

The SVD splits the 9 degrees of freedom in R to 3 each
for �, M, and N . The left and right singular vectors are
the primary correlation axes for their respective subsystems.
This means measurements along the vector m̂i in the first
subsystem have a correlation coefficient, defined as the joint
expectation value, of xi with measurements along n̂i in the
second subsystem, and zero correlation with measurements
orthogonal to n̂i . More compactly,

〈m̂i · �σ ⊗ n̂j · �σ 〉 = m̂
†
i Rn̂j = δij xi . (57)

Orthogonal matrices have determinant ±1. A positive
(negative) determinant is equivalent to the matrix representing
a rotation (rotoreflection), and its columns constituting a right
(left)-handed basis. We define the correlation orientation or
orientation of R, denoted d,

d ≡ det(M) det(N ), (58)

which takes on values ±1. The orientation is +1 if the two
bases created by the right and left singular vectors have
the same handedness, and −1 if they have the opposite
handedness. Note that d is uniquely defined for any R of
rank 3, since the freedom of flipping the signs of a right and
left singular vector simultaneously leaves d unchanged. In this
case d = sgn(det R).

For R of rank 2 or less, d is not uniquely defined, since one
may flip the sign of a single singular vector. Ambiguity can be
mitigated by choosing a particular M and N consistently for
the decomposition of a given R. This can be done, for example,
by choosing them such that d = −1 whenever there is an
ambiguity, a preference motivated by the negative orientation
of Bell states.

Since the quantum state depends also on local Bloch
vectors, we define the relative Bloch vectors �g, �h as

�g ≡ M†�u, �h ≡ N †�v. (59)

These are simply the Bloch vectors expressed in the bases set
by the columns of M and N . Any ambiguity in defining M

and N discussed above translates to ambiguity in �g and �h, and
can be mitigated the same way.

Therefore, the 15 degrees of freedom in the quantum state
↔
r may be split to 3, 3, 9 for �u, �v, R in the Bloch matrix picture,
or to five sets of 3 for �, M , N , �g, �h in the SVD picture. The
two pictures yield complementary insights and we use both in
the remainder of the paper.
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B. Positivity inequalities

We can now simplify the positivity inequalities in (54) by
making use of (55), (58), and (59) to write them in terms of �,
M , N , �g, �h, and d. To this end, it is straightforward to show that

�u†R�v = �g†��h, det R = d det �, ‖R‖2 = ‖�‖2,

‖�u‖2 = ‖�g‖2, ‖�v‖2 = ‖�h‖2, ‖�u†R‖2 = ‖� �g‖2,

‖R�v‖2 = ‖��h‖2, ‖↔
r‖2 = 1 + ‖�g‖2 + ‖�h‖2 + ‖�‖2.

(60)

We also need to express the cofactor matrix R̃ in terms of
the SVD. If R is an invertible matrix, then the cofactor identity
(44) implies

R̃ = (det R)R−†

= d det �(N�−1M†)†

= dM�̃N †, (61)

where �̃ ≡ diag(x2x3,x3x1,x1x2) = (det �)�−1 is the cofac-
tor matrix of �. Appendix B shows that the result of (61) holds
even if R is not invertible.

We can now plug (60) and (61) into the positivity inequali-
ties (54), and find the reduced positivity inequalities,

4 − ‖↔
r‖2 � 0, (62a)

2(�g†��h − d det �) − (‖↔
r‖2 − 2) � 0, (62b)

8(�g†��h − d det �) + (‖↔
r‖2 − 2)2 + 8d �g†�̃�h

− 4(‖�g‖2‖�h‖2 + ‖� �g‖2 + ‖��h‖2 + ‖�̃‖2) � 0. (62c)

Note that the reduced positivity inequalities above have no
direct dependence on M and N , but only indirectly through
the orientation d. Of the 15 degrees of freedom in the quantum
state, only 9 matter for positivity; 3 each for �g, �h, and �. Since
d = ±1, it is not a continuous degree of freedom, but rather
can be thought of as a binary flag determined from some con-
tinuous degrees of freedom. The inequalities’ left-hand sides
resemble the characteristic polynomial coefficients in [18].

C. Entangled Bloch spheres

The singular value decomposition allows us to visualize
a two-qubit state through a pair of Bloch spheres, one per
subsystem. The Bloch vectors �u and �v are inscribed in
their respective spheres, representing 6 degrees of freedom
detectable through local measurements. The 9 degrees of
freedom that can only be detected nonlocally are contained
in �, M , and N , or equivalently, in the two matrix products
M� and N�. The columns of these two products are the
scaled correlation axes, given by xim̂i and xin̂i respectively.

To complete the geometric representation of the quantum
state, the three scaled correlation axes for each system can be
added to their respective Bloch sphere, where they represent
the magnitude and direction of the correlation. The scaled
correlation axes in the two systems are paired off by a shared
index i.

As per (57), spin in the directions of two such axes with
the same index are correlated, proportional to their shared
length xi , while spin along axes with different indices are
uncorrelated. That is, simultaneously measuring the two spins
on multiple copies of the system, each along the direction of
its scaled correlation axis i, yields an expectation value equal
to the axis length. Measuring the two spins simultaneously
along correlation axes with different indices, i �= j , yields
zero expectation value.

Figure 2 includes the described Bloch sphere pair diagrams
for each of four representative quantum states; a randomly
generated generic state, a pure state, a product state, and
the maximally entangled singlet state. All but the product
state are entangled and have a negative orientation (d =
−1). The dotted correlation axes in each Bloch sphere are
mutually orthogonal, and axes with the same label in the
two spheres have equal magnitude, though the projection of
three-dimensional vectors onto a two-dimensional diagram
may obscure these facts.

Figure 2(a) represents an arbitrary state generated from a
randomly selected 4 × 4 density matrix.

In the pure state Fig. 2(b), the first scaled correlation axis
has unit magnitude, while the magnitudes of the second and
third are equivalent. The Bloch vector is colinear with the first
correlation axis. Section VIII B shows that these are always
properties of pure states.

The product state in Fig. 2(c) has only one scaled correlation
axis, which is colinear with the Bloch vector. The second
and third scaled correlation axes vanish as x2 = x3 = 0. The
magnitude of the nonvanishing correlation axis is equivalent
to the product of the magnitudes of the two Bloch vectors. The
SVD of product states demonstrating these properties can be
discerned by comparing R = �u�v† = ‖�u‖‖�v‖ûv̂† with (56).

Finally in the singlet state in Fig. 2(d) the Bloch vectors
vanish, the scaled correlation axes all have unit magnitude,
with an opposite handedness in each Bloch sphere. We see in
Sec. VIII A that these are properties of all maximally entangled
states. The unique additional feature of the singlet state lies in
the fact that all paired correlation axes between the two spheres
differ only by a sign. This follows from its correlation matrix
R being the negative identity matrix, as shown in (32).

The ambiguities of the SVD are better understood in the
diagrammatic representations above. Reordering the singular
values and singular vectors corresponds to a simple relabeling
of the scaled correlation axes. One may freely flip the signs
of any two paired correlation axes, since measurements in the
negative direction of both subsystems will still be positively
correlated. If two scaled correlation axes have the same length,
an identical rotation about the third axis may be applied to
them in both Bloch spheres. For example, axes 2 and 3 in
both spheres for the pure state may be rotated by the same
arbitrary angle about axis 1, leaving the underlying quantum
correlations unaffected.

Although any two-qubit quantum state can be represented
as a pair of correlated Bloch spheres, not every possible
configuration of Bloch vectors and scaled correlation axes
represents a physically allowed quantum state. For a state to
be physically allowed, it must satisfy the positivity inequalities
(62). Since the latter depend on the relative not absolute Bloch
vectors, one may arbitrarily rotate a Bloch sphere as a single
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(a) Generic State

(b) Pure State

(c) Product State

(d) Singlet State

FIG. 2. The Bloch spheres of the two subsystems for (a) generic
state, (b) pure state, (c) product state, and (d) singlet state. In each
Bloch sphere, the local Cartesian axes vectors are in black, the
subsystem’s Bloch vector is in red, and the scaled correlation axes
(xim̂i or xi n̂i) dashed in blue. The scaled correlation axes are mutually
orthogonal in each Bloch sphere, and are labeled with their index i to
indicate the correlation pairing between the two Bloch spheres.

unit (along with its Bloch vector and correlation axes) without
affecting the physicality of a state.

While the Bloch sphere pairs help us visualize individual
quantum states, Sec. IX is dedicated to visualizing the entire
quantum state space.

VI. UNITARY OPERATIONS

A. Local unitary transformations

In this section we investigate the effect of unitary operations
on the Bloch matrix components as well as the singular value
decomposition. We begin with local unitary operations.

We showed in (18) that a single qubit unitary transformation
is equivalent to a rotation of the Bloch vector. Let U1 and
U2 be 2 × 2 unitary matrices with unitary transformations
corresponding to rotation matrices Q1 and Q2, respectively. It
is straightforward to show that applying a local unitary trans-
formation to the quantum state, ρ → ρ ′ = (U1 ⊗ U2)ρ(U †

1 ⊗
U

†
2 ), is equivalent to the following transformations on the

Bloch matrix components [14,16]:

�u → �u′ = Q1 �u,

�v → �v′ = Q2�v, (63)

R → R′ = Q1RQ
†
2,

where the primed symbols indicate the value after the trans-
formation. The local Bloch vectors are rotated as expected,
while the first rotation is applied to the rows of the correlation
matrix, and the second to its columns.

Since Qi are rotations, they satisfy det Qi = 1 and Q
†
i Qi =

I . With this in mind, it easy to show that the transformations
(63) leave every term in the positivity inequalities (54)
unchanged. It is to be expected of course that local unitary
transformations do not affect positivity. Nonetheless, it is
interesting that even the individual terms in the inequalities
are unaffected.

It becomes clear why this is the case when we examine the
effect of local unitary transformations in the SVD picture.
The modified correlation matrix can be expressed in its
own SVD, R′ = Q1M�N †Q†

2 ≡ M ′�N ′†, with M ′ ≡ Q1M

and N ′ ≡ Q2N themselves orthogonal matrices. The relative
Bloch vectors are left unaffected by the transformation,
as per �g′ = M ′†�u′ = M†Q†

1Q1 �u = M†�u = �g, with a similar
result for �h. The orientation is likewise unaffected with
d ′ = det(Q1) det(Q2)d = d.

The effect of the local unitary transformation is then

M → M ′ = Q1M,
(64)

N → N ′ = Q2N,

with �,�g,�h,d left unchanged. Only the unaffected degrees
of freedom are present in the positivity inequalities (62),
explaining why even their individual terms are left unchanged.
This representation describes in a simpler manner the local
unitary invariants derived in Ref. [16].

In the paired Bloch sphere diagrams, a local unitary
transformation rotates the Bloch vector and correlation axes
in each sphere together, leaving the relative Bloch vectors
unchanged. Equivalently, the reverse rotation may be applied
to the absolute axes in each sphere.
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There are two senses in which we speak of “local degrees
of freedom.” We may mean the degrees of freedom that are
locally measurable. These are simply the Bloch vectors �u,�v.
We may also mean the degrees of freedom that are free to
vary via local unitary transformations. That is, the orthogonal
matrices M,N , with the product of their determinants, the
orientation d, left unchanged.

B. General unitary transformations

We now consider the effect of general unitary operations
on the composite quantum state. Ideally, we would like
to represent an arbitrary unitary operator U ∈ SU(4), as a
combination of local and nonlocal unitary transformations. A
powerful result by Zhang et al. [27] fulfills this requirement,
stating that any such U can be written as

U = (U1 ⊗ U2)Ů (θ1,θ2,θ3)(U3 ⊗ U4), (65)

where the Uk are single-qubit unitary operators, and
Ů (θ1,θ2,θ3), which we call a basic nonlocal operator, is given
by

Ů = exp

[
i

2
(θ1σ1⊗σ1 + θ2σ2⊗σ2 + θ3σ3⊗σ3)

]
. (66)

In other words, a generic unitary transformation can be
reduced to a local transformation, followed by a basic nonlocal

transformation, followed by another unitary transformation,
with 6, 3, and 6 degrees of freedom, respectively. In the
previous section we examined the effect of local unitary
transformations, and therefore only need to consider the effect
of a basic nonlocal operator Ů . The above representation is not
necessarily unique [27], however, this is of no consequence for
our purposes.

Since the three σj ⊗ σj commute, the matrix exponential of
their sum is simply the product of their matrix exponentials, in
any order. It is therefore possible to factorize Ů to the product
of three exponentials,

Ů (θ1,θ2,θ3) = Ů1(θ1)Ů2(θ2)Ů3(θ3), (67)

where the Ůj , called irreducible nonlocal operators, are given
by

Ůj (θj ) = exp

[
i

2
θjσj⊗σj

]
, j = 1,2,3. (68)

To understand the action of nonlocal operations, we
examine the effect of one of the irreducible nonlocal trans-
formations, say Ů1, with the understanding that Ů2 and Ů3

will be of similar effect. With much algebra, some of which is
shown in Appendix C, the transformation ρ → ρ ′ = Ů1ρŮ

†
1

can be shown to transform the Bloch matrix
↔
r in the following

manner:

↔
r → ↔

r
′ =

⎡
⎢⎢⎢⎣

1 v1 v2 cos θ1 + R13 sin θ1 v3 cos θ1 − R12 sin θ1

u1 R11 v3 sin θ1 + R12 cos θ1 −v2 sin θ1 + R13 cos θ1

u2 cos θ1 + R31 sin θ1 u3 sin θ1 + R21 cos θ1 R22 R23

u3 cos θ1 − R21 sin θ1 −u2 sin θ1 + R31 cos θ1 R32 R33

⎤
⎥⎥⎥⎦. (69)

One can interpret the operation Ů1 as resulting in four
two-variable “mixing” operations, where each mixture is
the mathematical application of the two-dimensional rotation

matrix [cos θ − sin θ
sin θ cos θ

], with θ the mixing angle, to a vector of

the two mixed variables. The operation mixes u2 with R31 and
v2 with R13 with a mixing angle −θ1, and u3 with R21, v3 with
R12 with a mixing angle θ1.

More generally, supposing {i,j,k} to be a cyclic permuta-
tion of {1,2,3}, the operation Ůj mixes uk with Rij , vk with
Rji with a mixing angle −θj , and ui with Rkj , vi with Rjk

with a mixing angle θj .
This mixing action is precisely what generates entangle-

ment. If we start with a product state (Rij = uivj ), then the
modified Bloch vector for each subsystem in (69) will depend
on the other system’s Bloch vector. That is, correlation was
created between the two subsystems.

One may combine the effects of the three Ůj to find the
action of Ů , as per (67). The effect of the basic nonlocal
transformation ρ → ρ ′ = ŮρŮ † on the Bloch matrix

↔
r is

given in Appendix C.
A question that naturally arises at this point is the effect of

irreducible nonlocal transformations on the SVD picture, i.e.,
its effect on �,�g,�h,M,N , and d. Since local operations only act
on M and N , one may naively hope that an irreducible nonlocal

operator only acts on �,�g,�h, and d. However, this cannot be the
case, since it would imply that irreducible nonlocal operators
commute with local operations. Given the action of Ů1 on
�u,�v,R shown in (69), there is no simple way to represent its
effect on the SVD components.

We demonstrate this by plotting the effect of Ů1(θ1) on
the singular values of a randomly generated quantum state
in Fig. 3. The singular values change with a period π .

FIG. 3. The effect of the irreducible nonlocal unitary transforma-
tion due to Ů1(θ1) on a generic quantum state. The three singular
values xi are plotted against the parameter angle θ1 in the domain
[−π,π ].
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We also see that Ů1 has an effect on the singular values
akin to avoided crossings of Hermitian operator eigenvalues
[42]. In the region in parameter space where the avoided
crossing between singular values xi and xj takes place,
one can show that their respective primary correlation axes
undergo a rapid but continuous transformation roughly with
the net effect that they switch places; m̂i ←→ m̂j and
n̂i ←→ n̂j . For some special choices of initial state (or with a
simultaneous application of Ů2 and/or Ů3), one can get actual
crossings.

The above figure simplifies somewhat for pure states, and
more so for maximally entangled states. However, the action
of Ů1 on the SVD components cannot, in general, be given
in a form that is simpler than its action on the Bloch matrix
components in (69).

C. Unitary invariants

For a 4 × 4 matrix there are exactly four invariant quantities
unchanged by unitary transformations. The invariants of a
density matrix ρ may be taken as its eigenvalues λ1,λ2,λ3,λ4.
Alternatively, since functions of invariants are themselves
invariant, one may take Tr ρ, Tr ρ2, Tr ρ3, Tr ρ4 as the trace
unitary invariants. Since Tr ρ = 1, the values of the three
other traces define an equivalence class of density matrices.
Unitary transformations can take a density matrix to any
other in its equivalence class, but not to one in another
class.

One may also find three invariants in terms of the Bloch
matrix components. Given their derivation from Tr ρn, it is
clear that the left-hand sides of the positivity inequalities (54)
or (62), are unitarily invariant. We call these the positivity
unitary invariants, as their values indicate how far the state is
from violating positivity.

We can further simplify these by extracting from them three
independent invariants, similar to those in [40], which we call
the Bloch invariants, given by

B1 ≡ ‖↔
r‖2,

B2 ≡ �u†R�v − det R = �g†��h − d det �,

B3 ≡ ‖�u‖2‖�v‖2 + ‖�u†R‖2 + ‖R�v‖2 + ‖R̃‖2 − 2�u†R̃�v
= ‖�g‖2‖�h‖2 + ‖� �g‖2 + ‖��h‖2 + ‖�̃‖2 − 2d �g†�̃�h.

(70)

To summarize, there are different levels of invariance. Local
unitary transformations will leave nine continuous degrees of
freedom �,�g,�h as well as the discrete d invariant [16,43].
A general (nonlocal) unitary transformation will leave the
three degrees of freedom in the Bloch invariants B1,B2,B3

unchanged. The novel feature of the expressions in (70) is that
they express the general unitary invariants in terms of the local
unitary invariants.

If the quantum state undergoes nonunitary evolution, as in
open system dynamics [44] or depolarizing noise channels,
then even the Bloch invariants Bi will change.

Interestingly, Bi is of order i + 1 in the Bloch matrix terms.
If the quantum state is acted upon by a depolarizing noise

channel ρ → ρ ′ = pρ + (1 − p) I
4 , with (1 − p) the noise

ratio, then the Bloch invariants change as Bi → pi+1Bi .

VII. ENTANGLEMENT CRITERIA

A quantum state ρ is defined as separable if it can be written
as a convex combination of product states,

ρ =
∑

i

piρ
(1)
i ⊗ ρ

(2)
i , (71)

where pi are non-negative probabilities that sum to unity. A
state that is not separable is defined as entangled.

Given a quantum state, it is important to find out whether
or not it is entangled. To this end, one can use the positive
partial transpose (PPT) criterion, also known as the Peres-
Horodecki criterion. It was first stated by Woronowicz [45]
based on previous work by Størmer [46], and extended for use
in quantum systems by Peres and Horodecki [25,26]. The PPT
criterion states that if one takes the transpose of one subsystem
(i.e., partial transpose) of the density matrix ρ, and the resulting
matrix is not positive (i.e., has a negative eigenvalue), then ρ

was entangled. This criterion is necessary and sufficient for
entanglement in the two-qubit systems addressed in this paper,
and sufficient for higher dimensions.

We apply the PPT criterion in the Bloch matrix picture.
First we note that taking the transpose of the extended Pauli
matrices leaves σ0,σ1,σ3 unchanged, and flips the sign of
σ2. Therefore, transposing a single-qubit density matrix is
equivalent to flipping the sign of the second entry of the
Bloch vector in (13). That is, the Bloch vector transforms
as �r → Qt �r , where

Qt =

⎡
⎢⎣

1 0 0

0 −1 0

0 0 1

⎤
⎥⎦. (72)

Based on this, the partial transpose of the quantum state
ρ with Bloch matrix components �u,�v,R is equivalent to the
transformations,

�u → Qt �u, and R → QtR, or
(73)

�v → Qt �v, and R → RQ
†
t ,

where the transformations in the first (second) line signify
a transpose of the first (second) subsystem. In terms of
their effects on the positivity inequalities (54), the preceding
transformations only reverse the signs of the det R and �u†R̃�v
terms.

To interpret this result, it is more instructive to examine
the partial transpose operation in the SVD picture. Following
the example of local unitary transformations in (64), it is easy
to show that the partial transpose transformations in (73) are
equivalent to

M → QtM, or
(74)

N → QtN,

with �,�g,�h, left unchanged. The effect of either of the above
is to flip the orientation d → det Qtd = −d.

The next step is to examine whether the partially transposed
state violates positivity. Given the above, the only change to the
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positivity inequalities (62) by the partial transpose operation
is to flip the sign of d. If after the orientation d is reversed,
all the positivity inequalities remain satisfied, then the initial
state was separable, otherwise it was entangled.

Therefore, the only meaningful effect of the partial trans-
pose is to flip the sign of the orientation d. This may be
alternatively achieved if Qt is replaced by any orthogonal
matrix Q− such that det Q− = −1. Given some quantum state,
we call the quantum state with identical �,�g,�h, but the reverse
orientation d its conjugate state. Testing the entanglement of
a quantum state is equivalent to testing the positivity of its
conjugate state.

The partial transpose may be replaced by other testing
operations with the same effect. For example, a partial
antidiagonal transpose, corresponding to Q− = diag(1,1,−1),
would work just as well. Every choice of Q− corresponds to
a new criterion. Though the standard PPT criterion and its
antidiagonal version are the simplest to apply to ρ, others may
possibly be more convenient under some assumptions.

If we think of our qubits as spin- 1
2 systems, the axes in

the Bloch sphere correspond to three spatial dimensions. In
this case, the entanglement criterion corresponds to applying
the rotoreflection Q− to one subsystem’s spin and testing the
physicality of the result, similar to the mirror quantum theory
of Ref. [47]. Separable states may be interpreted as ones whose
spin mirror image in one subsystem are physical, while for
entangled states the single subsystem spin mirror images are
unphysical. This makes sense when one recalls the spin of a
member of an entangled pair is not simply an isolated vector
in space, but rather a spatial distribution of correlations.

Reflecting the spin can be thought of as a combination of
spatial parity (P) inversion and time (T) inversion, common in
quantum field theory [48]. However, it is important to note that
this PT inversion is applied to a single subsystem of the two, not
the combined state as is usually the case. Reflections become
more difficult to intuit if our qubits are not spin- 1

2 systems, but,
for example, two-level atoms where the Bloch vectors don’t
correspond to spatial directions. In this case, reflections are
simply taken abstractly over the Bloch vector space.

Applying an entangling unitary operation will leave the
invariants in (70) unchanged, but the individual terms in
the positivity equation will change such that entanglement
criteria are satisfied. For example, an entangling unitary
transformation will change the two quantities �u†R�v = �g†��h
and det R = d det � by the same amount such that their
difference, the invariant B2, remains unchanged. However,
the change may be such that reversing the sign of the second
expression will lead to a violation of the positivity inequalities,
and hence the transformed state is entangled.

Quantum states where R (or �) is of rank 1 or 0 cannot
be entangled, since the two terms whose sign is flipped
will be zero, and the satisfied positivity inequalities remain
unchanged. Even rank 2 states where �u†R̃�v = d �g†�̃�h = 0
cannot be entangled.

For a maximally entangled Bell state, the values of the
left-hand sides of the positivity inequalities (62), after the
reversal of the orientation, are 0,−4,−16, respectively. These
are “the most negative” values these quantities can attain for
any quantum state. The first has no d dependence and of course
is never negative for any state. It is also quite common for only

the third quantity to be negative for an entangled state (e.g.,
�u = �v = 0, R = −0.4I ). Although it remains to be rigorously
verified, there do not seem to be physical quantum states where
the second is negative but the third is not. One may therefore
consider the degree of negativity of the left-hand side of the
third inequality (62c), after orientation reversal d → −d, as a
possible candidate for degree of entanglement.

There remains the important question of whether unphys-
icality under reflection is fundamental to entanglement, or
just an artifact of the two-qubit system. In bipartite systems
larger than a qubit-qutrit pair, the PPT criterion is sufficient
but not necessary. For such systems, a subsystem’s Bloch
vector space may have eight or more dimensions. Perhaps
more feasibly, one can also speculate about multipartite
entanglement between n qubits. The Bloch matrix will then
become a tensor with 4n entries. Unfortunately, useful analysis
will be complicated by the lack of a simple singular value
decomposition in higher dimensions [49,50]. Despite this, one
may hypothesize multiple generalized orientation parameters
d in higher dimensions. If they exist, perhaps inverting them
will provide workable entanglement criteria.

VIII. SPECIAL CLASSES OF STATES

A. Maximally Entangled states

In this section we find the Bloch matrix description for
some important classes of states. We begin by characterizing
maximally entangled states, a class that includes Bell states.
A maximally entangled state may be defined as being (i) pure,
and (ii) locally maximally mixed (LMM), i.e. once a partial
trace eliminates one subsystem, the other is left in a maximally
mixed state.

A pure density matrix ρ has a single nonzero eigenvalue,
equal to unity. From the derivation of the in Sec. IV,
it is clear that achieving purity is equivalent to all three
positivity inequalities achieving equality. The LMM condition
is equivalent to both local Bloch vectors being zero. Setting
�g = �h = 0 and equality in (62), we have

‖�‖2 = x2
1 + x2

2 + x2
3 = 3,

d det � = dx1x2x3 = −1,

‖�̃‖2 = x2
2x2

3 + x2
3x2

1 + x2
1x

2
2 = 3. (75)

Given that xi � 0, the only solution to the above is d = −1
and x1 = x2 = x3 = 1. That is, � = I . Therefore

R = MN † ≡ O−, (76)

where O− is an orthogonal matrix with det O− = d = −1.
Maximally entangled states are characterized as those

whose local Bloch vectors �u,�v are zero, and whose correlation
matrix R is orthogonal with determinant −1, conditions clearly
satisfied by the Bell states (32).

The uniqueness of �,�g,�h, and d in the above solution
implies that there exists a single maximally entangled state,
unique up to local unitary transformations.

B. Pure states

As mentioned above, requiring that the positivity in-
equalities (62) achieve equality suffices to characterize pure
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states. However, solving the resulting equalities is in general
algebraically involved. It is easier to note that any pure state
can be reached from another by the action of an arbitrary
unitary transformation, as the latter do not affect purity.

There are 7 degrees of freedom in bipartite pure states: 2 for
each of the 4 complex coefficients, less one for an irrelevant
global phase. Local unitary operations create 6 of the 7, and
so we expect basic nonlocal unitary operation Ů to effect
the remaining degree of freedom. Since �,�g,�h,d are invariant
under local unitaries, we can start with their values for a known
pure state and then apply Ů , expecting it to generate the final
degree of freedom on these quantities.

Therefore we start with the pure state �g = �h = �u = �v =
(1,0,0), and � = R = diag(1,0,0). Applying Ů (θ1,θ2,θ3),
whose effect on the Bloch components is shown in (C2), to
this state:

�u′ = �v′ = (cos θ,0,0),

R′ =
⎡
⎣1 0 0

0 0 sin θ

0 sin θ 0

⎤
⎦,

where θ = θ2 − θ3. As expected, the resulting pure state
has a single degree of freedom defined by θ . The above
correlation matrix has the singular value decomposition

R′ = M ′�′N ′† where M ′ = [
1 0 0
0 0 1
0 1 0

], N ′ = I , and �′ =
diag(1, sin θ, sin θ ). We also find d = det(M ′) det(N ′) = −1,
�g′ = M ′†�u′ = �u′, and �h′ = N ′†�v′ = �v′.

Therefore pure states are characterized by

�g = �h = (cos θ,0,0),

� = diag(1, sin θ, sin θ ), (77)

d = −1,

for some arbitrary θ , up to an identical reordering of the entries
in �,�g,�h. The single nonlocal degree of freedom in (77) along
with 6 local ones in the choice of M,N (so long as they satisfy
d = −1) make up the 7 degrees of freedom in pure states.

One can substitute (77) into the positivity inequalities (62)
and verify they all satisfy equality. The pure state defined in
(77) is a product state if θ = 0 (the state we started with) and
maximally entangled when θ = π

2 . Hence, the quantity sin θ

may be taken as a measure of entanglement for pure states.

C. Generalized isotropic states

Werner states are defined as invariant under local unitary
transformations of the form U ⊗ U [51]. In two-qubit systems,
their density matrix takes the well-known form,

ρwer(z) = 1 − z

4
I + z|�−〉〈�−|, (78)

where z is a scalar parameter. Similarly, isotropic states are
defined as invariant under local unitary transformations of the
form U ⊗ U ∗, with density matrix of the form,

ρiso(z) = 1 − z

4
I + z|�+〉〈�+|. (79)

It is known that both Werner and isotropic states are physical
for − 1

3 � z � 1 and entangled for 1
3 � z. More inclusively,

we define generalized isotropic states as those invariant under
local unitary transformations of the form Uâ,α ⊗ Ub̂,β , where
the unitary transforms are defined in (16), â,α vary freely, and
b̂,β are assumed to be one-to-one functions of â,α. The Bloch
matrix components �u,�v,R, of the invariant state should satisfy

�u′ = Q(â,α)�u = �u,

�v′ = Q(b̂,β)�v = �v, (80)

R′ = Q(â,α)RQ†(b̂,β) = R,

and Q are rotations with the specified parameters.
The above should hold for all â,α, and all b̂,β, with some

relationship to be found between the two pairs. Therefore �u =
�v = 0, as the zero vector is the only one invariant under all
rotations. Further, R then satisfies

Q(â,α)RR†Q†(â,α) = RR†,

Q(b̂,β)R†RQ†(b̂,β) = R†R.

The two equalities above mean that RR† and R†R are
invariant under any orthogonal change of basis. The only such
matrices are proportional to the identity. Given that RR† and
R†R are positive with the same magnitude, they both have the
same positive proportionality constant. Hence we can write

RR† = R†R = z2I, (81)

where z is some real scalar. This implies that R = zO for some
orthogonal O. Substituting this in the last equality in (80) and
rearranging, we have

Q(â,α) = OQ(b̂,β)O†.

Making use of the explicit expression for a rotation in (18),
the last equation reduces to

cos αI + (1 − cos α)ââ† + sin α�â�×
= cos βI + (1 − cos β)Ob̂(Ob̂)† + sin αO�b̂�×O†. (82)

Taking the trace of both sides, cos α = cos β ⇒ α = ±β.

Without loss of generality, set α = β. Then (82) implies

ââ† = Ob̂(Ob̂)†, (83)

�â�× = O�b̂�×O†. (84)

Multiplying (83) by â from both sides yields (â†Ob̂)2 = 1.

Noting that the indices of the cross product matrix satisfy
(�â�×)ij = εjikak , (84) then implies

εjikak = OimεnmlblOjn = εjik det(O)Oklbl, (85)
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where we have used (B1) with O† in the place of O. Canceling
the Levi-Civita factor, (85) is equivalent to â = (det O)Ob̂.
More symmetrically,

â†Ob̂ = det O. (86)

Therefore, a generalized isotropic state is defined as
invariant under Uâ,α ⊗ Ub̂,α for any angle α, and any â,b̂

satisfying (86) for some fixed orthogonal O. Explicitly, the
state has Bloch matrix components,

�u = �v = 0, R = zO. (87)

Without loss of generality, choose det O = −1, the sign of z

offsetting our choice. Finally, we find the range of z for which
the general isotropic state is positive or entangled. Note that
(44) implies the cofactor matrix is R̃ = −z2O. Substituting
(87) into the positivity equations (54),

1 − z2 � 0,

2z3 − 3z2 + 1 � 0, (88)

−3z4 + 8z3 − 6z2 + 1 � 0.

The polynomials on the left-hand side appear in Ref. [6],
though apply more generally here. The first inequality sim-
plifies to −1 � z � 1. The last two factor to

(1 − z)2(2z + 1) � 0,
(89)

(1 − z)3(3z + 1) � 0.

The last inequality is satisfied for

− 1
3 � z � 1, (90)

which is the range for z common to all three inequalities.
To check for entanglement, we apply the positivity criterion

from Sec. VII, which amounts to flipping the sign of z in
the inequalities (88). Reproducing the steps above with sign
reversal, we conclude that the state is separable for −1 � z �
1
3 and entangled for

1
3 < z. (91)

Section VIII A showed that an orthogonal matrix with
negative determinant characterizes the correlation matrix of
all maximally entangled states. Therefore, a general isotropic
state takes the form,

ρGI(z) = 1 − z

4
I + z|�〉〈�|, (92)

where |�〉 is any maximally entangled state. Given (90) and
(91), ρGI(z) is positive for − 1

3 � z � 1, and entangled for 1
3 <

z. This successfully generalizes Werner and isotropic states,
reproducing their parameter ranges.

IX. GEOMETRY OF THE STATE SPACE

It is instructive to use the results thus far to visualize
the quantum state space. We draw the regions of physically
allowable quantum states, where the positivity inequalities (62)
hold. As the latter are functions only of �,�g,�h, d, each point
in our diagrams will represent a family of states equivalent up
to local unitary operations.

There are 9 continuous degrees of freedom in the afore-
mentioned variables, we hold constant 6 and plot the physical
regions for the remaining 3. We create two types of diagrams,
singular value diagrams, with �g and �h constant the singular
values x1,x2,x3 along the diagonal of � varying on the axes,
and relative Bloch vector diagrams, with � and �h constant the
components of �g varying on the axes.

In each case, regions are plotted twice; once for each value
of the orientation d. Regions with d = 1 are colored in blue and
d = −1 in red. As per the entanglement criterion in Sec. VII,
states in the the intersection of the two regions are separable,
and states in one region but not the other are entangled.

It can be shown that all three positivity inequalities are
needed, in the sense that no two among them imply the third,
in general. However, it is the third inequality that determines
the surface of the convex allowable region; while the other two
eliminate superfluous disconnected regions. Since the third
positivity inequality contains terms up to the fourth power,
the allowable regions are bordered by a family of quartic
surfaces [52].

Figure 4 contains the singular value diagrams for several
values of �g and �h. The most interesting is Fig. 4(a), where both
local Bloch vectors are zero, i.e., LMM states. In this case, the
last positivity inequality (62c) factors to

(d−x1+x2+x3)(d+x1−x2+x3)

× (d+x1+x2−x3)(d−x1−x2−x3) � 0, (93)

which describes a tetrahedral region bounded by four planes
for d = ±1. If xi were allowed to go negative, the vertices
would be (−d,d,d), (d,−d,d), (d,d,−d), and (−d,−d,−d).
This “large” tetrahedron is analogous to the one usually
representing linear combinations of Bell states, with a Bell
state at each vertex [14,20,53]. One can see this if d = 1,
whence the vertex coordinates are the diagonals of Bell state
correlation matrices in (32).

However, since xi � 0, only the octant in Fig. 4(a) is
physical. The wedge bounded by points (1,0,0), (0,1,0),
(0,0,1), and (0,0,0) gives the set of separable states (for both
values of d). The “small” tetrahedron in the figure bounded
by points (1,0,0), (0,1,0), (0,0,1), and (1,1,1) contains
entangled states (with d = −1). The origin corresponds to the
maximally mixed state and the point (1,1,1) is the maximally
entangled state, unique up to local operations. This graphical
representation is more powerful than the usual one as all
maximally entangled states are included in a single point.

The straight line from the origin to (1,1,1) represents the
generalized isotropic states of Sec. VIII C. As expected, 1

3
of this line lies in the separable region, and the rest in the
entangled. The volume occupied by entangled states is double
that of separable states, so by a natural measure, there are twice
as many entangled as there are separable LMM states.

As the relative Bloch vectors �g and �h change, they continu-
ously deform the blue and red regions as shown in the figures.
Either the blue or red regions may vanish entirely, as is the
case with Fig. 4(e), in which case the states are all entangled.

Given the result in Sec. VIII B, pure states must lie along
the diagonal of the outer surfaces of the unit cube, and there
is only a single pure state for a suitable choice of �g = �h. For
LMM states, the pure state is the maximally entangled state.
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(a) �g = �h = (0, 0, 0) (b) �g = �h = (0, 0, 0.5)

(c) �g = (0, 0, 0.5)
�h = (0, 0, 0)

(d) �g = �h = (0.3, 0.3, 0.3)

(e) �g = (0.4, 0.4, 0.4)
�h = (0.3, 0.3, 0.3)

(f) �g = (−0.4,−0.5, 0.2)
�h = (−0.33,−0.33, 0.1)

FIG. 4. Singular value diagrams. The regions in singular value
space x1,x2,x3 where positivity is satisfied, for fixed values of �g and
�h. Bounded by the unit cube, with the origin in the rear bottom left.
Regions with d = 1 in blue and d = −1 in red.

In Fig. 4(b), the pure state is at the vertex of the red deformed
tetrahedron at (

√
3

2 ,
√

3
2 ,1). Product states must lie on one of

the Cartesian axes.
For degenerate choices of �g and �h, i.e., gi = gj and

hi = hj , i �= j , local operations may switch the ordering of xi

and xj . There is threefold degeneracy in Figs. 4(a), 4(d), and
4(e), and twofold degeneracy in Figs. 4(b) and 4(c). One may
eliminate the degeneracy by restricting the singular values
to a subset of the space, e.g., the region x1 � x2 � x3 for
threefold degeneracy.

Figure 5 contains the relative Bloch vector diagrams, with
allowed regions of the vector �g for several fixed values of �,�h.
Figure 5(a) shows the simplest case when the singular values
and the second subsystem’s Bloch vector are zero. The allowed
�g region is a complete Bloch sphere for both values of d, with

(a) Σ = diag(0, 0, 0)
�h = (0, 0, 0)

(b) Σ = diag(0.3, 0.3, 0.3)
�h = (0, 0, 0)

(c) Σ = diag(0.5, 0.5, 0.3)
�h = (0, 0, 0)

(d) Σ = diag(0.3, 0, 0.3)
�h = (0, 0.3, 0)

(e) Σ = diag(0.4, 0.3, 0.2)
�h = (0, 0, 0.5)

(f) Σ = diag(0.25, 0.3, 0.3)
�h = (0.4, 0.5, 0.5)

FIG. 5. Relative Bloch vector diagrams. The coordinates of �g =
(g1,g2,g3) where positivity is satisfied, for fixed values of � and �h.
Axes in the range [−1,1], with the origin at the center of the cube.
Regions with d = 1 in blue and d = −1 in red.

all the states separable. The quartic (62c) reduces to a sphere
via (‖�g‖2 − 1)2 = 0.

Figure 5(b) shows concentric spheres, with the smaller
sphere containing separable states and spherical shell between
the two containing entangled states. Figure 5(c) shows a
“football” for d = −1 that is entirely entangled. Figures 5(d)
and 5(e) demonstrate a partial overlap between the regions for
the two values of d. In Fig. 5(f) they are disjoint, meaning all
the states are entangled.

X. SUMMARY

With the goal of generalizing the Bloch sphere, we have
examined two-qubit systems in much detail. Representing the
density matrix ρ in the Dirac basis yields the Bloch matrix
↔
r with real entries. The latter was split to three components,
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the local Bloch vectors �u,�v and correlation matrix R. We then
derived the positivity condition of the quantum state on �u,�v,R,
in the form of three important inequalities in (54), allowing us
to parametrize and visualize the quantum state space.

The form of the positivity inequalities suggested the
singular value decomposition of R, and redefining the degrees
of freedom in terms of singular value matrix �, singular
vector matrices M,N , and relative Bloch vectors �g,�h. It
was found that positivity only depends on 9 continuous
degrees of freedom in �,�g,�h and the discrete orientation
d ≡ det(M) det(N ) = ±1, all invariant under local unitary
transformations. The SVD also allowed us to visualize a
quantum state as two Bloch spheres with local Bloch vectors
and scaled correlation axes.

We showed that nonlocal unitary transformations have a
mixing effect on the Bloch matrix components �u,�v,R. The
SVD components are affected in complicated nonlocal uni-
taries, and the singular values can experience what resembles
avoided crossings.

The three unitary invariants of the quantum state were
found in terms of �u,�v,R, and in terms of �,�g,�h,d. The latter
representation in particular is significant in that it represents
the general unitary invariants of a state in terms of its local
unitary invariants. The positive partial transpose criterion was
generalized, and entanglement of a state was found equivalent
to the positivity of its conjugate state, defined as the state with
�,�g,�h unchanged and d reversed in sign. We also characterized
maximally entangled, pure, and generalized isotropic states.

Finally, the positivity conditions were used to visualize the
quantum state space, by holding 6 degrees of freedom in �,�g,�h
constant, and drawing the physicality region for the other 3.
The regions were drawn for both values of orientation d, with
the intersection indicating separable states, and the symmetric
difference entangled states.

This investigation deepens our understanding of two-qubit
states and aids intuition when dealing with them. Looking
ahead, there are several potential extensions to this work.
We may examine the effect of dissipative and open system
evolution on the Bloch components, the SVD, and the unitary
invariants.

One may consider the case of more qubits. Though there is
no simple singular value decomposition in higher dimensions,
it may prove fruitful in understanding entanglement. For
instance, shedding light on the different orders of multipartite
entanglement. If there turn out to be several orientation signs
similar to d, this approach may yield an entanglement criterion
that is both necessary and sufficient in higher dimensions.
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APPENDIX A: HERMITIAN MATRIX BASIS SETS

1. Gell-Mann matrices (3 × 3)

The Gell-Mann matrices Gm are the most widely used set
of generators for the group of special unitary 3 × 3 matrices,
SU (3) [3]. With the identity matrix (G0), they form a basis for
the space of 3 × 3 Hermitian matrices:

G1 =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, G2 =

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠,

G3 =
⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠, G4 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠,

G5 =
⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠, G6 =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠,

G7 =
⎛
⎝0 0 0

0 0 −i

0 i 0

⎞
⎠, G8 = 1√

3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠.

2. Dirac matrices (4 × 4)

The Dirac matrices are defined by Dμν = σμ ⊗ σν , μ,ν =
0,1,2,3, and form a 16-element basis for the space of 4 × 4
Hermitian matrices. Excluding the identity D00, the remaining
15 matrices constitute a set of generators for the group
of special unitary 4 × 4 matrices, SU (4). The matrices are
explicitly given in Table I.

Aside, the gamma matrices, standard in modern treatments
of the Dirac equation [48], are given by γ 0 = D30, γ

1 =
iD21, γ

2 = iD22, γ
3 = iD23, γ

5 = D10.

TABLE I. The Dirac matrices, Dμν = σμ ⊗ σν .

�
��μ

ν
0 1 2 3

0

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠

⎛
⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

⎞
⎟⎠

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠

1

⎛
⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠

⎛
⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠

⎛
⎜⎝

0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

⎞
⎟⎠

⎛
⎜⎝

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞
⎟⎠

2

⎛
⎜⎝

0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0

⎞
⎟⎠

⎛
⎜⎝

0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

⎞
⎟⎠

⎛
⎜⎝

0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0

⎞
⎟⎠

⎛
⎜⎝

0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

⎞
⎟⎠

3

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎞
⎟⎠

⎛
⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0

⎞
⎟⎠

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎠
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APPENDIX B: SINGULAR VALUE DECOMPOSITION
OF THE COFACTOR MATRIX

We show that for any R = M�N †, its cofactor
matrix satisfies R̃ = det(M) det(N )M�̃N †, where �̃ =
diag(x2x3,x3x1,x1x2) is the cofactor matrix of the singular
value matrix � = diag(x1,x2,x3).

In this appendix, we use extended Einstein notation, in
which any index that is repeated twice or more is summed
over.

The cross product of two columns of a 3 × 3 orthogonal
matrix O yields the remaining column, up to a sign determined
by det O and the column indices;

εi1i2iOi1kOi2l = εi1i2j δijOi1kOi2l

= (εi1i2jOjmOi1kOi2l)Oim

= det(O)εklmOim, (B1)

where in the second line we used OimOjm = δij , and in the
last line we used a determinant identity. Proceeding from the
cofactor matrix definition (45), we have

R̃ij = 1
2εi1i2iεj1j2j ri1j1ri2j2

= 1
2εi1i2iεj1j2jMi1kxkNj1kMi2lxlNj2l

= 1
2 det(M) det(N )MimεklmεklnxkxlNjn

= det(M) det(N )Mim�̃mnNjn, (B2)

where in the third line we twice applied (B1) and in the last
line we noted that εklmεklnxkxl = 2�̃mn.

APPENDIX C: NONLOCAL OPERATORS ON BLOCH MATRIX

We first derive the effect of the irreducible nonlocal operator Ůj (θj ), defined in (68), on the Bloch matrix entries rμν . In the
derivation (C1) below, we suppress the subscript on θ , and repeated indices are summed over except j, which is fixed. We have

r ′
μνσμ ⊗ σν = exp

[
i

2
θσj ⊗ σj

]
rμνσμ ⊗ σν exp

[
− i

2
θσj ⊗ σj

]

= rμν

(
cos

θ

2
I ⊗ I + i sin

θ

2
σj ⊗ σj

)
σμ ⊗ σν

(
cos

θ

2
I ⊗ I − i sin

θ

2
σj ⊗ σj

)

= rμν

(
cos2 θ

2
σμ ⊗ σν − i cos

θ

2
sin

θ

2
[σμ ⊗ σν,σj ⊗ σj ] + sin2 θ

2
σjσμσj ⊗ σjσνσj

)

= rμν

(
cos2 θ

2
σμ ⊗ σν + sin θ (θμjαενjβ + εμjαθνjβ)σα ⊗ σβ + sin2 θ

2
(2δμ0I + 2δμjσj−σμ) ⊗ (2δν0I + 2δνjσj−σν)

)

= rμνσμ ⊗ σν + sin θ (RjkεkjnI ⊗ σn + ukεkjnσj ⊗ σn + Rkjεkjmσm ⊗ I + vkεkjmσm ⊗ σj )

+ (cos θ − 1)
∑
k �=j

(ukσk ⊗ I + vkI ⊗ σk + Rkjσk ⊗ σj + Rjkσj ⊗ σk). (C1)

Gathering like terms and comparing the coefficients of σμ ⊗ σν on both sides yields the transformed
↔
r

′ shown in (69) for
j = 1.

We now combine the three irreducible nonlocal operators to find the full effect of the basic nonlocal operator Ů (θ1,θ2,θ3) =
Ů1(θ1)Ů2(θ2)Ů3(θ3). Rather that write the modified Bloch matrix

↔
r explicitly, we use more compact index notation. In what

follows, repeated indices do not indicate a sum, and in the first two equations we implicitly assume the indices i,j,k are distinct.
Combining the effects of Ů1,Ů2,Ů3, we find Ů transforms the Bloch matrix components as

u′
k = uk cos θi cos θj + vk sin θi sin θj + εijk(Rij cos θi sin θj − Rji sin θi cos θj ), (C2a)

v′
k = vk cos θi cos θj + uk sin θi sin θj + εijk(Rji cos θi sin θj − Rij sin θi cos θj ), (C2b)

R′
ij = Rij cos θi cos θj + Rji sin θi sin θj − εijk(uk cos θi sin θj − vk sin θi cos θj ). (C2c)

With suitable sums, differences, and trigonometric identities, the above can be written as a single two-dimensional rotation
matrix acting on an artificial 2-vector, mixing �u ± �v with R ± R† to generate entanglement:

[
(�u ± �v)k

εijk(R ± R†)ij

]′
=

[
cos(θi ∓ θj ) ∓ sin(θi ∓ θj )

± sin(θi ∓ θj ) cos(θi ∓ θj )

][
(�u ± �v)k

εijk(R ± R†)ij

]
. (C3)
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