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The maximally entangled state can be in a mixed state as well as the well-known pure state. Taking the negativity
as a measure of entanglement, we study the entanglement dynamics of bipartite, mixed maximally entangled
states (MMESs) in multipartite cavity-reservoir systems. It is found that the MMES can exhibit the phenomenon
of entanglement sudden death, which is quite different from the asymptotic decay of the pure-Bell-state case. We
also find that maximal entanglement cannot guarantee maximal nonlocality, and the MMES does not correspond
to the state with maximal measurement-induced nonlocality (MIN). In fact, the value and dynamic behavior of the
MIN for the MMESs are dependent on the mixed-state probability. In addition, we investigate the distributions of
negativity and the MIN in a multipartite system, where the two types of correlations have different monogamous
properties.
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I. INTRODUCTION

The maximally entangled state plays an important role
in quantum information processing [1–3], including quan-
tum teleportation [4], quantum cryptographic protocols [5],
and quantum dense coding [6]. In bipartite d ⊗ d systems,
Cavalcanti et al. proved that all maximally entangled states are
pure states [7]. For example, in the simplest 2 ⊗ 2 systems, the
pure maximally entangled state is the Bell state, which can be
written as

|ψ〉 = (|00〉 + |11〉)/
√

2 (1)

up to local unitary transformations. Recently, it was further
shown that there exist mixed maximally entangled states
(MMESs) in bipartite d ⊗ d ′ systems with d ′ � 2d, which
can be used as a resource for faithful teleportation [8,9]. The
MMES in 2 ⊗ 4 systems has the form [8]

ρ = p|ψ1〉〈ψ1| + (1 − p)|ψ2〉〈ψ2|, (2)

where the mixed-state probability p lies in the range (0,1), and
the two pure-state components are |ψ1〉 = (|00〉 + |11〉)/√2
and |ψ2〉 = (|02〉 + |13〉)/√2.

The dynamic behavior of entanglement is a fundamental
property of quantum systems. This is because unavoidable
interactions with the environment may lead the entanglement
of quantum systems to be degraded and, in certain cases, to
disappear in a finite time (i.e., the so-called entanglement sud-
den death, ESD) [10–15]. López et al. analyzed the dynamic
behavior of entangled cavity photons being affected by two
dissipative reservoirs [16] and found that the entanglement
of cavity photons initially in the two-qubit Bell state decays
in an asymptotic manner. However, for the newly introduced
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MMES, its entanglement dynamic property is still an open
problem, especially for a real quantum system. Since the
MMES is a perfect physical resource in quantum information
processing [8,9], it is desirable to investigate its dynamical
property in a quantum system. This is because, once the
entanglement evolution experiences the ESD, we are no
longer able to concentrate the entanglement of MMES, which
results in some entanglement-based quantum communication
protocols losing their efficacy. In this sense, the study of the
entanglement dynamic property of the MMES can provide
not only useful knowledge for practical quantum operations
but also the necessary information to cope with the decay of
entanglement.

Nonlocality is also a kind of resource in quantum in-
formation processing [17] and has a close relationship with
quantum entanglement [18]. The measurement-induced non-
locality (MIN) [19] is the maximum global effect caused by
locally invariant measurement, which is different from the
conventionally mentioned quantum nonlocality related to the
violation of Bell’s inequalities [20,21]. Moreover, the MIN
can quantify the nonlocal resource in quantum communication
protocols involving local measurement and a comparison
between the pre- and postmeasurement states [19]. Luo and
Fu proved that, for the pure Bell state, the MIN achieves the
maximal value [19]. But it is not clear whether or not the
MMES also has the maximal nonlocality. In particular, can the
maximal entanglement guarantee the maximal nonlocality?
Furthermore, in order to obtain a deep understanding of the
dynamic properties of MMESs, it is helpful to analyze the
entanglement and nonlocality distributions in an enlarged
system including its environment.

In this paper, as quantified by entanglement negativity [22]
and the MIN [19], we study the dynamic properties of the
MMES in the dissipative procedure of multipartite cavity-
reservoir systems. It is found that the MMES can disentangle
in a finite time, which is quite different from the asymptotical
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decay of a pure Bell state. We also find that the MIN of
the MMES is not maximal, which means that the maximal
entanglement cannot guarantee the maximal nonlocality. In
addition, the evolution of the MIN is dependent on the mixed
probability of the MMES. Finally, we investigate the distribu-
tions of the negativity and the MIN in the multipartite system,
where the squared negativity is monogamous but the MIN is
not monogamous.

II. DYNAMIC PROPERTIES OF ENTANGLEMENT AND
NONLOCALITY FOR THE MMES

We first recall the definition of the MMES before analyzing
its dynamic properties. In d ⊗ d ′ systems, a mixed state is an
MMES if and only if it has the form [8,9]

ρ =
K∑

m=1

pm|ψm〉〈ψm|, (3)

where the mixed-state probabilities satisfy
∑K

m=1 pm = 1 with
K � floor(d ′/d), and the pure-state component is

|ψm〉 = 1√
d

d−1∑
i=0

|i〉 ⊗ |i + (m − 1)d〉, (4)

which is the maximally entangled pure state. In the following,
we will study the dynamic properties of MMESs in bipartite
2 ⊗ 4 systems.

We consider a practical dynamic system of two cavities
interacting with two independent reservoirs. The initial state
of the four-partite system is

ρc1c2r1r2 (0) = ρc1c2 (0) ⊗ |00〉〈00|r1r2 , (5)

where the two reservoirs are in the vacuum state and the two
cavities are in an MMES,

ρc1c2 (0) = p|ψ1〉〈ψ1| + (1 − p)|ψ2〉〈ψ2|, (6)

with |ψ1〉 = (|00〉 + |11〉)/√2 and |ψ2〉 = (|02〉 + |13〉)/√2.
It should be noted that, although ρc1c2 is written as a probability
mix of |ψ1〉 and |ψ2〉, its pure-state component has the
generic form

√
q|ψ1〉 + eiφ

√
1 − q|ψ2〉, with the parameters

q ∈ [0,1] and φ ∈ [0,2π ]. The interaction of a single cavity
and an N -mode reservoir is described by the Hamiltonian
[16,23–25]

Ĥ = �ωâ†â + �

N∑
k=1

ωkb̂
†
kb̂k + �

N∑
k=1

gk(âb̂
†
k + b̂kâ

†). (7)

At later times, in the limit N → ∞ for the reservoirs with a
flat spectrum [16], the state is given by

ρc1r1c2r2 (t) = p

2

[(|φ0〉c1r1 |φ0〉c2r2 + ∣∣φt
1

〉
c1r1

∣∣φt
1

〉
c2r2

)
× (〈φ0|c1r1〈φ0|c2r2 + 〈

φt
1

∣∣
c1r1

〈
φt

1

∣∣
c2r2

)]

+ 1 − p

2

[(|φ0〉c1r1

∣∣φt
2

〉
c2r2

+ ∣∣φt
1

〉
c1r1

∣∣φt
3

〉
c2r2

)
× (〈φ0|c1r1

〈
φt

2

∣∣
c2r2

+ 〈
φt

1

∣∣
c1r1

〈
φt

3

∣∣
c2r2

)]
, (8)

where the components can be written as

|φ0〉 = |00〉,∣∣φt
1

〉 = ξ |10〉 + χ |01〉,∣∣φt
2

〉 = ξ 2|20〉 +
√

2ξχ |11〉 + χ2|02〉,∣∣φt
3

〉 = ξ 3|30〉 +
√

3ξ 2χ |21〉 +
√

3ξχ2|12〉 + χ3|03〉, (9)

in which the amplitudes are ξ (t) = e−κt/2 and χ (t) = (1 −
e−κt )1/2, with the parameter κ being the dissipative constant
[26].

In this section, we focus on the dynamic properties of
two cavities which are initially in an MMES. As the cavities
and reservoirs interact, the state of two cavities is ρc1c2 (t) =
Trr1r2 [ρc1r1c2r2 (t)], which has the matrix form

ρc1c2 (t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 0 0 0 0 a16 0 0
0 a22 0 0 0 0 a27 0
0 0 a33 0 0 0 0 a38

0 0 0 a44 0 0 0 0
0 0 0 0 a55 0 0 0

a61 0 0 0 0 a66 0 0
0 a72 0 0 0 0 a77 0
0 0 a83 0 0 0 0 a88

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10)
with the basis in the order {|00〉,|01〉,|02〉,|03〉,|10〉,
|11〉,|12〉,|13〉} and the matrix elements

a11 = (p + χ4 + χ8 − pχ8)/2,

a22 = ξ 2χ2[2 − p + 3(1 − p)χ4]/2,

a33 = (1 − p)ξ 4(1 + 3χ4)/2,

a44 = (1 − p)ξ 6χ2/2,

a55 = ξ 2χ2(p + χ4 − pχ4)/2,

a66 = ξ 4[p + 3(1 − p)χ4]/2, (11)

a77 = 3(1 − p)ξ 6χ2/2,

a88 = (1 − p)ξ 8/2,

a16 = a61 = ξ 2[p +
√

3(1 − p)χ4]/2,

a27 = a72 =
√

3/2(1 − p)ξ 4χ2,

a38 = a83 = (1 − p)ξ 6/2.

In order to characterize the dynamic entanglement proper-
ties of two cavities, we need to choose a suitable measure of
entanglement. Here, we use the negativity [22] to quantify the
entanglement of two cavities due to its computability for any
state of an arbitrary bipartite system. For the quantum state
ρc1c2 (t), its negativity is

Nc1c2 (t) =
∣∣∣∣ρTc1

c1c2 (t)
∣∣∣∣ − 1

2
=

∑8
i=1 |λi | − 1

2
, (12)

where || · || is the trace norm and equal to the sum of the

moduli of the eigenvalues for the Hermitian matrix ρ
Tc1
c1c2 (t),

which is the partial transpose with respect to the subsystem c1
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FIG. 1. Evolution of entanglement of the MMES in two cavities,
where the negativity is shown as a function of the time κt and the
probability p. The red line indicates the entanglement sudden death
of the two cavities.

[22]. After some derivation, we can obtain the eigenvalues

λ1 = (1 − p)ξ 8/2,

λ2 = (p + χ4 + χ8 − pχ8)/2,

λ3 = ξ 4{[1 + (6 − 6p)χ4] −
√

A}/4,

λ4 = ξ 4{[1 + (6 − 6p)χ4] +
√

A}/4,

λ5 = [2(1 − p)ξ 6χ2 −
√

B]/2,

λ6 = [2(1 − p)ξ 6χ2 +
√

B]/2,

λ7 = ξ 2{χ2[1 + 2(1 − p)χ4] −
√

C}/2,

λ8 = ξ 2{χ2[1 + 2(1 − p)χ4] +
√

C}/2, (13)

where the parameters are A = (1 − 2p)2 + 24(1 − p)2χ4,
B = (1 − p)ξ 12(1 + χ4), and C = p2 + (1 − p)[1 + (2

√
3 −

1)p]χ4 + 5(1 − p)2χ8 + (1 − p)2χ12.
In Fig. 1, we plot the negativity Nc1c2 (t) as a function of the

time κt and the probability p. As seen from Fig. 1, when κt =
0, the quantum state ρc1c2 is the MMES, and its negativity has
the maximal value of 0.5 regardless of the choice of probability
p. For a given value of the probability, p, the negativity
decreases as the time κt increases. It should be pointed
out that as time increases, the entanglement of the MMES
decays through sudden death rather than asymptotically like
the two-qubit Bell state. The red line in Fig. 1 indicates the
time of the ESD for the negativity Nc1c2 (t) and satisfies the
equation

p = 1 − √
3 + 3χ4 − 3χ8 + √

D

1 − 2
√

3 + χ−4 + 5χ4 − 3χ8
, (14)

where the parameter D = 3 − 2
√

3 + 4(2 − √
3)χ4 + χ8,

with χ = √
1 − e−κt (the derivation of the ESD line is pre-

sented in Appendix A). When the probability p = 0, the initial
state of the two cavities is |ψ2〉 = (|02〉 + |13〉)/√2, which is a
two-qubit pure maximal entangled state with qubit c1 involving
states 0 and 1 and qubit c2 involving states 2 and 3. As the
system evolves, the quantum state of two cavities becomes
a 2 ⊗ 4 system and has the matrix form shown in Eq. (10)
with the parameter p = 0. Its entanglement evolution shows
the ESD phenomenon, and the negativity becomes zero at
the time κt = ln[(3 + √

3)/2] ≈ 0.8612. When the probability
p ∈ (0,1), the initial state ρc1c2 (0) is the MMES. The ESD time
of the two cavities is determined by Eq. (14) and increases as a
function of the probability p. In the p = 1 case, the initial state
is the two-qubit Bell state |ψ1〉 = (|00〉 + |11〉)/√2, and its
entanglement disappears at the time κt → ∞, which coincides
with the result for asymptotic decay presented by López et al.
[16].

Here, we have shown that, unlike the asymptotic entan-
glement decay of the Bell state, the MMES of two cavities
experiences the ESD in the dissipative procedure of cavity-
reservoir systems. It is argued that the high-dimensional
component |ψ2〉 = |02〉 + |13〉)/√2 plays the dominant role.
Although the initial state |ψ2〉 is a logic two-qubit state, it
will evolve to a 2 ⊗ 4 system along with the cavity-reservoir
interaction, which results in the ESD phenomenon of two
cavities. In the evolution of two cavities, the ESD time is
postponed when the mixed probability of the component
|ψ1〉 (the Bell state) increases. In the case of p = 1 for the
MMES, the component |ψ2〉 disappears, and there is no ESD
phenomenon, which is just the evolution of the pure Bell state
|ψ1〉 = (|00〉 + |11〉)/√2.

In addition to quantum entanglement, nonlocality is also
a useful resource in quantum secure communication. It is
worthwhile to further investigate whether maximally entan-
gled states like the MMES also result in maximal nonlocality
and how the nonlocality of the MMES evolves with time.
The MIN [19] is a computable nonlocality measure, which
is the maximum global effect caused by locally invariant
measurement. The MIN is defined as [19]

MIN(ρAB) = max�A ||ρ − �A(ρAB)||2, (15)

where the max runs over all the von Neumann measurements
�A = {�A

k } which do not disturb the reduced density matrix
ρA (i.e.,

∑
k �A

k ρA�A
k = ρA), and the Hilbert-Schmidt norm

is ||X||2 = trX†X. The state of the two cavities ρc1c2 (t) in
Eq. (10) can be rewritten in a generalized Bloch form,

ρc1c2 (t) = 1

2
√

2

I2√
2

⊗ I4

2
+

3∑
i=1

xiXi ⊗ I4

2
+ I2√

2

⊗
15∑

j=1

yjYj +
3∑

i=1

15∑
j=1

TijXi ⊗ Yj , (16)

where I2 and I4 are identity matrices of the subsystems
and Xi = σi/

√
2 and Yj = (σj ′ ⊗ σj ′′ )/2 are operator bases

with j ′,j ′′ ∈ {0,1,2,3} except for the case j ′ = j ′′ = 0 (here,
σ0 = I2 and {σ1,σ2,σ3} are the Pauli matrices). In the Bloch
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expression, Eq. (16), the matrix elements are

xi = tr
(
ρc1c2Xi ⊗ I4/2

)
,

yj = tr
(
ρc1c2I2/

√
2 ⊗ Yj

)
, (17)

Tij = tr
(
ρc1c2Xi ⊗ Yj

)
.

Luo and Fu derived an analytical formula for the MIN in
an arbitrary 2 ⊗ d system [19],

MINc1c2 =
{

trT T t − 1
‖x‖2 xt T T tx if x �= 0,

trT T t − λ3 if x=0,
(18)

where λ3 is the minimum eigenvalue of the 3 × 3 matrix
T T t with T = (Tij ) and x = (x1,x2,x3)t is the local Bloch
vector with the norm ||x||2 = ∑

i x
2
i (here, t represents the

transposition). After some derivation, we can obtain the
expression for the MIN of two dissipative cavities, which can
be written as

MINc1c2 (t) = 1
2ξ 4[F − 2p(F − G) + p2(1 − 2G + F )],

(19)
where the two parameters are F = ξ 8 + 6ξ 4χ4 + 3χ8 and
G = √

3χ4, with ξ = e−κt/2 and χ = √
1 − e−κt . The details

of the calculation and the continuity analysis of the MIN are
presented in Appendix B.

In Fig. 2, we plot the MIN as a function of the time κt and
the probability p. When κt = 0, ρc1c2 (0) is the MMES, and its
nonlocality is

MINc1c2 (0) = (
p − 1

2

)2 + 1
4 , (20)

which is symmetric to the probability p = 1/2. As shown
in Fig. 2, the MIN has the maximum value of 0.5 for the
cases of p = 0 and p = 1, which correspond to the pure
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FIG. 2. Evolution of the MIN of the MMES in two cavities,
where the nonlocality is shown as a function of the time κt and
the probability p. The inset is the difference MINp=1 − MINp=0 as a
function of κt .

maximally entangled states |ψ2〉 and |ψ1〉. When p ∈ (0,1),
the MIN has less than the maximum value and reaches the
minimum value of 0.25 at p = 0.5. Therefore, we can reach the
conclusion that the nonlocality of the MMES is not maximal,
although its entanglement is maximal for any value of the
probability p. According to Eq. (20), we find that the MIN is
directly proportional to the purity Tr(ρ2) of the MMES, i.e.,
MINc1c2 (0) = 1

2 Tr[ρ2
c1c2

(0)]. When the mixed-state probability
of the MMES changes from 0 to 1/2, its purity decreases,
which results in the MIN changing from the maximum of 0.5
to the minimum of 0.25. When the probability p changes from
1/2 to 1, the purity of the MMES also increases, and the MIN
changes from the minimum of 0.25 to the maximum of 0.5.
As two cavities evolve, MINc1c2 (t) decays in an asymptotic
manner and disappears in the limit κt → ∞. This is different
from the sudden-death evolution of the negativity of two
cavities since the nonlocality described by the MIN contains
both quantum and classical correlations. The inset of Fig. 2
shows the difference MINp=1 − MINp=0, which indicates that
the nonlocality is no longer symmetric as the system evolves.

III. ENTANGLEMENT AND NONLOCALITY
DISTRIBUTIONS OF THE MMES IN MULTIPARTITE

DYNAMICS

Entanglement monogamy is an important property of
multipartite systems and means that quantum entanglement
cannot be freely shared among many parties [27–32]. It has
been proved that the squared negativity obeys the monogamy
inequality in pure states of qubit systems, N2

A1|A2···An
−

N2
A1A2

− · · · − N2
A1An

� 0 [33]. However, for mixed states
or multilevel pure-state systems, whether or not a similar
monogamy relation holds is still an open problem. Recently,
a numerical analysis was carried out for tripartite multilevel
pure states [34], which supported the monogamy relations
for squared negativity. However, it is still unknown whether
or not the monogamous relation holds for the four-partite
case, especially in a real quantum system with dissipative
reservoirs. With this in mind, we next analyze the negativity
distribution of the MMES in the four-partite 2 ⊗ 2 ⊗ 4 ⊗ 4
cavity-reservoir systems. On the one hand, this analysis can
verify the monogamy inequality for the squared negativity, and
on the other hand, it can provide a deep understanding of the
dynamics of the MMES.

The residual entanglement in monogamy inequalities can
be used as a multipartite entanglement measure or indicator
to characterize the structure of multipartite entanglement
[35–39]. For composite cavity-reservoir systems, we analyze
the entanglement distribution in the partition c1r1|c2r2 and
evaluate the multipartite entanglement indicator

Mc1r1|c2r2 (t) = N2
c1r1|c2r2

(t) − N2
c1c2

(t) − N2
c1r2

(t)

−N2
r1c2

(t) − N2
r1r2

(t). (21)

As the system evolves, the four-partite negativity is in-
variant and satisfies the relation Nc1r1|c2r2 (t) = Nc1r1|c2r2 (0) =
Nc1c2 (0) = 0.5 since the local dissipation is unitary and the two
reservoirs are in the vacuum state initially. At a later time, the
state of the two reservoirs has a form similar to that of the two
cavities, and we get the relation ρr1r2 (t) = Sξ↔χ [ρc1c2 (t)] in
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FIG. 3. The distribution of negativity in the dissipation of
multipartite 2 ⊗ 2 ⊗ 4 ⊗ 4 cavity-reservoir systems, where the non-
negative values of Mc1r1|c2r2 indicate multipartite entanglement.

which Sξ↔χ is an operation exchanging two parameters (i.e.,
ξ → χ and χ → ξ ). Thus, the negativity of the reservoirs is

Nr1r2 (t) = Sξ↔χ

[
Nc1c2 (t)

]
. (22)

We can also derive the relationship ρr1c2 (t) = Sξ↔χ [ρc1r2 (t)]
and the negativities

Nr1c2 (t) = Sξ↔χ

[
Nc1r2 (t)

]
(23)

for subsystems c1r2 and r1c2. A more detailed description of
the density matrix ρc1r2 (t) and its negativity Nc1r2 (t) can be
found in Appendix C.

In Fig. 3, we plot the negativity distribution as a function
of the time κt for the cases where the probability p of the
MMES is chosen to be 0,0.5,0.75, and 1. As time increases,
the two reservoirs exhibit the phenomenon of entanglement
sudden birth (ESB) [16], which corresponds to the ESD of
the two cavities. As the probability p increases, the ESB
time is advanced, and the ESD time is delayed, as shown
in Figs. 3(a)–3(c). When the probability is p = 1, both the
ESB and ESD phenomena disappear, as shown in Fig. 3(d),
since the initial state becomes the two-qubit Bell state. For the
subsystems c1r2 and r1c2, the negativities have two peak values
when the probability is p = 0 and p = 0.5 [see Figs. 3(a)
and 3(b), where we multiply Nc1r2 and Nr1c2 by a factor of
2 for clarity]. As the probability p increases, the number of
peaks in the negativity changes from two to one, as shown in
Figs. 3(c) and 3(d). We further calculated the entanglement
distribution in Eq. (21) and found that the squared negativity
is monogamous in the composite cavity-reservoir systems.
Therefore, the quantity Mc1r1|c2r2 (t) can serve as a multipartite
entanglement indicator as time evolves, as plotted (solid blue
line) in Fig. 3 for different probabilities.

Next, we analyze the MIN distribution of the MMES in the
multipartite cavity-reservoir system. It has been proved that
the MIN is not monogamous in multiqubit systems [40,41].
However, whether the MIN is monogamous in multipartite
multilevel systems needs to be further investigated, especially
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FIG. 4. The MIN distribution of the MMES in multipartite 2 ⊗
2 ⊗ 4 ⊗ 4 cavity-reservoir systems, where the residual nonlocality
M ′

c1r1|c2r2
can be positive, zero, or negative as a function of the time

parameter κt .

for the newly introduced MMES. Using the relationships of
the density matrices ρc1c2 , ρc1r2 , ρr1c2 , and ρr1r2 , we can get

MINr1r2 (t) = Sξ↔χ

[
MINc1c2 (t)

]
,

MINr1c2 (t) = Sξ↔χ

[
MINc1r2 (t)

]
, (24)

where Sξ↔χ is the exchanging operation acting on the
parameters ξ and χ . After a derivation similar to that for
MINc1c2 (t), we can obtain the MIN of the subsystem c1r2,

MINc1r2 (t) = 1
2ξ 2χ2[p2 + 2

√
3p(1 − p)ξ 4 + F1], (25)

with the parameter F1 = (3ξ 8 + 6ξ 4χ4 + χ8)(1 − p)2. In
addition, for the MIN of multipartite cavity-reservoir systems
in the partition c1r1|c2r2, we can obtain the expression

MINc1r1|c2r2 (t) = MINc1r1|c2r2 (0) = 1
2 (1 − 2p + 2p2), (26)

where the MIN is invariant as the time increases because the
evolution operation Uc1r1 (Ĥ ,t) ⊗ Uc2r2 (Ĥ ,t) is locally unitary.
In addition, we calculate the MIN distribution M ′

c1r1|c2r2
(t) =

MINc1r1|c2r2 (t) − MINc1c2 (t) − MINc1r2 (t) − MINr1c2 (t) −
MINr1r2 (t), which is written as

M ′
c1r1|c2r2

(t) = (1 − p)ξ 2χ2(G1 −
√

3p), (27)

with the parameter G1 = (1 − p)(1 − χ2 + χ4).
In Fig. 4, we plot the distribution of the MIN as a

function of time κt with different probabilities p for the
MMES. As time increases, the MIN of two cavities decreases
asymptotically, and the MIN of the two reservoirs increases
asymptotically. When the time κt → ∞, the MIN of the
two cavities transfers completely to the reservoirs. For the
subsystems c1r2 and r1c2, the MINs first increase to their
maximums and then decay asymptotically. As the probability
increases, the distance between the two peaks of MINc1r2 and
MINr1c2 becomes smaller. When the probability is p = 1, the
distance goes to zero, and the two MINs coincide completely,
as shown in Fig. 4(d). Unlike the distribution of entanglement
negativity, the MIN in the multipartite systems is not always
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monogamous. When the mixed-state probability is p = 0, the
MIN is monogamous, and the indicator M ′

c1r1|c2r2
(t) (the solid

blue line) is nonnegative, as shown in Fig. 4(a). However,
when the probabilities are p = 0.5 and p = 0.75, the MINs
are polygamous, and M ′

c1r1|c2r2
(t) is no longer positive [see

Figs. 4(b) and 4(c)]. When the probability is p = 1, the
MMES becomes the two-qubit Bell state, and the indicator
M ′

c1r1|c2r2
(t) is zero at all times for cavity-reservoir systems,

as shown in Fig. 4(d). The different distribution property
from that of entanglement negativity indicates that the MIN
and entanglement are two inequivalent types of resources for
quantum information processing.

Although the MIN itself is not monogamous in multipartite
multilevel systems, its functions may possess this property. For
example, the quantum discord [42,43] is not monogamous even
in three-qubit pure states [44–47], but the squared quantum
discord is monogamous in an arbitrary three-qubit pure state
[48,49]. Recently, similar situations for the entanglement of
formation have also been discussed [31,50–54]. For the MIN in
multipartite cavity-reservoir systems, we calculated the square
of the MIN, and the numerical result supports the monogamy
relation. However, in the general case, an analytical proof for
the monogamy property of the squared MIN is still an open
problem.

IV. DISCUSSION AND CONCLUSION

We have studied the dynamic behavior of the MMES over
the course of the dissipative evolution of multipartite multilevel
cavity-reservoir systems. It has been found that, unlike the two-
qubit Bell state |ψ1〉 = (|00〉 + |11〉)/√2, whose negativity
decays in an asymptotic manner [16], the entanglement
dynamics of the MMES exhibits the ESD phenomenon, as
shown in Fig. 1. Therefore, as an entanglement resource, the
MMES is not superior to the pure two-qubit Bell state in
this dissipative system. We think that the high-dimensional
component |ψ2〉 = (|02〉 + |13〉)/√2 in the MMES gives rise
to the ESD of the two cavities’ evolution. Moreover, we further
study the MMESs in 2 ⊗ 6 and 2 ⊗ 8 systems where the
component |ψ2〉 is replaced by the higher-dimensional compo-
nents |ψ3〉 = (|04〉 + |15〉)/√2 and |ψ4〉 = (|06〉 + |17〉)/√2,
respectively. The analytical results show that the new MMESs
still experience the ESD in the dynamical evolution (the details
for the calculation are given in Appendix D), which further
supports our viewpoint.

The MIN has a close relation with quantum communication
protocols involving local measurement and a comparison
between the pre- and postmeasurement states [19]. We find that
maximal entanglement cannot guarantee maximal nonlocality.
As shown in Fig. 2, the MIN of the MMES is not maximal,
and its value is directly proportional to the purity Tr(ρ2)
of the MMES, which is quite different from the situation
of the Bell state exhibiting maximal nonlocality. For the
MMESs with higher-dimensional components, their MINs
are also dependent on the mixed-state probability p, and the
nonlocality evolutions are asymptotical (the details are given
in Appendix E). We explain that the decrease of the MIN of
the MMESs is due to the decrease of their purity, and the
MIN evolution of the MMESs is asymptotic since this kind of
nonlocality contains both quantum and classical correlations

[19]. For the quantum nonlocality related to the violation of
Bell inequalities [55–60], its relation to the maximal entangled
state is still an open problem yet to be addressed.

In order to obtain a deep understanding of the dynamic
properties of the MMES, we have investigated its entanglement
and nonlocality distributions in multipartite systems. The
numerical results have shown that the squared negativity is
monogamous in multipartite cavity-reservoir systems (beyond
the four values of probability p shown in Fig. 3, we
further calculated the distribution for p ranging across [0,1]).
Moreover, for the MMESs of 2 ⊗ 6 and 2 ⊗ 8 systems, our
numerical calculation still shows that the squared negativity
is monogamous in the multipartite dissipative systems. These
results support the conjecture of He and Vidal [34] that the
squared negativity is monogamous in multipartite multilevel
systems. On the other hand, the MIN distribution of the MMES
is not monogamous in the multipartite cavity-reservoir system,
as shown in Fig. 4, which indicates that the MIN is a different
type of resource from entanglement in quantum information
processing. We further investigate the MIN distributions for
the MMESs with higher-dimensional components and find
that the MIN is still not monogamous (the details are shown
in Appendix E).

In conclusion, we have studied the dynamic behavior of
the MMES in multipartite cavity-reservoir systems. It has
been found that the evolution of the negativity of the MMES
exhibits the ESD phenomenon and is not superior to the two-
qubit Bell state as an entanglement resource in a dissipative
system. We also found that maximal entanglement cannot
guarantee maximal nonlocality. The MIN of the MMES is
not maximal, and its evolution is dependent on the mixed-state
probability of the MMES. In addition, we have investigated
the distributions of the negativity and the MIN of the MMESs
in the multipartite cavity-reservoir systems, where two types
of correlation exhibit different monogamous properties.
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APPENDIX A: THE DERIVATION OF THE ESD LINE
FOR NEGATIVITY Nc1 c2

In Eq. (12) of the main text, the negativity Nc1c2 (t) is
determined via the sum of absolute values of the negative
eigenvalues. After some analysis, we find that the eigenvalues
{λ1,λ2,λ4,λ6,λ8} are always nonnegative, while the other
eigenvalues {λ3,λ5,λ7} can be positive, zero, or negative.
Therefore, as the two cavities evolve, the negativity Nc1c2 (t)
becomes zero when the three eigenvalues {λ3,λ5,λ7} become
nonnegative.

Using the expressions for λ3, λ5, and λ7 in Eq. (13), we can
derive the p ∼ κt relations when these eigenvalues are zero.
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FIG. 5. Four regions in the entanglement evolution of two
cavities, where, in region IV, all three eigenvalues (λ3,λ5,λ7) are
positive and the negativity Nc1c2 becomes zero.

When λ3 = 0, we have the relation

p = 3(eκt − 1)2(3 − 6eκt + 2e2κt )

9 − 36eκt + 48e2κt − 24e3κt + 2e4κt
. (A1)

For the case λ5 = 0, we have

κt = ln[(3 +
√

3)/2] (A2)

for an arbitrary value of parameter p. When λ7 = 0, we can
derive the p ∼ κt relation as shown in Eq. (14) of the main
text. In Fig. 5, we plot the three relations in the plane of
parameters p and κt , where the dashed green line is for λ3 = 0,
the dot-dashed blue line is for λ5 = 0, and the solid red line
is for λ7 = 0. The three lines divide the whole area into four
parts. In regions I, II, and III, the signs of the eigenvalues
(λ3,λ5,λ7) are (−, − ,−), (+, − ,−), and (+, + ,−), which
result in nonzero negativity for the two cavities. In region
IV, all the eigenvalues are positive, leading to the negativity
being Nc1c2 (t) = 0. Thus, as seen from Fig. 5, the red line for
λ7 = 0 determines the ESD time of the two cavities, which is
described by Eq. (14) of the main text.

APPENDIX B: CALCULATION AND CONTINUITY
ANALYSIS FOR THE MIN OF TWO CAVITIES

Before evaluating the nonlocality MINc1c2 (t) given in
Eq. (18), we first calculate the local Bloch vector x and
correlation matrix T . According to Eq. (17), the local Bloch
vector of subsystem c1 is

x =
(

0,0,
χ2

2
√

2

)t

, (B1)

which leads to the norm being ||x||2 = χ4/8, with χ =√
1 − e−κt . The correlation matrix T = T ′/2

√
2 is a 3 × 15

matrix, in which the nonzero elements of T ′ are

T ′
1,1 = −T2,2 = ξ 2[p + (1 − p)ξ 4 +

√
3(1 − p)χ4],

T ′
3,3 = (1 − 2χ2 + 2χ4)[1 − 4(1 − p)ξ 2χ2],

T ′
1,5 = T ′

1,10 = T ′
2,6 = −T ′

2,9 =
√

6(1 − p)ξ 4χ2,

T ′
1,13 = ξ 2[p − (1 − p)ξ 4 +

√
3(1 − p)χ4],

T ′
2,14 = −ξ 2[p − (1 − p)ξ 4 +

√
3(1 − p)χ4],

T ′
3,12 = χ2 − 4(1 − p)ξ 4χ4,

T ′
3,15 = 2p − 1 + (4 − 6p)χ2 − (8 − 10p)χ4 + 6(1 − p)χ6,

(B2)

with ξ = e−κt/2. When κt > 0, we have the local Bloch vector
x �= 0. After substituting the three terms x, ||x||2, and T into
the first formula in Eq. (18), we can obtain the expression
for MINc1c2 (t > 0) in Eq. (19). When κt = 0, the quantum
state ρc1c2 (0) is the MMES for which the local Bloch vector
is x = 0. In this case, we need to calculate the eigenvalues
of matrix T T t , which are λ1 = λ2 = λ3 = (1 − 2p + 2p2)/4.
According to the second formula in Eq. (18), we can derive
MINc1c2 (0) = (1 − 2p + 2p2)/2.

Next, we prove the continuity of MINc1c2 (t). Based on the
previous analysis, we know that the two formulas in Eq. (18)
are used for the cases x �= 0 and x = 0, which correspond to the
time evolutions κt > 0 and κt = 0, respectively. If MINc1c2 is
continuous, the limit of MINc1c2 (κt → 0+) in the first formula
should coincide with the value of MINc1c2 (κt = 0). After some
calculation, we can get

lim
κt→0+

xt T T tx
‖x‖2

= lim
κt→0+

d(xt T T t x)
d(κt)

d(‖x‖2)
d(κt)

= lim
κt→0+

d2(xt T T t x)
d(κt)2

d2(‖x‖2)
d(κt)2

=
1
16 (1 − 2p + 2p2)

1
4

= λ3, (B3)

where we have used L’Hôpital’s rule and λ3 is the minimal
eigenvalue of matrix T T t . Then, in the limit κt → 0+, the two
formulas in Eq. (18) are continuous, and we have

lim
κt→0+

MINc1c2 (κt) = MINc1c2 (0) = 1
2 (1 − 2p + 2p2). (B4)

As a result, the nonlocality MINc1c2 (t) can be described by
Eq. (19) of the main text throughout the entire period of the
dynamic evolution.

APPENDIX C: THE DENSITY MATRIX ρc1 r2 AND ITS
NEGATIVITY Nc1 r2

Throughout the dynamic evolution of multipartite cavity-
reservoir systems, the quantum state of subsystem c1r2 is
ρc1r2 (t) = trr1c2 [ρc1r1c2r2 (t)], which can be written as

ρc1r2 (t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b11 0 0 0 0 b16 0 0
0 b22 0 0 0 0 b27 0
0 0 b33 0 0 0 0 b38

0 0 0 b44 0 0 0 0
0 0 0 0 b55 0 0 0

b61 0 0 0 0 b66 0 0
0 b72 0 0 0 0 b77 0
0 0 b83 0 0 0 0 b88

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(C1)
where the nonzero matrix elements are

b11 = [p + (1 − p)ξ 4](1 + ξ 2χ2)/2,

b22 = {2(1 − p)ξ 2χ2 + [p + 3(1 − p)ξ 4]χ4}/2,

b33 = (1 − p)χ4(1 + 3ξ 2χ2)/2,
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b44 = (1 − p)χ8/2,

b55 = [ξ 8 + p(ξ 4 − ξ 8)]/2,

b66 = ξ 2χ2[p + 3(1 − p)ξ 4]/2,

b77 = 3(1 − p)ξ 4χ4/2,

b88 = (1 − p)ξ 2χ6/2,

b16 = b61 = ξχ [p +
√

3(1 − p)ξ 4]/2,

b27 = b72 =
√

3/2(1 − p)ξ 3χ3,

b38 = b83 = (1 − p)ξχ5/2. (C2)

For this quantum state, the negativity is

Nc1r2 (t) =
∑8

i=1 |λi | − 1

2
, (C3)

where λi are the eigenvalues of the partial transpose matrix

ρ
Tc1
c1r2 and have the form

λ1 = (1 − p)ξ 2χ6/2,

λ2 = (1 + ξ 2χ2)[p + (1 − p)ξ 4]/2,

λ3 = [1 − 2χ2 + B1 −
√

1 − (1 − p)χ2B2]/4,

λ4 = [1 − 2χ2 + B1 +
√

1 − (1 − p)χ2B2]/4,

λ5 = [(3 − 2p)χ2 + B3 −
√

χ4B4]/4,

λ6 = [(3 − 2p)χ2 + B3 +
√

χ4B4]/4,

λ7 = [(1 − p)χ4(3ξ 4 + χ4) −
√

(1 − p)2B5]/4,

λ8 = [(1 − p)χ4(3ξ 4 + χ4) +
√

(1 − p)2B5]/4, (C4)

with the parameters

B1 = (7 − 5p)χ4 − 10(1 − p)χ6 + (4 − 4p)χ8,

B2 = (16 − 8
√

3)p + [14 − 24(2 −
√

3)p]χ2

−8[8 − (10 − 3
√

3)p]χ4 + [123 − (111 − 8
√

3)p]χ6

−(104 − 96p)χ8 + 28(1 − p)χ10 + (8 − 8p)χ12

−4(1 − p)χ14,

B3 = −(8 − 7p)χ4 + 12(1 − p)χ6 − 6(1 − p)χ8,

B4 = (3 − 2p)2 − [36 − 2(23 − 6p)p]χ2

+(64 − 96p + 33p2)χ4 − 12(1 − p)(4 − 3p)χ6

−12(1 − p)2χ8,

B5 = χ8(9ξ 8 + 4ξ 2χ2 − 6ξ 4χ4 + χ8). (C5)

APPENDIX D: THE ESD FOR THE MMESS WITH
HIGHER-DIMENSIONAL COMPONENTS

In the multipartite cavity-reservoir systems, we first con-
sider that the two cavities are initially in the MMES,

ρ(1)
c1c2

(0) = p|ψ1〉〈ψ1| + (1 − p)|ψ3〉〈ψ3|, (D1)

where |ψ1〉 = (|00〉 + |11〉)/√2 is the two-qubit Bell state and
|ψ3〉 = (|04〉 + |15〉)/√2 is the high-dimensional component.
Along with the evolution of cavity-reservoir systems, the

output state is

ρ(1)
c1r1c2r2

(t) = p

2

[(|φ0〉c1r1 |φ0〉c2r2 + ∣∣φt
1

〉
c1r1

∣∣φt
1

〉
c2r2

)
×(〈φ0|c1r1〈φ0|c2r2 + 〈

φt
1

∣∣
c1r1

〈
φt

1

∣∣
c2r2

)]

+1 − p

2

[(|φ0〉c1r1

∣∣φt
4

〉
c2r2

+ ∣∣φt
1

〉
c1r1

∣∣φt
5

〉
c2r2

)
×(〈φ0|c1r1

〈
φt

4

∣∣
c2r2

+ 〈
φt

1

∣∣
c1r1

〈
φt

5

∣∣
c2r2

)]
, (D2)

where the components have the forms∣∣φt
0

〉 = |00〉,∣∣φt
1

〉 = ξ |10〉 + χ |01〉,∣∣φt
4

〉 = ξ 4|40〉 + 2ξ 3χ |31〉 +
√

6ξ 2χ2|22〉
+ 2ξχ3|13〉 + χ4|04〉,∣∣φt

5

〉 = ξ 5|50〉 +
√

5ξ 4χ |41〉 +
√

10ξ 3χ2|32〉
+

√
10ξ 2χ3|23〉 +

√
5ξχ4|14〉 + χ5|05〉, (D3)

with the parameters ξ (t) = e−κt/2 and χ (t) = (1 − e−κt )1/2.
By tracing the subsystems of two reservoirs, we can get
the output state of two cavities ρ(1)

c1c2
(t) = Trr1r2 [ρ(1)

c1r1c2r2
(t)],

which is a 12 × 12 matrix. In order to obtain the entanglement
negativity of ρ(1)

c1c2
(t), we calculate the eigenvalues of the partial

transpose matrix ρ
(1)Tc1
c1c2 (t). After some derivation, we find that

there are four eigenvalues which can be negative,

λ2 = (1 − p)ξ 10(3χ2 −
√

1 + 4χ4)/2,

λ6 = (1 − p)ξ 8(1 + 15χ4 −
√

1 + 70χ4 + 25χ8)/4,

λ7 = (1 − p)ξ 6χ2(1 + 5χ4 −
√

1 + 15χ4),

λ11 = ξ 2χ2[χ4(2 + 3χ4) + p(1 − 2χ4 − 3χ8)]/2 −
√

H1/2,

(D4)

where the parameter is H1 = ξ 4[p2 + 2
√

5(1 − p)pχ8 +
(1 − p)2(4χ12 + 13χ16 + 4χ20)]. Similar to the analysis in
Appendix A, we can derive the ESD time for the MMES
ρ(1)

c1c2
(t) according to the four eigenvalues. When the mixed-

state probability p changes in the region [0,p1] with
p1 = (347 − 125

√
5)/1922 ≈ 0.03512, the ESD time for the

MMES is κt = ln[(5 + √
5)/4] ≈ 0.5928. When the proba-

bility p ∈ [p1,1), the ESD time is determined by the p ∼ κt

relation

p =
√

2χ8
√

J1 + χ8J2

1 − χ4 + 2(2 − √
5)χ8 + 6χ12 + χ16 − 5χ20

, (D5)

where the two parameters are J1 = 4 − 2
√

5 + 3(3 −√
5)χ4 + 2χ8 and J2 = 2 − √

5 + 3χ4 + χ8 − 5χ12. In
Fig. 6(a), we plot the ESD line (red line) as a function p(κt),
which divides the entanglement evolution into an entangled
region and a disentangled region.

Next, we consider the two cavities which are initially in the
MMES,

ρ(2)
c1c2

(0) = p|ψ1〉〈ψ1| + (1 − p)|ψ4〉〈ψ4|, (D6)

where |ψ4〉 = (|06〉 + |17〉)/√2 is the high-dimensional com-
ponent. As the systems evolves, the output state ρ(2)

c1r1c2r2
(t) has
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FIG. 6. The ESD lines in the evolution of two cavities which are
initially in the MMESs: (a) ρ(1)

c1c2
in Eq. (D1) and (b) ρ(2)

c1c2
in Eq. (D6).

the same form as that in Eq. (D2), but the components |φt
4〉 and

|φt
5〉 are replaced by the new components |φt

6〉 and |φt
7〉, which

can be written as∣∣φt
6

〉 = ξ 6|60〉 +
√

6ξ 5χ |51〉 +
√

15ξ 4χ2|42〉
+

√
20ξ 3χ3 +

√
15ξ 2χ4 +

√
6ξχ5|15〉 + χ6|06〉,∣∣φt

7

〉 = ξ 7|70〉 +
√

7ξ 6χ |61〉 +
√

21ξ 5χ2|52〉
+

√
35ξ 4χ3|43〉 +

√
35ξ 3χ4|34〉 +

√
21ξ 2χ5|25〉

+
√

7ξχ6|16〉 + χ7|07〉. (D7)

After tracing the subsystems r1r2, we can get the output
state of two cavities ρ(2)

c1c2
(t). Furthermore, by doing the

partial transposition, we can obtain the matrix ρ
(2)Tc1
c1c2 (t) and

calculate its eigenvalues. The ESD line is determined by the

negative eigenvalues of ρ
(2)Tc1
c1c2 (t). When the mixed-state prob-

ability p ∈ [0,p2], with p2 = (8669 − 2401
√

7)/370191 ≈
0.006258, the ESD occurs at the time κt = ln[(7 + √

7)/6] ≈
0.4748. When p ∈ [p2,1), the ESD time is determined by the
following p ∼ κt relation:

p = χ12(K1 + √
K2)

1 − χ4 + 2(3 − √
7)χ12 + 8χ16 + χ24 − 7χ28

, (D8)

where the two parameters are K1 = 3 − √
7 + 4χ4 +

χ12 − 7χ16 and K2 = 15 − 6
√

7 + 8(4 − √
7)χ4 + 9χ8. In

Fig. 6(b), we plot the ESD line (blue line) as a function p(κt),
which cut the entanglement evolution region into two parts,
i.e., an entangled region and a disentangled region.

APPENDIX E: THE MIN OF THE MMES WITH
HIGHER-DIMENSIONAL COMPONENTS AND ITS

DISTRIBUTION

We first consider the MMES ρ(1)
c1c2

(0) with the high-

dimensional component |ψ3〉 = (|04〉 + |15〉)/√2, as shown
in Eq. (D1). According to the formula in Eq. (18) of the main
text, we can derive the nonlocality

MIN
[
ρ(1)

c1c2
(0)

] = (p − 1/2)2 + 1/4, (E1)

which is dependent on the mixed-state probability p and
directly proportional to the purity of the MMES. In the

calculation of the MIN, the matrix basis for the subsystem
c2 is chosen to be the generalized Gell-Mann matrices (GGM)
[61], which are the higher-dimensional extension of the Pauli
matrices. The GGM basis for a d-dimensional system is
composed of three types of matrices [61]: (i) d(d − 1)/2
symmetric GGM,


jk
s = |j 〉〈k| + |k〉〈j |, 1 � j < k � d; (E2)

(ii) d(d − 1)/2 antisymmetric GGM,


jk
a = −i|j 〉〈k| + i|k〉〈j |, 1 � j < k � d; (E3)

and (iii) (d − 1) diagonal GGM,


l =
√

2/(l2 − l)

⎛
⎝ l∑

j=1

|j 〉〈j | − l|l + 1〉〈l + 1|
⎞
⎠, (E4)

with 1 � l � d − 1. It should be noted that the GGM needs to
be normalized in the generalized Bloch form of ρ(1)

c1c2
. Along

with the interaction between the cavities and reservoirs, the
MMES will evolve into a 2 ⊗ 6 system. After some derivation,
we obtain

MIN
[
ρ(1)

c1c2
(t)

] = ξ 4

2
{ξ 16 + p[p − (2 − p)ξ 16] + L1 + L2},

(E5)
where the two parameters are L1 = 2(1 − p)[

√
5p + 30(1 −

p)ξ 8]χ8 and L2 = (1 − p)2(20ξ 12χ4 + 40ξ 4χ12 + 5χ16). In
the dissipative procedure of cavity-reservoir systems, the
nonlocality of two cavities decays in an asymptotical way,
which is similar to the case of MMES in 2 ⊗ 4 systems.

Next, we analyze the MMES of a 2 ⊗ 8 system in Eq. (D6),
which has the high-dimensional component |ψ4〉 = (|06〉 +
|17〉)/√2. It is found that the MIN for this MMES ρ(2)

c1c2
(0)

has the same expression as that in Eq. (E1), which is also
dependent on the mixed-state probability p. As the system
evolves, the MIN for two cavities decays asymptotically and
can be expressed as

MIN
[
ρ(2)

c1c2
(t)

] = ξ 4

2
[ξ 24 + L3 + (1 − p)2L4], (E6)
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FIG. 7. The MIN distributions of the MMESs in multipartite 2 ⊗
2 ⊗ 6 ⊗ 6 and 2 ⊗ 2 ⊗ 8 ⊗ 8 cavity-reservoir systems are plotted as
a function of κt , where the negative values indicate that the MIN is
not monogamous.
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where the parameters are L3 = p[p − (2 − p)ξ 24] +
2(1 − p)[

√
7p + 350(1 − p)ξ 12]χ12 and L4 = 42ξ 20χ4 +

315ξ 16χ8 + 525ξ 8χ16 + 126ξ 4χ20 + 7χ24.
For the MMESs ρ(1)

c1c2
(0) and ρ(2)

c1c2
(0) with the high-

dimensional components, we further calculate the distribution

M ′
c1r1|c2r2

(t) = MINc1r1|c2r2 (t) − MINc1c2 (t)

−MINc1r2 (t) − MINr1c2 (t) − MINr1r2 (t) (E7)

in the multipartite cavity-reservoir systems. We find that the
MIN distributions are still not monogamous. As examples,
we choose the mixed-state probability p = 0.8 for the two

MMESs and calculate their MIN distributions. In Fig. 7,
the MIN distributions in the multipartite systems are plotted,
where two cavities are initially in the MMESs ρ(1)

c1c2
(0) and

ρ(2)
c1c2

(0). As shown, the negative values for the distributions
indicate that the MIN is not monogamous.

However, for the squared negativity of the MMESs in 2 ⊗ 6
and 2 ⊗ 8 systems, we calculate the entanglement distribution
in the multipartite 2 ⊗ 2 ⊗ 6 ⊗ 6 and 2 ⊗ 2 ⊗ 8 ⊗ 8 cavity-
reservoir systems, where the mixed-state probability p ranges
across [0,1]. The numerical results still support that the
negativity is monogamous.
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