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Direct state reconstruction with coupling-deformed pointer observables
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Direct state tomography (DST) using weak measurements has received wide attention. Based on the concept
of coupling-deformed pointer observables presented by Zhang et al. [Y.-X. Zhang, S. Wu, and Z.-B. Chen, Phys.
Rev. A 93, 032128 (2016)], a modified direct state tomography (MDST) is proposed, examined, and compared
with other typical state tomography schemes. MDST has exact validity for measurements of any strength. We
identify the strength needed to attain the highest efficiency level of MDST by using statistical theory. MDST is
much more efficient than DST in the sense that far fewer samples are needed to reach DST’s level of reconstruction
accuracy. Moreover, MDST has no inherent bias when compared to DST.
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I. INTRODUCTION

Though the quantum no-clone theorem prohibits the per-
fect estimation of the unknown state of a single quantum
system [1,2], state reconstruction is possible via repeatedly
measuring an ensemble of identical systems, a process usually
called quantum state tomography (QST). Besides the standard
QST strategies [3–10], a novel tomography strategy, conven-
tionally called direct state tomography (DST), or weak-value
tomography, has been widely investigated both theoretically
and experimentally [11–19].

DST is based on the quantum weak value theory introduced
by Aharonov, Albert, and Vaidman (AAV) in 1988 [20]. In
DST, each element of the unknown density operator is pro-
portional to a single weak value, if we choose the appropriate
variables in weak measurements [13]. In this way, the wave
function at each point can be determined directly, without the
global inversion required in standard QST [16]. Because of this
feature and the simplicity of experimental implementation,
DST can be conveniently realized and is probably the only
choice for the tomography of high-dimensional states [17–19].

However, as pointed out in [21], DST suffers from disadvan-
tages, including low efficiency and systematical reconstruction
bias. It is conceivable that these flaws mainly stem from
the AAV’s weak-value formalism that built on first-order
perturbation of the measurement strength [22–25]. That is,
very weak coupling strength causes the low efficiency of
DST [21]; approximations produce unavoidable bias [21].

Recently, we have constructed a framework for quantum
measurements with postselection [26]. In our formalism, weak
value information can be generated exactly with measurements
of any strength, provided that two coupling-deformed (CD)
pointer observables are read on the pointer of the quantum
measuring device [26]. The general formula for determining
the CD observables was also given in [26]. In particular, when
a single qubit is used as the measuring device, it is also
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reported in [27,28] that weak values can be obtained from
stronger measurements by standard state tomography of the
qubit device.

In this paper, we propose a modified DST (MDST) that
works by applying the CD observables [26] in state tomogra-
phy. Since MDST is valid over the full range of measurement
strength, we will determine the optimal measurement strength
at which MDST attains its highest efficiency. Then, through
Monte Carlo simulations, we demonstrate that the efficiency
of MDST is much higher than that of DST. That is, to reach the
same level of reconstruction accuracy, MDST needs far fewer
samples. Furthermore, MDST is also compared with SU(2)
tomography, one of the most efficient standard QSTs [3].

This paper is organized as follows. We briefly review
SU(2) tomography and DST in Sec. II. In Sec. III, MDST is
studied and the optimal coupling strength is given. In Sec. IV,
the performances of different state reconstruction strategies
are compared using Monte Carlo simulation results. A short
conclusion is presented in Sec. V.

II. STRATEGIES FOR QUANTUM STATE
RECONSTRUCTION

In this section, we briefly review SU(2) tomography and
the original direct state tomography.

A. SU(2) tomography

SU(2) tomography is a well-established state reconstruction
technique. It is based on the formula [3]

ρin =
∫

dgR†(g)tr[ρinR(g)], (1)

where R(g) is the unitary irreducible square-integrable repre-
sentation of a tomographic group G, g ∈ G. The derivation
of Eq. (1) can be found in [3]. As indicated by Eq. (1), a
general unknown state ρin could be reconstructed by a series
of projective measurements onto the eigenstates of R(g). When
the tomographic group G is selected to be the SU(2) group,
the tomography scheme is called SU(2) tomography (see [3]
for the details).
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Additionally, standard tomography can be implemented
with measurements of the basis operators of the space of
density matrices. For example, an unknown qubit state can
be expressed using the Pauli matrices

ρin = I

2
+

∑
i=x,y,z

σi tr(ρinσi). (2)

By measuring the three Pauli matrices, we could reconstruct
an unknown two-dimensional state.

B. Direct state tomography

The original direct state tomography is based on weak
measurements. Suppose a system in unknown state ρin is
weakly measured by a pointer in state |φ0〉. The observables
being measured on the system are chosen in the set {Ai =
|ai〉〈ai |}i . Therein, states {|ai〉}i compose an orthogonal basis
of the system’s Hilbert space. After that measurement we
project the system onto another orthogonal basis {|ψf 〉}f of
the system’s Hilbert space, a process conventionally called
postselection (in this paper, postselection represents the final
projective measurement, and no data are discarded in the
state reconstruction process). We then record the outcome of
the postselection, read the pointer by the pointer observable
denoted as ŝ, and generate the weak value of each Ai defined
as [13]

Wif = 〈ψf |ai〉〈ai |ρin|ψf 〉
Pf

, (3)

where Pf is the probability of obtaining |ψf 〉 in postselection.
For convenience, the measurement basis {|ai〉}i and the
postselection basis {|ψf 〉}f are chosen to be the mutually
unbiased bases that |〈ψf |ai〉| = 1/

√
d [29]. Using the weak

values {Wif }i,f , we can reconstruct the unknown state using
the formula

ρr =
d∑

i,f =1

Pf Wif

〈ψf |ai〉 |ai〉〈ψf |. (4)

This formula states that no samples are discarded, which is
different with the original pure-state tomography case in [11].
In the direct state tomography strategy of this paper, each
sample is used to construct weak values {Wif }i,f no matter
which of {|ψf 〉}f is obtained in postselection.

In this paper, we consider the setup of [11] where the pointer
is a qubit initialized in pure state ρφ = |0〉〈0|, the eigenstate
of σz: σz|0〉 = |0〉. The weak measurement is described by the
unitary coupling

Ui(g) = exp(−igAi ⊗ σx), (5)

where the coupling strength g is small. The weak value is
determined via measuring two different observables on the
pointer, i.e., ŝ ∈ {q̂,p̂}, q̂ for the real part, and p̂ for the
imaginary part. They could be

q̂ = σy, p̂ = σx. (6)

The weak value is determined by

Pf Wif = lim
g→0

1

2g
tr{Ui(g)ρin ⊗ ρφU

†
i (g)�f ⊗ (−q̂ + ip̂)},

(7)

where �f = |ψf 〉〈ψf |. That is, the weak value information is
obtained by measuring �f ⊗ ŝ on the joint system.

The validity of Eq. (7) requires g → 0, which implies
little information gain [30] and low efficiency for DST.
However, g is small but finite in an actual experiment, thus a
systematical error in the reconstruction is unavoidable. These
two disadvantages of DST have been verified by numerical
simulations in [21].

III. MODIFIED DIRECT STATE TOMOGRAPHY

A recent work shows that a weak value can be obtained
exactly with measurements of any strength, if we measure the
CD pointer observables given in [26]. In this section, we will
use this strategy to propose a MDST and identify the optimal
coupling strength which maximizes the efficiency of MDST.

A. MDST with CD pointer observables

When g → 0, we measure the observable ŝ ∈ p̂,q̂ given by
Eq. (6) on the pointer to get weak value information. In [26],
we can obtain the exact weak value information by measuring
the CD observable ŝ(g) that varies with g, instead of ŝ. For the
two observables p̂ and q̂ in Eq. (6), using the method in [26],
the corresponding CD pointer observables q̂(g) and p̂(g) are
calculated to be

q̂(g) = 1

sin g

[
σy − tan

(
g

2

)
(I − σz)

]
,

p̂(g) = 1

sin g
σx. (8)

Then the weak value information is exactly obtained via

Pf Wif = 1
2 tr{Ui(g)ρin ⊗ ρφU

†
i (g)�f ⊗ [−q̂(g) + ip̂(g)]}.

(9)

With the set {Pf Wif }(i,f ), ρin can be reconstructed via Eq. (4).
We call this scheme modified direct state tomography.

By comparing Eqs. (7) and (9), it is straightforward to see
that in MDST no approximation is applied, thus there will
be no inherent bias in the reconstruction, and MDST can be
implemented with any value of g.

Here, we would like to remark that our presentation of
DST and MDST is slightly different from others focusing on
AAV’s weak value, for example [16]. If using the whole weak
value, there will be an unknown normalization factor that can
be fixed only after all the measurements are completed [27].
This is seen as conflicting with the claim of directness [31].
However, in our MDST, Eq. (4) clearly shows that one element
is directly determined by Pf Wif , which could be obtained from
the measurements described in Eq. (9).

B. The optimal measurement strength in MDST

Since in MDST g can be any value, we need to search
for the optimal strength to obtain the highest efficiency.
First, we derive the optimal g by statistical theory. In actual
implementation, MDST suffers from statistical errors. This
is the reason why there is a discrepancy between the true
state ρt and the reconstructed state ρr . Statistical errors can
be quantified by the variance of the measured results. Lower
variance means less random error and higher reconstruction
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FIG. 1. The values of T V 1 (green line) of the reconstruction,
and trace distance D(ρt ,ρr ) (blue circles) averaged over 105 states,
against the coupling strength.

accuracy. We find that when gauging the performance of
MDST by the variance of the reconstruction, the optimal value
of g will be appealingly state independent.

From Eq. (4), each element of the reconstruction ρr

�if = Pf Wif /〈ψf |ai〉 (10)

is determined by two independent measurements, one for
the real part and the other for the imaginary part of Pf Wif .
Therefore, the total variance of the reconstruction state ρr can
be defined as

δ2ρr =
d∑

i,f =1

δ2 �if . (11)
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FIG. 2. Comparison of the efficiencies of MDST, DST, SU(2)
tomography, and Pauli tomography for qubits. The trace distance
D(ρt ,ρr ) is plotted as the function of the number of copies N of the
system. Circles, D calculated from MDST with g = 1.3; squares,
D calculated from DST with g = 0.1; diamonds, D calculated from
Pauli tomography; stars, D calculated from SU(2) tomography.
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FIG. 3. Comparison of MDST, DST, and SU(2) tomography for
five-dimensional states. The trace distance D(ρt ,ρr ) is plotted as
the function of the number of copies N of the system. Circles, D
calculated from MDST with g = 1.4; squares, D calculated from
DST with g = 0.1; stars, D calculated from SU(2) tomography.

From Eqs. (4) and (9), the convention |〈ψf |ai〉| = 1/
√

d , and
the error propagation theory [32], the total variance δ2ρr can
be expressed as

δ2ρr = d

4

∑
ŝ∈{q̂,p̂}

d∑
i,f =1

tr{Uiρt ⊗ ρφU
†
i �f ⊗ ŝ2(g)}

− (tr{Uiρt ⊗ ρφU
†
i �f ⊗ ŝ(g)})2. (12)

As shown in Eq. (9), the second term in the summation gives
the squares of the real or imaginary parts of Pf Wif . Since it is
independent of g, we only need to focus on the summation of
the first term of Eq. (12), which will be denoted as T V 1. Using
the relation that

∑
f �f = Is (the identity on the system’s

Hilbert space), we have

T V 1 = d

4

∑
ŝ∈{p̂,q̂}

d∑
i=1

tr{ρi ŝ
2(g)} (13)

where ρi = trs(Uiρt ⊗ ρφU
†
i ). Since p̂(g)2 = 1/ sin2(g), we

obtain

tr{ρip̂
2(g)} = 1

sin2(g)
, (14)

TABLE I. The trace distances D (D′) and the number N (N ′)
of copies needed for two-dimensional systems in MDST [SU(2)
tomography].

MDST g = 1.3 N1 = 1600 N2 = 2560 N3 = 4096
D1 = 0.0497 D2 = 0.0386 D3 = 0.0300

SU(2) tomography N ′
1 = 1000 N ′

2 = 1600 N ′
3 = 2560

D′
1 = 0.0499 D′

2 = 0.0384 D′
3 = 0.0299

062304-3



XUANMIN ZHU, YU-XIANG ZHANG, AND SHENGJUN WU PHYSICAL REVIEW A 93, 062304 (2016)

TABLE II. The trace distances D (D′) and the number N (N ′)
of copies needed for four-dimensional systems in MDST [SU(2)
tomography].

MDST g = 1.4 N1 = 3200 N2 = 10240 N3 = 32768
D1 = 0.140 D2 = 0.0780 D3 = 0.0435

SU(2) tomography N ′
1 = 1000 N ′

2 = 3200 N ′
3 = 10240

D′
1 = 0.141 D′

2 = 0.0784 D′
3 = 0.0435

which is independent on the input state ρt . For ŝ(g) = q̂(g),
we have

tra{ρiq̂
2(g)} = 1

sin2 g
+ 2ci

cos2 g

2

, (15)

where ci = 〈ai |ρt |ai〉. Since
∑

i ci = 1, T V 1 is evaluated
as

T V 1 = d2

2 sin2 g
+ d

2 cos2 g

2

, (16)

where d is the dimension of the unknown state. T V 1, and thus
δ2ρr , attains the minimum at the optimal strength

gopt = arccos

(
1 + d

2
−

√
d + d2

4

)
. (17)

In Fig. 1, the value of T V 1 against the coupling strength g ∈
[1,1.6] is illustrated for the two-dimensional systems. From
Eq. (17), the minimum of T V 1 locates at g = 1.30. It may
be surprising at first glance that g = π/2, which makes the
coupling unitary Eq. (5) describe the strongest measurement,
is not optimal. Our result gopt = 1.3 is also consistent with
the result of gopt ≈ 1.25 [31], which is calculated using the
average fidelity as the figure of merit of the reconstruction of
the pure qubit states in the scheme introduced by Vallone and
Dequal [27].

In order to align with the results in [21], we will use the
trace distance to quantify the accuracy of the reconstruction.
To locate the optimal strength with respect to trace distance,
we use the standard Monte Carlo method to simulate MDST:
first, a two-dimensional mixed state ρt is selected randomly as
the target state; second, the reconstruction ρr is produced by
MDST with 103 copies of ρt for different coupling strengths;
third, the trace distance [33] between ρt and ρr ,

D(ρt ,ρr ) = tr(|ρt − ρr |)
2

, (18)

is calculated to gauge the performance of MDST. Smaller
trace distance D(ρt ,ρr ) means higher efficiency. In order to
eliminate statistical fluctuations, we have averaged D(ρt ,ρr )

TABLE III. The trace distances D (D′) and the number N (N ′)
of copies needed for five-dimensional systems in MDST [SU(2)
tomography].

MDST g = 1.4 N1 = 4000 N2 = 16000 N3 = 64000
D1 = 0.192 D2 = 0.0961 D3 = 0.0481

SU(2) tomography N ′
1 = 1000 N ′

2 = 4000 N ′
3 = 16000

D′
1 = 0.196 D′

2 = 0.0977 D′
3 = 0.0482

TABLE IV. The trace distances D (D′) and the number N (N ′)
of copies needed for six-dimensional systems in MDST [SU(2)
tomography].

MDST g = 1.4 N1 = 9000 N2 = 40500 N3 = 182250
D1 = 0.182 D2 = 0.0849 D3 = 0.0404

SU(2) tomography N ′
1 = 2000 N ′

2 = 9000 N ′
3 = 40500

D′
1 = 0.184 D′

2 = 0.0864 D′
3 = 0.0409

over 105 randomly selected ρt . The simulation results are
presented in Fig. 1. It coincides well with the prediction of
variance that gopt = 1.3.

IV. COMPARISON

The value of T V 1 diverges at the weak limit g → 0. This
demonstrates that DST at the weak limit suffers serious random
noise, which leads to low efficiency. The exactness of the
MDST formalism, and its validity over the entire range of
measurement strength, suggest that MDST can overcome the
problems of low efficiency and intrinsic bias. In this section, we
will examine this claim by using Monte Carlo simulations to
compute the three strategies of quantum state reconstruction:
MDST, DST, and SU(2) tomography.

The simulation goes as follows. First, a state is re-
constructed by MDST, DST, Pauli tomography, and SU(2)
tomography; second, the trace distance D(ρt ,ρr ) between the
true state ρt and the reconstructed state ρr is used to gauge
the estimation efficiency. Given equivalent sample size, the
smaller the trace distance is, the higher the efficiency of a
tomography scheme will be.

As shown in Fig. 2, all the reconstruction strategies are
affected by statistical errors. The trace distances decrease with
the numbers of the copies of the systems. As expected from
the simulation results, the reconstruction ρr of DST has a
systematical bias, while the state ρr obtained by MDST has no
error bias. The trace distance D(ρt ,ρr ) continues to decrease
as the number of copies increases.

For quibts, as indicated in Fig. 2, the efficiencies of MDST,
Pauli tomography, and SU(2) tomography differ little. For
five-dimensional systems, as shown in Fig. 3, the relationship
between the trace distance and the number of copies is
given. These two figures clearly show that to reach the same
level of trace distance MDST uses far fewer samples than
DST. That is to say, the efficiency of DST is significantly
improved by using stronger measurements and CD pointer
observables.

TABLE V. The trace distances D (D′) and the number N (N ′)
of copies needed for eight-dimensional systems in MDST [SU(2)
tomography].

MDST g = 1.4 N1 = 18000 N2 = 108000 N3 = 648000
D1 = 0.224 D2 = 0.0916 D3 = 0.0374

SU(2) tomography N ′
1 = 3000 N ′

2 = 18000 N ′
3 = 108000

D′
1 = 0.233 D′

2 = 0.0954 D′
3 = 0.0390
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TABLE VI. The trace distances D (D′) and the number N (N ′)
of copies needed for nine-dimensional systems in MDST [SU(2)
tomography].

MDST g = 1.4 N1 = 31500 N2 = 94500 N3 = 315000
D1 = 0.211 D2 = 0.123 D3 = 0.0677

SU(2) tomography N ′
1 = 5000 N ′

2 = 15000 N ′
3 = 50000

D′
1 = 0.214 D′

2 = 0.126 D′
3 = 0.0683

Figure 3 also indicates that MDST is less efficient than
SU(2) tomography. For the same reconstruction precision,
MDST needs more copies than SU(2) tomography. This is
consistent with the result found in [31] that the scheme of
Haar-uniform randomly chosen one-dimensional orthogonal
projective measurements is more efficient than direct tomog-
raphy methods.

In order to study the gap between the efficiencies of
MDST and SU(2) tomography, we have performed further
simulations for two-, four-, five-, six-, eight-, nine-, and
ten-dimensional systems. In the tables of the Appendix, we
list the reconstruction precision gauged by trace distance, and
the corresponding sample sizes NMDST and NSU(2), which are
averaged over 500 repeated reconstructions to decrease the
statistical fluctuation.

As indicated in Tables I–III, for the expected trace distances
D, the results suggest that NMDST ≈ 0.8dNSU(2) for two-,
four-, and five-dimensional systems, where d is the dimension
of the systems. In Tables IV and V, for six- and eight-
dimensional states, it is shown that NMDST ≈ 0.75dNSU(2). In
Tables VI and VII, 0.7dNSU(2) copies are needed in MDST
to attain the same precision of SU(2) tomography for nine-
and ten-dimensional systems. Roughly speaking, we suppose
NMDST ≈ 0.8dNSU(2).

From the data obtained in simulations, we estimate that
to reach an equivalent level of reconstruction accuracy the
sample size required in MDST, NMDST, is about 0.8d times of
NSU(2), the sample size required in SU(2) tomography. MDST
is clearly less efficient than SU(2) tomography, especially for
high-dimensional systems.

Since SU(2) tomography is predicted on measuring a
complete set of noncommuting observables, it is a difficult

TABLE VII. The trace distances D (D′) and the number N

(N ′) of copies needed for ten-dimensional systems in MDST [SU(2)
tomography].

MDST g = 1.4 N1 = 21000 N2 = 70000 N3 = 210000
D1 = 0.316 D2 = 0175 D3 = 0.100

SU(2) tomography N ′
1 = 3000 N ′

2 = 10000 N ′
3 = 30000

D′
1 = 0.327 D′

2 = 0.180 D′
3 = 0.103

task to realize in actual experiments. Although MDST is
less efficient than SU(2) tomography, MDST is much easier
to implement in experiments. MDST might be more useful
than SU(2) tomography for reconstructing an unknown state,
especially for high-dimensional states.

V. CONCLUSION

In this paper, we have presented a modified direct state
tomography using the coupling-deformed pointer observables.
We have verified that MDST has no inherent bias. MDST
is valid for any large coupling strength. We have obtained
the optimal measurement strength with which the efficiency
of MDST is much higher than that of DST. Numerical
simulation also suggests that the efficiency of MDST is less
than SU(2) tomography. However, MDST is much easier to
implement in actual experiments, and it thus could be useful
in reconstructing unknown quantum states.
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APPENDIX

In this Appendix, we list seven tables to present the state
reconstruction precision levels and the numbers needed in
MDST and SU(2) tomography, respectively. All the trace
distances are averaged over 103 repeated reconstructions to
eliminate statistical fluctuations.
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