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We present a three-cavity network model with two modes in each cavity and a nonlinear medium that generates
a Kerr-type interaction via both self-phase and cross-phase modulation processes. We have two main goals. The
first one is to generate a multipartite maximally entangled state (MES), starting from the ground state of the
system. We address the problem both without and with dissipation. Second, we want to protect the MES from
decoherence. While studying the MES, we analyze different bipartite and multipartite entanglement measures.
We also study the effect of an avoided level crossing identified by the critical behavior of the entanglement
measures, thus showing that the quantum correlations act as a witness for such phenomena. Our findings provide
the quantum tools to perform the operation of generation and protection of a maximally entangled state in a
cavity QED environment.
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I. INTRODUCTION

At the present time, quantum entanglement [1] is still the
most common and efficient resource [2] for quantum informa-
tion, computation, and communication tasks; thus it is highly
desirable to operate with maximally entangled states, which
can be realized in a variety of setups [1,3,4]. Hence, quantum
protocols used for generation, protection, and communication
of the maximally entangled state (MES) are continuously being
developed and improved, even considering that during the
last decade, alternative resources, such as quantum discord,
have been put forward and studied theoretically as well as
experimentally [5–7].

Furthermore, all nonclassical correlations can be activated
into distillable entanglement, and recently, it has been shown
that one can generate entanglement from classical correlations
via local dissipation [8–12].

Besides generation of entanglement, e.g., MES, another
transcendental task in quantum physics is the protection of
this resource from the effects of decoherence and dissipation,
which naturally destroy partially (for short times) and totally
(for long times) the quantum correlations. As an alternative
to protection by common methods such as isolation, error
correction [13–16], a decoherence-free subspace [17,18], etc.,
a kind of counteroffensive approach has been used lately,
known in the literature as quantum bath engineering (QBE)
or engineered dissipation [19,20], a procedure which permits
driving an open quantum system to target states (correlated,
coherent, etc.) by engineering the mechanisms of dissipation
and decoherence. In this direction, during a relatively short
period of time, many interesting theoretical and experimental
studies proved that this strategy works well and can be very
efficient for various physical systems [4,20–31]. On this order
of ideas, we present here an example efficiently applying
the principle of QBE for the studied model, which will be
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explained in detail in Sec. III. In general, our proposal of QBE
is based on a kind of nonlinear (two-mode) dissipation to the
reservoir. Similar models [27–31] have been used recently.

In the present paper we investigate a theoretical model
of a cavity network involving the photonic Kerr nonlinear
effect, which provides the generation of MES in such a setup.
Particularly, by a nonadiabatic evolution of the system from
its ground state, which possesses a very small fraction of
entanglement, the preparation of MES is possible, as shown
via the fidelity and negativity measures. We show that the
phenomenon of MES is conceivable under the conditions
of closed and open systems, e.g., considering the losses of
the photons from the cavities. We also demonstrate how the
MES could be protected in the open system using a particular
two-mode coupling to the environment in such a way that it is
possible to almost freeze the MES in the case of a phase-flip
noisy channel. Moreover, the phenomenon of an avoided
level crossing (ALC) [32–34] appears in our model, and we
study how this effect is related to the quantum correlations
in the system, an effect already discussed in the literature
[16,35–38]. Therefore the main purpose of this work is to
advance the field of quantum engineering, where original ideas
for the production, control, and protection of photonic MES
are suggested and developed in a network of optical cavities
under the approaches of closed and open systems.

The remainder of this paper is structured in three sections.
In Sec. II we present a network model as a closed quantum
system, defined in general for N cavities and numerically
analyzed for the case of three cavities, which could be, of
course, extended for more insight. We study the preparation of
the MES and witness the entanglement through the negativity
and fidelity. When the system evolves adiabatically, the
phenomenon of avoided crossing is identified by the critical
behavior of the bipartite and multipartite entanglement. These
effects are illustrated and discussed.

In Sec. III, the model of a cavity network is studied in the
framework of an open quantum system by considering two
different damping mechanisms: (i) arbitrary photons of modes
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a and b leave the cavity at rates γ a and γ b, respectively,
and (ii) the two-mode paired photons abandon the cavity at
rate γ . Both damping processes occur under the condition of
thermal environments at zero temperature. As a result, it is
shown that by damping photons correlated in pairs, the MES
decays slower in time, meaning that such a bath engineering
makes MES more robust. Moreover, if the decoherence to
such an environment corresponds to a phase-flip noise channel
[Eq. (21)], then MES remains a steady state, evidencing its
maximal fidelity. The last section is devoted to the conclusions.

II. THE CAVITY NETWORK MODEL WITHOUT LOSSES

We have an array of N two-mode cavities, and inside
each one there is a nonlinear medium which introduces a
field-field interaction by Kerr self-phase modulation [39] and
the Kerr cross-phase modulation process [40]. Furthermore,
photons can hop between nearest-neighbor cavities. The total
Hamiltonian (in units of �) consists of three parts: a free part
H0, a hopping term Hhop, and the photon-photon interaction
term Hint.

H0 =
N∑

i=1

[
ωa

i a
†
i ai + ωb

i b
†
i bi

]
, (1)

Hint =
N∑

i=1

[
ka

(
n̂a

i

)2 + kb

(
n̂b

i

)2 + kintn̂
a
i n̂

b
i

]
, (2)

Hhop =
N−1∑

i=1

Ji[a
†
i ai+1e

iφa + b
†
i bi+1e

iφb + H.c.]. (3)

Notice that the interaction Hamiltonian (2) [41,42], indi-
cating the contribution of the Kerr medium, involves only

quadratic elements. The first two terms correspond to the
self-phase modulation process and usually appear as (a†)2(a)2,
but this product of the creation and annihilation operators
can be reordered using the commutation relationship to get
Eq. (2), which yields constants and linear terms which can
be neglected since they commute with the Hamiltonian. The
third term is related to the Kerr cross-phase modulation and
introduces an effective interaction between the two modes. In
order to simplify the problem, we can eliminate H0 going
to the interaction picture with the unitary transformation
U = e−iH0t , which leaves Hint and Hhop invariant under the
conditions ωa

i = ωa and ωb
i = ωb. For the rest of the paper,

our Hamiltonian will have only two parts, Hhop and Hint.

A. Preparation of a maximally entangled state

The first objective of this study is to prepare a MES from an
arbitrary disentangled or partially entangled state by applying
the above Hamiltonian in the proposed photonic network. Such
a MES has been extensively studied [1], and the general form
of these states can be expressed by

|MES〉 =
∑

�n
λ�n|n1, . . . ,nN 〉a ⊗ |n1, . . . ,nN 〉b, (4)

where |n1,n2, . . . ,nN 〉a(b) represents the state with ni photons
in cavity i for mode a (b), while �n runs over all possible
combinations of {n1, . . . ,nN }. It is important to notice that
each cavity has the same number of photons for each mode.
This is a generalized version of the Bell states, but for qudits
rather than qubits. Next, we apply the hopping Hamiltonian to
this state:

Hhop|MES〉 =
N−1∑

i=1

∑

�n
Jiλ�n[eiφa

√
ni + 1

√
ni+1|n1, . . . ,ni + 1,ni+1 − 1, . . . ,nN 〉a ⊗ |n1, . . . ,nN 〉b

+ e−iφa
√

ni

√
ni+1 + 1|n1, . . . ,ni − 1,ni+1 + 1, . . . ,nN 〉a ⊗ |n1, . . . ,nN 〉b

+ eiφb

√
ni + 1

√
ni+1|n1, . . . ,nN 〉a ⊗ |n1, . . . ,ni + 1,ni+1 − 1, . . . ,nN 〉b

+ e−iφb
√

ni

√
ni+1 + 1|n1, . . . ,nN 〉a ⊗ |n1, . . . ,ni − 1,ni+1 + 1, . . . ,nN 〉b]. (5)

Now, by replacing the indices (ni + 1) → ni and (ni+1 − 1) → ni+1 in the third term and, for the fourth term, (ni − 1) → ni

and (ni+1 + 1) → ni+1, we readily get

Hhop|MES〉 =
N−1∑

i=1

Ji

∑

�n
[λ�neiφa

√
ni + 1

√
ni+1|n1, . . . ,ni + 1,ni+1 − 1, . . . ,nN 〉a ⊗ |n1, . . . ,nN 〉b

+ λ�ne−iφa
√

ni

√
ni+1 + 1|n1, . . . ,ni − 1,ni+1 + 1, . . . ,nN 〉a ⊗ |n1, . . . ,nN 〉b

+ λ{ni−1,ni+1+1}eiφb
√

ni

√
ni+1 + 1|n1, . . . ,ni − 1,ni+1 + 1, . . . ,nN 〉a ⊗ |n1, . . . ,nN 〉b

+ λ{ni+1,ni+1−1}e−iφb

√
ni + 1

√
ni+1|n1, . . . ,ni + 1,ni+1 − 1, . . . ,nN 〉a ⊗ |n1, . . . ,nN 〉b]. (6)

We can regroup Eq. (6) and take J = Ji such that

Hhop|MES〉 = J

N−1∑

i=1

∑

�n
[(λ�neiφa + λ{ni+1,ni+1−1}e−iφb )

√
ni + 1

√
ni+1|n1, . . . ,ni + 1,ni+1 − 1, . . . ,nN 〉a ⊗ |n1, . . . ,nN 〉b

+ (λ�ne−iφa + λ{ni−1,ni+1+1}eiφb )
√

ni

√
ni+1 + 1|n1, . . . ,ni − 1,ni+1 + 1, . . . ,nN 〉a ⊗ |n1, . . . ,nN 〉b]. (7)
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One can see that it is possible to have zero hopping energy
by generating vanishing prefactors in Eq. (7). Then, using this
idea, we get the following condition for the first prefactor:

λ�nei(φa+φb+π) = λ{ni+1,ni+1−1}. (8)

The previous condition indicates that a single hopping is
equivalent to introducing a phase ei(φa+φb+π). Since the system
is periodic, we can repeat this process N times to get

λ�neiN(φa+φb+π) = λ�n, (9)

and with the above result, the condition for having vanishing
hopping energy is

(φa + φb) = (2m − N )π

N
, (10)

with m being an integer number. The same condition for the
phases applies to the other term in Eq. (7). This result is very
important, summarizing the first step towards the generation
of a MES. The second step is to generate a zero-interaction
energy; then we apply Hint to the MES state,

Hint|MES〉 =
∑

�n

N∑

i=1

λ�n(ka + kb + kint)n
2
i

× |n1, . . . ,nN 〉a ⊗ |n1, . . . ,nN 〉b. (11)

It is worth noticing that the terms inside the parentheses do not
depend on ni because of the form of the MES state, where the
same number of photons appear in each mode. Following the
approach in [42], the authors showed that kint = 2

√
kakb.

The factor ka(b) is proportional to the real part of the third-order
susceptibility χ (3), which can be negative [43,44]. Thus, setting
ka = kb = −k, we get a zero eigenvalue for both the interaction
and full Hamiltonians.

Finally, replacing condition (8) in Eq. (4), we get the MES
definition,

|MES〉 =
∑

�n

1√
d

ei 2πm
N

p{n1 ,...,nN } |n1, . . . ,nN 〉a ⊗ |n1, . . . ,nN 〉b,
(12)

where p{...,nj +1,nj+1−1,... } = p{...,nj ,nj+1,... } + 1 and d is the
dimension of the Hilbert space [45].

One can reach the MES dynamically by varying the phase
nonadiabatically, as depicted in Fig. 1 by the red triangles,
where we set φa = φb = φ. When m = 3 and φ = π/2, the
MES state that we reached is

|MES〉 = 1√
6

(|011〉 ⊗ |011〉 + |101〉 ⊗ |101〉

+ |110〉 ⊗ |110〉 + |200〉 ⊗ |200〉
+ |020〉 ⊗ |020〉 + |002〉 ⊗ |002〉). (13)

On the other hand, if the phase varies adiabatically, then the
system follows its initial eigenstate, shown by the blue squares.
The effects of the avoided level crossing will be discussed in
the Sec. II C.

B. MES: Bipartite or multipartite correlations?

We consider our present system composed of six qutrits
(states with zero, one, and two photons) defined by three

FIG. 1. Energy levels as a function of the phase. Preparation
of MES by nonadiabatic variation of the phase (red triangles) and
ground-state evolution in the adiabatic passage (blue squares). Here
ka = kb = J .

cavities and two modes per cavity. The quantum correlations
in a system of any dimension, i.e., qudits, are usually measured
by the negativity [46,47]. In our particular case, in order
to quantify the amount of bipartite (two-body) quantum
correlation, we trace over four of the qutrits and use negativity
to calculate the correlations between the residuary qutrits.

In general, for subsystems X and Y and an associated
density matrix ρXY , the negativity is defined as

N (ρXY ) =
∑

i

|λi | − λi

2
, (14)

where λi are the eigenvalues of the partial transpose of the
density matrix ρTX(Y ) with respect to one of the subsystems.
It essentially measures the degree to which ρTX(Y ) fails to
be positive, and therefore it can be considered a quantitative
version of Peres’s criterion for separability [48].

After preparing the target MES, it is important to evaluate
the degree of entanglement of this state. The MES defined
by Eq. (13) is mostly a global (multipartite) entangled state
between two different modes localized in three cavities. This
means that all possible bipartite correlations, say, modes a and
b of the same cavity or different cavities, have no entanglement
(zero negativity). Negativity is only a sufficient condition for
entanglement; however, by tracing out over four of the qutrits,
ending with only two qutrits, one can realize that the final
state has no quantum correlation between its parts. Even more,
the MES has no correlation between subsystems of the same
mode, not bipartite correlation Na1a2, as shown by the dot-
dashed curve in Fig. 2(a), or tripartite correlation πa1a2a3, as
shown by circles in Fig. 3. Nevertheless, we cannot say that
the MES state belongs to the Greenberger-Horne-Zeilinger
(GHZ) class of multipartite entangled states. We recall that
for the GHZ state, when eliminating one of the qudits, all
correlations are destroyed, ending with a state proportional to
the identity matrix. In our case, if we trace out over only one
cavity, for example, cavity 3, we still find correlations between
the remaining modes, evidenced when calculating Na1a2(b1b2)

in a manner similar to Eq. (17) and represented with a dashed
curve in Fig. 2(a).
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FIG. 2. (a) Global (NG) and partial (Na1a2(b1b2)) multipartite negativity reach a maximum when approaching the MES phase (π/2), while
bipartite correlations Na1a2 vanish. Inset: Evolution of NG and Schmidt number agrees. (b) Two avoided level crossings are witnessed by an
abrupt increment of NG, while decreasing bipartite correlations Na1a2. The parameters are as in Fig. 1.

Because of the high dimension of the system, calculating
any global multipartite measure of correlations considering
both modes is a difficult task.

For example, in order to measure tripartite correlations for
the same mode, we used two different definitions found in the
literature, such as in [49],

πa1a2a3 = 1

3

3∑

i=1

πai, (15)

with πa1 = N 2
a1(a2a3) − N 2

a1a2 − N 2
a1a3, and in [50],

Ma1a2a3 = 3
√
Na1(a2a3)Na2(a1a3)Na3(a1a2). (16)

In the next section (see Fig. 3), we compare both measures
during the preparation of the MES state.

For a more general situation, in order to investigate
the multipartite correlations, we consider an approximate
calculation which can be carried out in a relatively simple
way by considering the symmetry properties in our model.
For example, we may assume that for each mode one has
an average state for the three cavities which are identical, so
instead of considering three qutrits, there will be one qudit of
dimension d = 33. Applying the same idea for the other mode,
we end up with two qudits, for which we may calculate the

FIG. 3. Evolution of negativity measuring the tripartite corre-
lations using Eq. (15) (circles) and Eq. (16) (crosses) for the
nonadiabatical passage for the same parameters as in Fig. 2.

standard negativity measure in Eq. (14) as follows:

NG = Na1a2a3(b1b2b3), (17)

where the partial transpose is taken on mode b in the three
cavities. Using this approach, we get a value that gives us a
qualitative estimation of the global correlation between the
two modes, considering that for the MES, the bipartite and
tripartite correlations vanish.

C. Negativity witnessing MES and avoided level crossing

In this section we analyze the quantum correlations mea-
sured by the negativity, and for verification the Schmidt
number is computed as well. As explained above, to engineer
the MES during the dynamics of the system one should satisfy
two conditions: (i) ka + kb + kint = 0, resulting from Eq. (11),
and (ii) managing the total phase given by Eq. (10). The
first condition can be achieved as in Refs. [42–44], and in
our calculations one just fixes ka = kb = −kint/2. In order
to fulfill dynamically the second condition, one could vary
the phase both adiabatically and nonadiabatically to meet the
target value.

Let’s start by managing the nonadiabatic variation of the
phase; initiated in the ground state, the system follows the
track represented in Fig. 1 by the red triangles. We see that for
the phase equal to π/2 the system evolves to the state with zero
energy, which could be the MES. In order to check this, we
compute the value of entanglement, as shown in Fig. 2(a). In
the main plot we show three curves, where the solid line repre-
sents the global (multipartite) entanglement between modes a

and b in three cavities, the dashed line depicts the entanglement
between modes a and b in two cavities Na1a2(b1b2) (i.e., the
partial multipartite correlation), and, finally, the dot-dashed
curve evidences the bipartite entanglement of mode a for two
different cavities. The results are quite clear. We find that
the maximal value of the multipartite entanglement measured
by the negativity as well as the Schmidt number [inset of
Fig. 2(a)] occurs in the region where the phase is π/2, thus
witnessing the MES as given in Eq. (13). On the other hand,
the minimal value of the bipartite entanglement indicates that
the MES has genuinely multipartite correlations, distributed
between modes a and b, additionally evidenced by the partially
multipartite entanglement, as shown by the dashed curve. We
also computed the negativity, not shown here, for the bipartite
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states of modes a and b in the same or different cavities, but
the results show that the entanglement is zero at all times.
For deeper insight into the correlations, we computed the
tripartite correlations for mode a and represent numerically the
comparison between the two different methods, as shown in
Fig. 3, where we see that the tripartite entanglement computed
by Eq. (15) becomes zero in π/2, indicating once more that the
MES has multipartite correlations between the modes; hence
one can conclude that the method proposed in [49] is more
appropriate, at least for our system.

Next, we continue by studying the adiabatic variation of
the phase, as represented in Fig. 1 by the blue squares. We
readily notice that the system follows its ground state during
the entire evolution and never reaches a MES. However, we
observe another effect occurring during the dynamics of the
eigenstate, the so-called ALC. The ALC is a region where two
or more energy levels of the system are close enough that the
dynamics might follow one path with almost no change in the
wave function or might jump to a fairly different state (which
occurs in the case of nonadiabatic variation of phase). The
selection of one path or the other can be tuned by changing
one parameter, which increases (decreases) the speed at which
the wave function undergoes to the avoided crossing, leading
to the nonadiabatic (adiabatic) passage (see Fig. 1). It is noted
that when approaching the ALC, the evolution of the state
turns out to be very complex, leading sometimes to chaos
[32,36,51] or quantum phase transitions [52]. The signature of
an ALC is not always easy to establish by just looking at the
time evolution of the wave function. Quantum correlations
(QCs) play an important role in detecting the criticality
[53–55]. It has been shown that for different systems, the
QCs change considerably in this region, and these may reach
an extremal value [35–38,54]. For multiparticle systems, the
real witness is the multipartite rather than bipartite correlation.
Furthermore, it has been pointed out for a spin chain that at an
ALC, the multipartite correlation increases while the bipartite
correlation decreases [36]. This behavior indicates that in this
region a collective effect shows up (global correlation), rather
than a nearest-neighbor dynamics (two-body interaction).

In order to establish with more certainty the effect of
an ALC in our model, we analyzed the dynamics of the
entanglement measured by negativity. In Fig. 1 we find that an
ALC seems to occur in the regions of φ ≈ π/3 and φ ≈ 5π/6.
The evolution of the negativity, as seen in Fig. 2(b), shows
clearly the position of the ALC and is perfectly witnessed by
an abrupt change in the dynamics, evidencing maximal values
for multipartite entanglement and minimal values for bipartite
entanglement. It should be mentioned that the Schmidt number
has very similar behavior. Our results are in good agreement
with a similar effect observed in [35] and confirm the more
general conclusions given in [36], hence shedding more light
on the importance of QCs in witnessing phenomena like ALC.

To conclude this section, we find and emphasize here
the importance of the adiabatic and nonadiabatic passages
in our model. Even if the adiabatic path does not lead to a
considerable change in the energy, there is a sudden transition
in the evolution of interspecies multipartite entanglement
(modes a and b in the whole network) and intersite bipartite
entanglement [the same mode in two different cavities; the
effect shown in Fig. 2(b)] which is similar to the one described

FIG. 4. Global entanglement (solid line) and bipartite entangle-
ment (dot-dashed line) similar to those in Fig. 2(a), except that
ka = kb = J/4.

by Karthik et al. [36]. In the nonadiabiatic passage leading
to the MES, one would also expect to observe a particular
behavior of the negativity, which spontaneously changes value
in the region of the ALC or exceptional point, as it is sometimes
called in the literature [32–34]. This effect is not observed well
in Fig. 2(a) but is more visible for the smaller gaps between the
levels at the ALC, which could be managed, e.g., by decreasing
the rate k/J in Eq. (2) (see Fig. 4, where a more abrupt increase
of the global entanglement is shown from the ALC region on
as the path reaches the MES in its dynamics).

III. DAMPING EFFECTS IN THE PHOTONIC NETWORK

A. Preparation of a MES with losses

In Fig. 1 we showed that the MES (13) can be prepared from
the ground state by changing the phase, which as a function
of time can be explicitly written as φ = αt . Notice that α will
give the speed of the system. When α is small enough, the
system will follow the adiabatic path; otherwise, it will follow
the nonadiabatic path. However, not all the nonadiabatic paths
will lead to the MES; actually, there is a small range of values
of α (αopt) that optimize the MES preparation, reaching a
high fidelity (F = tr[ρ|MES〉〈MES|]) [56]. We found that for
k = J/16 and αopt = 3×10−4J the fidelity is F ≈ 0.98. The
nonlinear interaction k is related to the height of the gap at the
avoided crossing. If this gap is considerably diminished such
that even for a slow tuning of the phase, i.e., small α, the system
still goes through the nonadiabatic path, then the probability
of reaching the MES is very high. That is why we decreased
k down to J/16. Unfortunately, αopt depends on different
parameters, such as k,J , and γ , if losses are considered. Then,
by decreasing k we have to decrease α too in order to find αopt.
For the case where the interaction with the environment is not
negligible, this mechanism is not effective since we need to
vary the phase very slowly, and eventually, losses will lead
the state to a different path before becoming a MES. In the
presence of losses, it would be convenient for the system to
quickly reach the phase π/2. Another approach is to increase
k with respect to J . In this case, as we decrease the hopping
strength, the intersite correlation becomes smaller, while the
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FIG. 5. The loss rate γ hurts the preparation of the MES, but
this can be overcome by increasing the nonlinear interaction k. Inset:
Another approach to deal with losses is to increase the speed α, which
for higher losses increases the fidelity.

interspecies interaction gets stronger. Under this condition the
energy spectrum shrinks, and the ground state (from which we
start in the dynamics leading the MES) becomes very close to
the zero-energy level, thus closer to the MES. This means that
for large α, which implies going faster to the MES, one still gets
good fidelity (F ≈ 0.9) while time losses are reduced. Another
way to understand this is by comparing the hopping [Eq. (3)]
and the interaction [Eq. (2)] Hamiltonians. When k gets bigger,
the interaction term dominates over the hopping. Because of
this, the dependence on α, which appears in the condition (7),
is not that relevant since the condition (11) dominates and is
independent of α.

In order to simulate losses, we assume that each mode
interacts with its own reservoir at zero temperature, making the
photons jump out of the cavities. We use the master-equation
(ME) approach [57]. The equation of motion for the density
operator is given by

ρ̇ = −i[H,ρ] + La(ρ) + Lb(ρ), (18)

where

L
 =
3∑

k=1

γ 

k

2
(2
kρ


†
k − {
†

k
k,ρ}), (19)

with the operator 
 = {a,b},k = {1,2,3}, representing differ-
ent cavities and γ a (γ b) being the decay rate for mode a (b).

In Fig. 5 we show the variation of the maximum of the
fidelity with respect to the MES as a function of the loss
rate γ . As one would expect, as we increase the loss rate,
the maximum fidelity decreases. However, in the main plot we
see that by increasing the nonlinear interaction k, holding γ

fixed, we manage to generate the MES with higher fidelity.
Notice that each curve is plotted for its corresponding αopt at
γ = 0. As we said above, αopt is a function of γ , but we will
discuss this case later on. We found numerically that there is a
critical rate γc, above which the fidelity only decreases; that is,
there is no global maximum for the fidelity at π/2, evidencing
that the system will not get closer to the MES with the given
set of parameters. For example, for α = 0.15J and k = J we
found that γc ≈ 0.02J . This means that if in the system losses

cannot be controlled to be below this threshold, the only way
to get the MES is by tuning the other parameters.

Let’s now discuss the dependence of αopt on γ . By holding
k constant, as losses increase, one can increase the speed α to
obtain higher fidelity. As we explain above, the reason why
this happens is that the system will reach the phase π/2 more
quickly, which means going to the MES before losses take it on
a different path. However, this behavior is not well evidenced
for large k (k � 3) since the system becomes insensitive to
the variation of α. Then, the consideration of the dependence
αopt(γ ) is better observed for smaller k. In the inset of Fig. 5, we
compare the maximum of the fidelity as a function of γ for α =
0.15 (bottom curve of the main plot) and α = 0.225. We chose
for this plot k = J . We see that because α = 0.15 (dashed line)
is the optimal value at γ = 0, this curve starts above α = 0.225
(dot-dashed line). Nevertheless, when increasing the losses,
both curves intercept, and beyond that α = 0.225 becomes the
new optimal value. This method works as a mechanism for
dealing with losses.

B. Robustness against noise

In this section, we are interested in preserving the MES
(13). In order to counteract the effects of the environment, at
least for a short time during the evolution, a quantum error
correction protocol [13] could be implemented. However, this
is not a feasible solution since it would require encoding a very
large state [14], which is not practical. A decoherence-free
subspace (DFS) [17,18] does not lead to any significant result
either since a common reservoir for the whole system, as
well as an enlargement of the system, would be needed. An
interesting approach to protect the MES against decoherence
could be to rely on reservoir engineering. Let’s assume that
each cavity interacts with its own reservoir, but the two
modes inside a cavity will interact in a certain way such
that if one experiences a jump, the other mode will follow
the first one, like in [30]. However, the nonlinear losses
do not appear naturally in the standard optical cavities and
should be artificially stimulated in order to compete with
the single-photon damping that is normal for such devices.
Experimentally, such nonlinear damping is not an easy task;
nevertheless, an intuitive experiment could be considered in
which the damping occurs in an absorbing medium resonant
with two-photon transitions, e.g., for our model. A more
complex experiment was very recently proposed [27] in which
the authors realize two-photon dissipation at a rate that is the
same order of magnitude as the single-photon decay rate [i.e.,
γ is approximately similar in Eqs. (19) and (20)]. Further,
the authors conclude, “The ratio between these two rates can
be further improved within the present technology by using
an oscillator with a higher quality factor and increasing the
oscillator’s nonlinear coupling to the bath.”

Under this two-photon approximation, the corresponding
Lindblad term of ME can be rewritten as

L� =
3∑

k=1

γk

2
(2�kρ�

†
k − {�†

k�k,ρ}), (20)

where γ a = γ b = γ and we introduced a new collective
operator � = ab. Notice that operator � includes modes a
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FIG. 6. The time evolution of fidelity with respect to the MES
in the case of different noise channels. Fidelity for the case of an
engineered reservoir (red dashed line), given by Eq. (20), decays
slower than that for the case of a standard reservoir (blue line),
described by Eq. (19). Here γ = J, ka = kb = J/2.

and b for the same cavity. Nevertheless, it is easy to see that
this approximation for the interaction with the reservoir is not
equivalent to having the two modes in a common reservoir,
in which case the correct substitution would be � = a + b.
In Fig. 6 we compare this new way of modeling the reservoir
(20) to the noise channel defined by Eq. (19) by measuring
the fidelity with respect to the MES. Notice that the MES is
more robust against the decoherence for the coupled decay
type of reservoir, i.e., provided that both modes inside each
cavity decay cooperatively.

Nevertheless, dissipation may not be the only source of
noise, in fact, a phase-flip (PF) mechanism [13] will lead to a
strong decoherence. It is noticed that the MES state (13) is very
sensitive to decoherence (losses of the off-diagonal elements).
Then, the PF mechanism, which because of its definition
leaves the diagonal elements invariant and only changes
the off-diagonal elements, could reproduce, for example, the
decrease in the fidelity with respect to the MES state. Going

FIG. 7. As result of the symmetry between the different modes
composing the MES, we observe numerically and analytically that
this state remains unaltered (red dashed line) under a phase-flip noise
channel that interacts with the system via Eq. (20). For an interaction
of the type in Eq. (19) the fidelity decays as expected. γ = J,

ka = kb = J .

in this direction, we propose a PF noise channel by replacing
the creation and annihilation operators in Eq. (19) by

σα = |0〉〈0| + eiθ |1〉〈1| + eiθ |2〉〈2|, (21)

with θ = π . This operator introduces a phase on the state if
there is at least one photon in the mode; otherwise, it leaves the
state invariant. It would be interesting now to see how this PF
noise acts on the MES by combining it with the two damping
mechanisms defined by Eqs. (19) and (20). This is shown in
Fig. 7. For the case of the coupled decay (20) we have to
replace operator � by P = σaσb. We observe in Fig. 7 that
under the coupled decay approximation for the noise channel
(20), the MES state is completely robust against the phase-flip
noise channel. On the contrary, for the case of the noise channel
described in (19) the fidelity decays rapidly.

IV. CONCLUSION

Entanglement is a fundamental tool for quantum infor-
mation tasks; unfortunately, it is very fragile with respect
to environmental noise, which poses a problem not only for
creating entanglement but also protecting it in a practical way.
In this work, we addressed the problem of generation and
protection of a MES in an optical network. We showed that
one can generate a MES as a zero-energy eigenstate of the
Hamiltonian of the system that satisfies the conditions (7) and
(11). We also discussed the dynamics to reach such a state,
starting from the ground state of the system. If we vary the
phase in time, with a velocity α, it takes a rapid evolution
(nonadiabatic) to jump over the avoided crossing gap to reach
the desired state. On the other hand, for a slow time evolution
(small α), the system will follow the same original state. In
this case, we observe that when approaching the gap region,
the global entanglement experiences a maximum, while the
bipartite and three-partite entanglements show a minimum,
providing evidence that a collective phenomenon takes place.
Also, we suggest, via reservoir engineering, how to protect
the MES from decoherence. In particular, we show that for a
collective decay model [Eq. (20)] the system is robust under
decoherence mechanisms such as phase flip. Finally, let’s
discuss the experimental realization of our proposal. We focus
first on the hopping term in Eq. (3). The coupling between
the cavities can be achieved mainly in two different ways
[58], either via an optical fiber [59] or by a tunnel effect
[60]. The hopping we modeled is a general expression that fits
well with other models like the Bose-Hubbard model [60] and
superconducting qubits [61], and it can be tuned to be of the
order of megahertz. We chose to scale all the parameters with
the hopping strength J , such that the conclusion of this work
can be extended to other systems. In order to see the feasibility
of the experiment, we are interested in only the rate k/J , with
k representing the nonlinearities. The Kerr self-interaction
naturally appears in some media as a result of a nonzero
third-order electric susceptibility, but its effect is negligible
on the level of a few photons. However, the strong interaction
of the light mode with atoms inside a cavity QED, under
particular conditions, mediates strong nonlinear interaction
among the photons of the cavity mode [62]. The Kerr cross
interaction can be more difficult to realize for photons, but
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as self-interaction, it should be done effectively through a
nonlinear medium, e.g., atoms. Furthermore, in the polaritonic
basis, both Kerr interactions appear for the case of four-level
atoms [63], indicating that this approach is possible. Once
again, in the Bose Hubbard model these nonlinear interactions
appear naturally [45]. For a three-level atom configuration, the
nonlinear interaction can be explained by the Stark shift [60],
and this shift has been measured experimentally [64] to be of
the order of megahertz. Furthermore, in recent experiments
with superconducting qubits, similar nonlinear strengths have
been found for self- and cross interaction [26]. To conclude,

the couplings we used in our simulations can be obtained
experimentally in a variety of systems.
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