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Majorana edge modes with gain and loss
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We consider a non-Hermitian generalization of the Kitaev model and study the existence of stable Majorana
zero energy modes. We show that they exist in the limit of zero chemical potential even if balanced gain and loss
are randomly distributed along the lattice. We show that Majorana zero modes also appear if the chemical potential
is different from zero provided that not the full Hamiltonian but the non-Hermitian part of the Hamiltonian is
PT symmetric.
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I. INTRODUCTION

Non-Hermitian Hamiltonians have attracted a great deal of
attention after the paper by Bender and Boettcher [1], who
showed that the spectrum of a PT -symmetric non-Hermitian
Hamiltonian could be real, where P and T operators are parity
and time reversal operators, respectively. More specifically,
the spectrum of a PT -symmetric non-Hermitian Hamiltonian
is real unless the non-Hermitian degree exceeds a critical
number. If it is beyond the critical number, PT symmetry
is spontaneously broken and the energy spectrum becomes
either partially or completely complex. An experiment on
a PT -symmetric system with balanced gain and loss was
realized in an optical system [2].

Topological insulators in PT -symmetric systems are an
emergent field in physics [3–10]. A topological insulator has
a gapped energy spectrum in the bulk while it has gapless
robust edge states (see Ref. [11] and references therein). Hu
and Hughes [3] and Esaki et al. [4] were the first authors to
search for topological phases for non-Hermitian systems. Un-
fortunately, they found no stable topological states since their
system admits complex energy eigenvalues. A Dirac-type non-
Hermitian Hamiltonian was considered in Ref. [3] and it was
concluded that the appearance of the complex eigenvalues is
an indication of the absence of the topological insulator phase.
The non-Hermitian generalizations of the Luttinger Hamil-
tonian and the Kane-Mele model were considered in Ref. [4]
and the associated topological phase was shown to be unstable.
Later, other authors studied a one-dimensional non-Hermitian
tight-binding model [6] and a non-Hermitian Su-Schrieffer-
Heeger (SSH) model with two conjugated imaginary potentials
located at the edges of the system [7]. Moreover, they found
no stable topological phases in these two systems. The first
example of a topological insulating phase for a non-Hermitian
system with a real spectrum appeared in the literature recently
[8]. The SSH model with gain and loss impurities located
away from edges was shown to admit a real spectrum in the
topologically nontrivial region. The first experiment in which a
topological transition occurs in a lossy non-Hermitian system
was performed by Szameit’s group [9]. The PT -symmetric
Floquet topological system was also studied and it was shown
that some two-dimensional non-Hermitian systems may have
stable Floquet topological phases [10].
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Another interesting system that has recently attracted great
attention is the one where Majorana zero modes appear
[12–15]. They are interesting since they can be realized in
condensed matter systems although their original prediction
as elementary particles was made in high energy physics. The
particles’ creation and annihilation operators are equal and
consequently Majorana fermions are their own antiparticles.
Of special interest are Majorana zero modes, which are
Majorana particles with exactly zero energy. A fermion
can be thought of as composed of two Majorana fermions
and an interesting situation arises when two Majorana zero
modes are spatially separated from each other. Such highly
delocalized zero modes in the topologically nontrivial phase
are robust against local defects and disorder. More than a
decade ago, Kitaev [16] proposed an exactly solvable model
with open boundaries. It is a one-dimensional tight-binding
model for spinless fermions in the presence of p-wave
superconducting pairing. He found unpaired Majorana zero
modes that commute with the Kitaev Hamiltonian. They
are localized near the edges and decay exponentially away
from the ends. Note that the Kitaev model can be in two
distinct phases depending on the model parameters: the trivial
nontopological phase and the nontrivial topological phase.
Recently, the Kitaev model with a gain at one edge and a loss
at the other edge was investigated [17]. The non-Hermitian
Kitaev model was made PT symmetric by assuming that the
superconducting phase is purely imaginary. It was shown that
the system may admit a real spectrum in both topologically
trivial and nontrivial regions. The link between exceptional
points and Majorana modes has recently been investigated
in [18].

In this paper, we explore Majorana zero modes in a
non-Hermitian system. We consider a non-Hermitian gen-
eralization of the well-known Kitaev model by introducing
gain and loss into the standard Kitaev chain. We write our
Hamiltonian in the Majorana basis and study the existence
of stable Majorana zero energy modes. The time-reversal
symmetry is broken in the Kitaev model and hence our system
is not PT symmetric. We suppose that the non-Hermitian part
of our Hamiltonian is PT symmetric. In this way, we show
that the system admits a real energy spectrum and Majorana
zero modes are available. We prove that Majorana zero modes
located exactly at the edges appear when the chemical potential
is zero even if balanced gain and loss are randomly distributed
along the chain.
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II. MAJORANA ZERO ENERGY MODES

We begin with a one-dimensional Kitaev model with N

sites. The model contains a tight-binding chain of spin-
polarized electrons that can only hop to nearest-neighbor sites.
Neighboring electrons can also form Cooper pairs with a
superconducting pairing potential term � > 0. In addition
to the standard Kitaev model, we introduce gain and loss
into the system. A non-Hermitian generalization of the Kitaev
Hamiltonian reads

H =
N−1∑
j=1

−T a
†
j aj+1 + �ajaj+1 + H.c.

−μ

N∑
j=1

(
a
†
j aj − 1

2

)
+ i

N∑
j=1

gja
†
j aj , (1)

where aj and a
†
j are the electron annihilation and creation

operators localized at site j , respectively; T is the constant
hopping amplitude; μ is the chemical potential; and gj is the
site-dependent non-Hermitian strength. The parameters T , �,
μ, and gj are all real valued. Note that positive (negative)
values of the non-Hermitian strength describe gain (loss). We
impose two conditions on the non-Hermitian strength. First,
gain and loss are assumed to be balanced in our system.
Second, we suppose that no gain or loss occurs at the two
edges of the chain. These are given by

N∑
j=1

gj = 0, g1 = gN = 0. (2)

The reasons why we impose these two conditions are made
clear below. In Fig. 1, we illustrate our system. The shaded
circles represent lattice sites with either gain or loss. In
the figure, we consider a Kitaev chain with N = 12 and
gj = g0(δj2 − δj,11), where g0 is a constant. This means that
gain is introduced at the j = 2 site and particles are lost at
the j = 11 site. The Kitaev model exhibits a topologically
nontrivial (top) and a trivial (bottom) superconducting phase.
In the topological superconductor phase, there are localized
Majorana zero modes. They are exactly localized at two edges
if the chemical potential is zero. If it is different from zero, the
corresponding wave function decays exponentially along the
chain. In this paper, we explore whether stable Majorana zero
modes are still available if gain and loss are introduced into
the system.

Let us first discuss the symmetry property of this Hamil-
tonian. We emphasize that time-reversal symmetry is broken
since we only consider one value for the spin projection. The

FIG. 1. Two phases of the Kitaev chain with N = 12. The shaded
elements of the chain represent gain and loss [gj = g0(δj,2 − δj,11)].
In the topological phase (top) unpaired Majorana fermions are located
on edges. The bottom figure is the same lattice but in the trivial phase.

Kitaev Hamiltonian is not also symmetric under a combined
PT operation. Although the total Hamiltonian is not PT
symmetric, one can demand that the non-Hermitian part of
it be PT symmetric. In this case, the non-Hermitian strength
should be chosen appropriately to satisfy this condition too.
However, as we show below, stable Majorana zero energy
modes appear even if the gain and loss are randomly placed
along the lattice.

The Hermitian Kitaev Hamiltonian can be rewritten in the
form

H = 1

2

∞∑
k=0

(a†
k,a−k)H

(
ak

a
†
−k

)
, (3)

where H is the so-called Bogoliubov–de Gennes Hamiltonian.
In the absence of gain and loss, this Hamiltonian has the form

H = −(2T cos k + μ)σz + 2� sin kσy, (4)

where σy and σz are Pauli matrices. If the sys-
tem is infinitely long, the excitation spectrum of the
Bogoliubov–de Gennes Hamiltonian is given by Ek =
∓

√
(2T cos k + μ)2 + 4�2 sin2 k. The two energy eigenvalues

are separated by a gap which closes when μ = ∓2T . This is
the signal of the topological phase transition. If the chain is
finite, one can numerically find the energy spectrum of the
Hamiltonian (1) for open-boundary conditions.

To study Majorana zero modes in our non-Hermitian
system, we transform the Hamiltonian (1) from the operators
aj to the Majorana operators, which are Hermitian fermionic
operators that square to 1,

γj,A = a
†
j + aj ; γj,B = i(a†

j − aj ). (5)

The fermion anticommutation relation for Majorana fermions
is given by {γj,k,γj ′,k′ } = 2δj,j ′δk,k′ . The Majorana fermion
operators do not obey the usual Pauli principle of fermions
since γ

†
j,A = γj,A and γ

†
j,B = γj,B . Instead, the Majorana

operators have the following property: γ 2
j,k = 1. Therefore,

we see that a Majorana fermion is its own antiparticle. Let us
rewrite the Hamiltonian (1) in the Majorana basis using the
above transformation in the limit μ = 0 and � = T �= 0. In
this case, the existence of stable Majorana zero modes can be
clearly seen. It is given by

H = −iT

N−1∑
j=1

γj,Bγj+1,A − 1

2

N∑
j=1

gjγj,Aγj,B + i

2

N∑
j=1

gj .

(6)

It is now clear why we impose two conditions on the non-
Hermitian strength. First, the last constant term in Eq. (6) is
purely imaginary and shifts the whole spectrum. This term
vanishes since we already assumed that gain and loss are
balanced in the system. Second, assuming that g1 = gN = 0
makes the transformed Hamiltonian interesting in the sense
that the Majorana operators γ1,A and γN,B are explicitly absent
from the Hamiltonian (they commute with the Hamiltonian
[H,γ1,A] = [H,γN,B] = 0). As a result, occupying these states
requires zero energy. Because of the absence of these two
unpaired Majorana operators, we say that Majorana zero mode
operators, or simply Majorana zero modes, appear in our
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FIG. 2. The parameters for all figures are given by N = 12 and
� = T = 1. Panel (a) shows the real part of the spectrum as a
function of the chemical potential when g0 = 0.15. In fact, the real
part of the spectrum changes negligibly with g0. As can be seen,
zero energy states are available when −2 < μ < 2. Panels (b)–(d)
plot the imaginary part of the spectrum for g0 = 0.1, g0 = 0.15, and
g0 = 0.5, respectively. Increasing g0 increases the critical value of
the chemical potential with which the spectrum becomes real. If g0

is large enough, then the spectrum becomes complex at any μ.

non-Hermitian system. We emphasize that this is true even
if gain and loss are randomly distributed in the chain as long
as gain and loss are balanced. In other words, PT symmetry
is not a necessary condition for the reality of Majorana zero
modes. This doesn’t mean that all the energy eigenvalues are
real valued. In fact, they are either completely or partially
real valued. However, what is clear is that Majorana modes
have real-valued energy (exactly zero energy). This can be
understood as follows. Since no gain or loss is present on edges,
Majorana zero modes (localized exactly on edges) experience
no gain or loss. This leads to stable Majorana modes. If, on
the other hand, gain and loss are not balanced in the system,

FIG. 3. Panels (a)–(c) show imaginary parts of the spectra as a
function of � for the parameters N = 12 and μ = T = 1. Panels
(a)–(c) are for g0 = 0.1, g0 = 0.15, and g0 = 0.5, respectively. The
spectrum is real unless � exceeds a critical value if the non-Hermitian
strength is weak. The energy eigenvalues are partially complex if the
non-Hermitian strength is strong.
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then the Majorana modes have purely imaginary eigenvalues
with the energy i/2

∑N
j=1 gj as can be seen from Eq. (6).

This is interesting in the sense that Majorana modes that are
localized on gainless and lossless edges feel the net amount
of gain and loss in the whole system. Note that Majorana
zero modes must come in pairs since each of them is, in a
sense, half a fermion. In other words, a fermion is equivalent
to two spatially separated Majorana fermions. We say that
γ1,A and γN,B are localized exactly at the two edges and thus
there exists highly nonlocal entanglement. To this end, we also
check our treatment numerically. We consider random values
of non-Hermitian strengths along the lattice such that the total
gain and loss is zero in the system. We also assume that there
exists no gain or loss on edges. We find that the spectrum
is partially complex and a zero energy solution exists that
corresponds to localized eigenfunctions on the edges.

Suppose next that μ�=0 but |μ|<2T . The Majorana zero
modes are no longer simply given by γ1,A and γN,B . Therefore,
wave functions that correspond to spatially separated Majorana
modes are not exactly localized on edges. In fact they decay
exponentially along the chain and have a negligible overlap.
Let us now study the reality of the spectrums of these Majorana
modes by numerically solving our system for a chain with
N = 12 sites and open-boundary conditions. We suppose
T = 1 without loss of generality. We consider g1 = gN = 0
and gj = (−1)j g0, otherwise, where g0 is a constant. In
this way, alternating gain and loss occurs through the lattice
except on edges. The non-Hermitian part of the Hamiltonian
is PT symmetric if N is an even number. Recall that the
full Hamiltonian is not PT symmetric in the usual sense.
We numerically find that the spectrum is real in a broad range
of the parameters μ and �. This interesting result predicts
the existence of Majorana modes with a real spectrum in our
non-Hermitian system. Figures 2 and 3 show the imaginary
parts of the spectra as a function of μ and � for fixed �

and μ, respectively. As we have discussed above, the system is
topologically nontrivial when −2 < μ < 2. In the limit μ = 0,
the spectrum is partially complex but the Majorana modes
have real energy eigenvalues. As can be seen from Fig. 2, the
imaginary part of the spectrum vanishes at a critical μ that
depends on both g0 and �. The critical value of μ is smaller
than 2 in most cases. This means that the energy eigenvalues
are completely real in the topologically nontrivial region if μ

is beyond a critical number. As a result, we say that stable
Majorana modes that exponentially decay along the chain
appear in our system. The reality of the spectrum remains
even when the system enters the topologically trivial region,
where |μ| > 2. Note that the two phases are distinguished by
the presence or absence of unpaired Majorana zero modes.
The above discussion holds if the non-Hermitian strength is
weak. If it exceeds a critical value, g0 > gc, then the spectrum
becomes complex in the whole region as shown the in the
Fig. 2(d).

One can also fix μ and investigate the reality of the spectrum
as a function of �. Figure 3 plots it for three different values
of g0. The system admits a real spectrum for fixed μ unless
� exceeds a critical value for weak values of g0. If g exceeds
a critical value then the energy eigenvalues are all complex
valued.

To sum up, we studied a non-Hermitian generalization of
the Kitaev model with balanced gain and loss. We showed that
stable Majorana zero energy modes exist in the zero chemical
potential limit even if gain and loss are randomly distributed in
the chain. If the chemical potential was different from zero, we
considered a PT -symmetric distribution of gain and loss and
we found stable Majorana zero modes. In this case, we showed
that the system admits a real spectrum as long as the chemical
potential and the non-Hermitian strength do not exceed
critical values. In all cases, the Hamiltonian was not PT
symmetric.
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