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It is shown that the nonlocal nonlinear Schrödinger equation recently proposed by Ablowitz and Musslimani
[Phys. Rev. Lett. 110, 064105 (2013)] is gauge equivalent to the unconventional system of coupled Landau-Lifshitz
equations. The first integrals of motion and one-soliton solution of an obtained model are given. The physical
and geometrical aspects of model and their effect on expected metamagnetic structures are studied.
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I. INTRODUCTION

Reference [1] generalizes the classical representation ac-
cording to which the necessary condition for the reality of
the spectrum of Hamiltonian H = p2 + V (x) is Hermiticity
(H = H †). It was shown that Hamiltonians which commu-
tate with composition of the parity reflection operator (P :
x → −x, p → −p) and the time-reversal operator (T : x →
x, p → −p, i → −i) have real eigenvalues. A necessary
condition for a Hamiltonian H to be PT symmetric is that its
potential V (x) should satisfy the condition V (x) = V ∗(−x).
This condition requires that the real part of the potential is
even while its imaginary part is an odd function of position x.

This fact has given an impetus to new research in many
diverse fields of physics, such as optics [2–5], quantum
mechanics [6,7], magnetism [8–10], quantum field theory
[11–14], and electric circuits [15,16]. See also Ref. [17]
for a review of nonlinear phenomena in PT -symmetric
systems. The first experimental realization of PT -symmetric
structure has been achieved in optics [2,4], where the role
of potential is played by the complex refractive-index n(x).
Such PT -symmetric photonic crystals have been realized in
heterogeneous multilayered structures, where the real part
of the refractive index is the same in all layers, while the
imaginary parts in neighboring layers differ in sign. It should
be noted that such gain-loss balance principle is applied
to many PT -symmetrical models [2–5,8–10,15,16,18]. For
definiteness, in Ref. [10] thePT -symmetric macroscopic two-
layered magnetic model with various magnetization vectors in
nanolayers is considered. The mathematical model is presented
by the system of coupled Landau-Lifshitz-Hilbert equations,
where an additional dissipative Hilbert term is used for
implementation of the gain-loss principle.

Simultaneously, nonlinear PT -symmetric dynamic models
closely related with the above-mentioned fields of physics
are under active study [13,19–22]. The nonlocal nonlinear
Schrödinger equation (NNLS), which was recently proposed
by Ablowitz and Musslimani [19], is of special interest,

iψt (x,t) + ψxx(x,t) + 2αψ(x,t)ψ∗(−x,t)ψ(x,t) = 0, (1)

and is already applied to optics [2–5]. Here, the pa-
rameter α = ±1 indicates the focusing (+) and defo-
cusing (−) nonlinearity. It is obvious that self-induced
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potential V (x,t) = ψ(x,t)ψ∗(−x,t) is PT symmetric:
V (x,t) = V ∗(−x,t). The key point is that Eq. (1) has qualita-
tive properties other than the standard nonlinear Schrödinger
equation (NLS) and its classical generalizations [23–32]. For
example, in the focusing case, the model (1) admits both bright
(sech-type) and dark (tanh-type) soliton states [33], while the
standard NLS model

iψt (x,t) + ψxx(x,t) + 2|ψ(x,t)|2ψ(x,t) = 0 (2)

can support only bright solution. The NLS model is inte-
grable by the inverse scattering method of Zakharov-Shabat’s
scheme [34]. A relation between the solutions of Eq. (2) and
isotropic Heisenberg ferromagnetic model (Landau-Lifshitz
equation)

st = s × sxx (3)

was first found in Ref. [35]. Here, s(x,t) is the unitary
vector of a magnetization density (spin density). The Landau-
Lifshitz equation (LL) is also completely integrable [36]. The
models (2) and (3) and their generalizations belong to the same
gauge equivalence class [37,38].

Hence, a quite relevant question arises: Which of magnetic
structures is the NNLS model gauge equivalent to? The main
purpose of our article is to resolve this issue. It permits
extension of the class of possible newPT -symmetric magnetic
structures.

In Sec. II, the focusing nonlinearity NNLS model is
shown to be gauge equivalent to the unconventional system
of coupled LL equations and first integrals of motion are
obtained. An exact one-soliton solution for the designed model
is presented in Sec. III. In Sec. IV, we attempt to establish
connection with real magnetic structures. The obtained model
can be interpreted as the model for a two-sublattice pseudo-
antiferromagnet. Finally, Sec. V contains the conclusion.

II. GAUGE EQUIVALENCE

The concept of the gauge equivalence for two spectral
problems

�1,x = U1(x,t,λ)�1, �1,t = V1(x,t,λ)�1, (4a)

�2,x = U2(x,t,λ)�2, �2,t = V2(x,t,λ)�2, (4b)

was introduced in Ref. [37]. According to the definition,
spectral problems (4a) and (4b) are gauge equivalent, if
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eigenfunctions �1 and �2 can be connected as �1 = G�2,
where G(x,t) is the solution of Eq. (4a) at zero spectral
parameter λ. The Lax pair (U1,V1) is transformed to (U2,V2)
under the above gauge transformation as

U1 = GU2G
−1 + GxG

−1, V1 = GV2G
−1 + GtG

−1. (5)

In Ref. [19] it was proved that the NNLS model (1) is
integrable by the inverse scattering transform method. It was
shown the NNLS model can be embedded into the 2 × 2
spectral problem of Zakharov-Shabat [34]. The corresponding
Lax pair is given as follows:

U1 = A0 + λA1, V1 = B0 + λB1 + λ2B2. (6)

In focusing case of nonlinearity (α = 1) matrices Aj , Bk (j =
0,1; k = 0,2) are given by

A0 =
(

0 ψ∗(−x,t)

−ψ(x,t) 0

)
, A1 = iσ3,

B0 = −i

(
ψ∗(−x,t)ψ(x,t) ψ∗

x (−x,t)

ψx(x,t) −ψ∗(−x,t)ψ(x,t)

)
,

B1 = 2A0, B2 = 2A1. (7)

Here and elsewhere, σ = (σ1,σ2,σ3) is the set of Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
. (8)

In view of relations A0σ3 = −σ3A0 and SSx = −SxS =
2G−1A0G the gauge transformation (5) yields, after some
algebraic manipulation,

U2(x,t) = iλS, V2(x,t) = iλSSx + 2iλ2S, (9)

where the matrix S(x,t) is defined as S = G−1σ3G, and G

satisfies the system of equations

Gx = A0G, Gt = B0G. (10)

From zero-curvature condition U2,t − V2,x + [U2,V2] = 0
(here [,] is commutator) we can obtain the following matrix
equation:

St = − i

2
[S,Sxx]. (11)

It is easy to check that S2 = I and Sp S = 0, where I is the
unit matrix.

Note that a similar procedure is used for the NLS
model [37]. However, in our case the sense of the matrix
S(x,t) is somewhat different—it cannot be associated with the
classical vector of the Heisenberg ferromagnetic spin. Indeed,
from Eq. (10) we find that in general the matrix G(x,t) can be
represented as

G =
[
p(x,t) q∗(−x,t)

q(x,t) p∗(−x,t)

]
. (12)

From definition S = G−1σ3G it follows that matrix S is
not Hermitian, in contrast to the NLS model case. Matrix S is
expressed explicitly as

S =
(

s3 s1 − is2

s1 + is2 −s3

)
, (13)

where (s1,s2,s3) is complex-valued vector with components sj

s1(x,t) = �[p∗(−x,t)q∗(−x,t) − p(x,t)q(x,t)],

s2(x,t) = �i[p∗(−x,t)q∗(−x,t) + p(x,t)q(x,t)],

s3(x,t) = �[p(x,t)p∗(−x,t) + q(x,t)q∗(−x,t)],

� = [p(x,t)p∗(−x,t) − q(x,t)q∗(−x,t)]−1. (14)

In our case the matrix S has PT symmetry

S(x,t) = σ3S
†(−x,t)σ3. (15)

This follows directly from the identities

s1(x,t) = −s∗
1 (−x,t), s2(x,t) = −s∗

2 (−x,t),

s3(x,t) = s∗
3 (−x,t).

Let us now represent Eq. (11) in the vector form.
Matrix S can be written as the sum of a Hermitian matrix

and a skew-Hermitian matrix: S = M + iL, where M =
M† = (S† + S)/2 and L = L† = i(S† − S)/2. Moreover, it is
important to note that Sp M = 0 and Sp L = 0. Then, in the
standard Pauli matrix representation M = m · σσσ , L = l · σσσ ,
the Eq. (11) is

mt = m × mxx − l × lxx, (16a)

lt = m × lxx + l × mxx, (16b)

where m = (m1,m2,m3), l = (l1,l2,l3) are real-valued vectors.
Furthermore, from the invariance of the quadratic form s2

1 +
s2

2 + s2
3 the following invariants of system (16) can be obtained:

m2 − l2 = 1, m · l = 0. (17)

Thus, NNLS model (1) is gauge equivalent to the coupled
LL equations (CLL) (16) and (17).

In Ref. [19], an infinite series of conservation laws for
Eq. (1) is also obtained (see also Refs. [39,40]). The first two
of these integrals of motion can be written as

I1 =
∫ +∞

−∞
I1dx, I2 =

∫ +∞

−∞
I2dx,

where I1 = ψ∗(−x,t)ψ(x,t) and I2 = iψ(x,t)ψ∗
x (−x,t) −

iψx(x,t)ψ∗(−x,t) correspond to the pseudopower and the
pseudomomentum, respectively. As is well known, in the
standard case the integrals of motion of NLS and LL models
are closely related [35,37]. In an analogous way, we can obtain
the main integrals of motion of the CLL model and relate them
to I1 and I2 integrals.

Let us introduce the density of energy and the current
density as

E = 1

2

(
m 2

x − l 2
x + 2imx · lx

)
, (18a)

J = mxx · a − lxx · b + i(mxx · b + lxx · a), (18b)

where a = m × mx − l × lx and b = m × lx + l × mx . It may
easily be shown, using equations Eqs. (16) and (17), that the
energy density E(x,t) and the current density J (x,t) satisfy
the continuity equation Et + Jx = 0. Furthermore, by using
Eqs. (11), (16), and (17) we get for the energy density

E = − 1
2 det (Mx + iLx) = 2 det A0 = 2I1

062124-2



TOWARDS A GAUGE-EQUIVALENT MAGNETIC . . . PHYSICAL REVIEW A 93, 062124 (2016)

and for the current density

J = − i

4
Sp {(M + iL)[Mx + iLx,Mxx + iLxx]}

= − 1
2 Sp {SxSt } = 2Sp {A0B0} = 2I2.

It is important to note the integral characteristics W =∫ +∞
−∞ Edx and J = ∫ +∞

−∞ J dx can take real values only,
although the densities E and J are complex-valued functions.
This is due to the fact that the densities E and J can be
expressed as the sum of a real-valued parity-even term and a
parity-odd term that is purely imaginary:

Re E(−x,t) = Re E(x,t), Im E(−x,t) = − Im E(x,t),

ReJ (−x,t) = ReJ (x,t), ImJ (−x,t) = − ImJ (x,t).

In Ref. [40] this is presented in more detail.

III. SOLITON SOLUTION

The gauge equivalence allows us to construct solutions of
CLL model (16)–(17) from the solutions of the original NNLS
model (1).

On comparing the Galilean invariance of NLS and NNLS
models,

ψ̃NLS(x,t) = ψNLS(x − 2vt + d,t)eivx−iv2t ,

ψ̃NNLS(x,t) = ψNNLS(x − 2ivt + id,t)e−vx+iv2t ,

the solution of the NNLS model can be obtained from the
well-known sech-type soliton solution of the NLS model by
performing the mapping v → iv, d → id. As a result we
obtain

ψ(x,t) = a sec Xe−i�, (19)

where X = −iax + 2avt + d, � = ivx − (a2 + v2)t − φ

and all parameters are real. The above solution satisfies
zero boundary conditions lim|x|→+∞ ψ = 0 at |a/v| > 1.
Further, we will consider only this domain of parameters.
In the strict sense, this solution is not solitonic, because its
envelope oscillates in time with period T = π/2av. Moreover,
solution (19) is singular at the point (0, tsing), where tsing =
(π − 2d)/4av + nT and n is integer (compare with the
Eqs. (22) and (23) from Ref. [19]).

It should be noted that from invariance of the model (1)
under the Galilean transformation with a pure imaginary
velocity it follows the NNLS model cannot have propagating
localized states. It is particularly true for solution (19).

It is evident that Eqs. (10) can be easily integrated, and the
solution is given as

p(x,t) = −cv + aci tan X,

q(x,t) = ac sec Xe−i�,

where c is the constant of integration.
Then, by using Eqs. (14) the components of vectors m and

l can be written as

mk = sk(x,t) − sk(−x,t)

2
, m3 = s3(x,t) + s3(−x,t)

2
,

lk = sk(x,t) + sk(−x,t)

2i
, l3 = s3(x,t) − s3(−x,t)

2i
,

(20)

where k = 1,2 and sj (x,t) are given by

s1 = 2ia sec X

a2 − v2
(v sin � + a cos � tan X), (21a)

s2 = 2ia sec X

a2 − v2
(v cos � − a sin � tan X), (21b)

s3 = 1 − 2a2 sec2 X

a2 − v2
. (21c)

As is easy to see, the NNLS model transforms to the
canonical NLS model under the spatial parity symmetry
ψ(x,t) = ψ(−x,t). In this case, the matrix S in Eq. (11) is
converted into the Hermitian and consequently l = 0, whereas
the system (16) and (17) become mt = m × mxx , where
m2 = 1, which is the conventional LL equation. For the
spatial parity symmetry of the considered solution (19) it is
needed to put the restrictions v = 0 and d = 0. The dynamics
projections of vector m(x,t) at such parameters is depicted
in Figs. 1(a)–1(c). For the geometrical clarity in Fig. 1(d) the
dynamics of vector m(x,t) in space R3 for the selected value
x = x0 is displayed. As was expected, vector m(x,t) describes
a localized stationary nonlinear wave of a precession relative
to the direction Oz.

The nonzero velocity case v �= 0 is more interesting.
Figure 2 shows the dynamic of the one-soliton solution for
this case. We have depicted the dynamics of vectors m and
l for the fixed value x = x0 in the same manner as in the
previous case. Now, the length of these vectors satisfies
a hyperbolic condition (17), but individually they are not
bounded. In this connection, m(x,t) and l(x,t) do not belong
to the two-dimensional unit sphere, in contrast to the case of
the LL equation. The corresponding two-dimensional surface

FIG. 1. Dynamics of the one-soliton solution of the CLL model. Panels (a)–(c) show the vector projections of m; panel (d) shows dynamics
of m(x0,t) in space R3. The curve corresponds to the trajectory of vector. The parameters are chosen as a = 1.2, v = 0.0, d = 0.0, φ = 0.5,
and x0 = 1.85.
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FIG. 2. Dynamics of the one-soliton solution of the CLL model. Panels (a)–(c) and (e)–(g) show the vector projections of m and l
respectively; panels (d) and (h) show dynamics of m(x0,t) and l(x0,t) in space R3. The curves correspond to the trajectory of vectors. The
parameters are chosen as a = 3.1, v = 1.2, d = 1.7, φ = 0.5, and x0 = 0.75.

for m(x,t) and l(x,t) are dependent on the space variable x.
Figure 2(d) depicts that the dynamics of the vectors m(x,t) is
more complex then just the precession. The additional term
l × lxx in Eq. (16a) outputs the system from the precessional
steady state. A similar complex nonprecession dynamics also
has the vector l(x,t).

The analysis of the obtained solution (20) and (21) implies
some important properties:

(i) vectors m and l have finite boundary conditions

lim
|x|→+∞

m = m0, lim
|x|→+∞

l = l0, (22)

where m0 = (0,0,1) and l0 = (0,0,0);
(ii) the integrals∫ +∞

−∞
m − m0 dx = Msum,

∫ +∞

−∞
l dx = l0, (23)

where Msum = (0,0,4a/[v2 − a2]) are constants of motion;
(iii) vectors m and l develop a singularity in the finite time

t = tsing at x = 0.

IV. DISCUSSION

It is well known that in the phenomenological theory,
the dynamics of multisublattice systems, in particular, the
dynamics of Heisenberg antiferromagnetic spin systems at
temperatures much below the critical, is described by the
coupled LL equations [41–43]

mt = −
{

m × δW

δm
+ l × δW

δl

}
, (24a)

lt = −
{

m × δW

δl
+ l × δW

δm

}
. (24b)

Here m and l are normalized vectors of ferromagnetism and
antiferromagnetism, respectively, which are related to the
sublattices magnetization vectors M1 and M2 in the two-
sublattice model by the m = α1(M1 + M2) and l = α2(M1 −
M2), where α1,2 are normalization coefficients. The functional

W corresponds to the energy of a magnet. The equations of
motion (24) in the nondissipative approximation are known to
have two integrals of motion

m2 + l2 = 1, m · l = 0. (25)

In our case, the energy density E is a complex quantity. In
this regard, let us introduce two real energy characteristics Wm

and Wl for CLL model:

Wm = 1

2

∫ +∞

−∞
E(x,t) + E(−x,t) dx, (26a)

Wl = 1

2i

∫ +∞

−∞
E(x,t) − E(−x,t) dx. (26b)

According to this definitions Eqs. (16) can be written as

mt = −
{

m × δWm

δm
+ l × δWm

δl

}
, (27a)

lt = −
{

m × δWl

δm
+ l × δWl

δl

}
. (27b)

Since in this case the invariants of motions m2 − l2 = 1
and m · l = 0 have a pseudocharacter, we can speak here
of an appropriate model of pseudo-antiferromagnetic. In the
proposed interpretation, the vectors m0 and l0 in Eqs. (22)
correspond to the ground state of pseudomagnetic. At the same
time, the integrals (23) make sense that the total magnetization
of excitation under the ground state m0 is preserved, and the
total vector of antiferromagnetism is zero.

We should note that the model does not preserve lengths
of sublattice magnetization vectors, |M1,2| �= const. Such
models were previously examined to describe the dynamics of
relaxation processes in magnetic materials [42,43]. In our case,
it is due solely to the pseudo-Euclidean nature of the model.
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V. CONCLUSION

So, we showed that the PT -symmetric nonlocal
nonlinear Schrödinger equation is gauge equivalent to the
unconventional model of coupled Landau-Lifshitz equations.
This model, in particular cases, reduces to the classical LL
equation. From the gauge connection with an initial NNLS
model we derived the one-soliton solution and the first
constants of motion of the model.

Physical aspects of the obtained model provide the ex-
tension of properties of traditional macroscopic magnetic
systems. The geometrical aspect of the model, in spite of
its pseudo- Euclidean nature, is not an artifact. The model
discussed here as well as the initial NNLS model (1) in this
regard can be useful in the physics of nanomagnetic artificial
materials [44–48].

In the present paper, we have restricted ourselves only
to the focusing NNLS model. The development of a gauge-
equivalent magnetic model with the defocusing nonlinearity
α = −1 is also of profound interest. This and other issues will
be considered elsewhere.
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