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Tightening the entropic uncertainty bound in the presence of quantum memory
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The uncertainty principle is a fundamental principle in quantum physics. It implies that the measurement
outcomes of two incompatible observables cannot be predicted simultaneously. In quantum information theory,
this principle can be expressed in terms of entropic measures. M. Berta et al. [Nat. Phys. 6, 659 (2010)] have
indicated that uncertainty bound can be altered by considering a particle as a quantum memory correlating with
the primary particle. In this article, we obtain a lower bound for entropic uncertainty in the presence of a quantum
memory by adding an additional term depending on the Holevo quantity and mutual information. We conclude
that our lower bound will be tightened with respect to that of Berta et al. when the accessible information about
measurements outcomes is less than the mutual information about the joint state. Some examples have been
investigated for which our lower bound is tighter than Berta et al.’s lower bound. Using our lower bound, a lower
bound for the entanglement of formation of bipartite quantum states has been obtained, as well as an upper bound
for the regularized distillable common randomness.
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I. INTRODUCTION

The uncertainty principle is the most basic feature of
quantum mechanics and can be called the heart of quantum
mechanics [1,2]. This principle bounds the uncertainties of
measurement outcomes of two incompatible observables on a
system in terms of the expectation value of their commutator.
According to this principle, if measurement on a particle is
selected from a set of two observables {X,Z}, then we have
the following relation for quantum state |ψ〉 [3]:

�X�Z � 1
2 |〈ψ |[X,Z]|ψ〉|, (1)

where �X =
√

〈ψ |X2|ψ〉 − 〈ψ |X|ψ〉2, �Y =√
〈ψ |Y 2|ψ〉 − 〈ψ |Y |ψ〉2 are the standard deviations

and [X,Z] = XZ − ZX is the commutator of observables
X and Z. The uncertainty principle can be characterized in
terms of Shannon entropies of the measurement outcome
probability distributions of the two observables. The most
famous version of the entropic uncertainty relation (EUR)
was conjectured by Deutsch [4]. It was improved by Kraus
[5] and then proved by Maassen and Uffink [6]. It states that,
given two observables X and Z with eigenbases {|xi〉} and
{|zj 〉}, for any state ρA,

H (X) + H (Z) � log2
1

c
=: qMU, (2)

where qMU is the incompatibility measure, H (O) =
−�kpk log2 pk is the Shannon entropy of the measured
observable O ∈ {X,Z}, pk is the probability of the outcome k,
c = maxi,j cij , and cij = |〈xi |zj 〉|2.

Various attempts have been made to improve and to
generalize this relation [7–24]. In the following, we explain the
generalization of EUR to the case in the presence of a memory
particle [9]. One can describe the uncertainty principle by
means of an interesting game between Alice and Bob. First,
Bob prepares a particle in a quantum state and sends it to Alice.
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Then, Alice and Bob reach an agreement about measuring two
observables X and Z on the particle by Alice. Alice does her
measurement on the quantum state of the particle with one
of the measurements and declares her choice of measurement
to Bob. If Bob guesses the measurement outcome correctly,
he will win the game. The minimum of Bob’s uncertainty
about Alice’s measurement outcomes is bounded by Eq. (2).
So far, it has been assumed that there is just one particle,
but if Bob prepares a correlated bipartite state ρAB and sends
just one of the particles to Alice and keeps the other particle
as a quantum memory for himself, he can guess Alice’s
measurement outcomes with better accuracy. The uncertainty
principle in the presence of quantum memory has been studied
by Berta et al. [9], and they obtained the following relation:

S(X|B) + S(Z|B) � qMU + S(A|B), (3)

where S(X|B) = S(ρXB ) − S(ρB) and S(Z|B) = S(ρZB ) −
S(ρB ) are the conditional von Neumann entropies of the
postmeasurement states,

ρXB =
∑

i

(|xi〉〈xi | ⊗ I)ρAB(|xi〉〈xi | ⊗ I),

ρZB =
∑

j

(|zj 〉〈zj | ⊗ I)ρAB(|zj 〉〈zj | ⊗ I),

and S(A|B) = S(ρAB ) − S(ρB) is the conditional von Neu-
mann entropy. We discuss some special cases: first, if measured
particle A and memory particle B are entangled, S(A|B) is
negative, and Bob’s uncertainty about Alice’s measurement
outcomes can be reduced. Second, if A and B are maximally
entangled, then S(A|B) = −log2d (d is the dimension of
measured particle). As log2

1
c

cannot exceed log2 d, Bob can
perfectly guess both X and Z. Third, if there is no quantum
memory, Eq. (3) reduces to

H (X) + H (Z) � log2
1

c
+ S(A), (4)
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which is stronger than Maassen and Uffink’s [6] uncertainty
relation; since the measured particle is in the mixed state
S(A) �= 0, it tightens the lower bound of Eq. (2).

Pati et al. [10] proved that the uncertainties S(X|B) and
S(Z|B) are lower bounded by an additional term compared to
Eq. (3) as

S(X|B) + S(Z|B) � log2
1

c
+ S(A|B)

+ max{0,DA(ρAB) − JA(ρAB)}. (5)

The classical correlation JA(ρAB) is defined as

JA(ρAB) = S(ρB) − min
{�A

i }
S
(
ρB|{�A

i }), (6)

where the optimization is over all positive operator-valued
measures {�A

i } acting on measured particle A. Quantum
discord is the difference between the total and the classical
correlations,

DA(ρAB) = I (A; B) − JA(ρAB), (7)

where total correlation is

I (A; B) = S(ρA) + S(ρB ) − S(ρAB). (8)

The lower bound in Eq. (5) tightens the bound in Eq. (3)
if the discord DA(ρAB) is larger than the classical correlation
JA(ρAB).

Coles and Piani [17] derived an improvement of the
incompatibility measure qMU , capturing the role of the second-
largest entry of [cij ], denoted c2, as

S(X|B) + S(Z|B) � q ′ + S(A|B), (9)

where

q ′ = qMU + 1

2
(1 − √

c) log2
c

c2
; (10)

when system A is a qubit, then c = c2, and hence q ′ = qMU .
In this paper, we introduce a lower bound for EUR by adding

an additional term depending on the mutual information of the
bipartite state and the Holevo quantities of the ensembles that
Alice prepares for Bob by her measurements. We show that
if Bob’s accessible information about Alice’s measurement
outcomes is less than the mutual information, our lower bound
is tighter than the lower bound proposed by both Berta et al.’s
and Pati et al.’s lower bounds. We show that for complementary
observables, there is a wide variety of quantum states for which
our lower bound is stronger than the other lower bounds.
We discuss four examples and show that our lower bound
for pure states coincides with Berta et al.’s lower bound [9]
and that for Werner states coincides with Pati et al.’s lower
bound [10], but for Bell diagonal states and two-qubit X states
our lower bounds are tighter than their lower bounds. It has
been found that EUR has various applications, for example,
in entanglement detection [25–28] and quantum cryptography
[29,30]. As other applications, here we obtain a lower bound
for the entanglement of formation of bipartite quantum states
and an upper bound for the regularized distillable common
randomness.

This paper is organized as follows. In Sec. II, we introduce
the lower bound for EUR, and we show that for a wide variety
of states, our EUR lower bound represents an improvement to

Berta et al.’s uncertainty relation by raising the lower bound
limits. In Sec. III, we examine our lower bound for four
examples (pure, Werner, Bell diagonal, and two-qubit X states)
and compare our lower bound with the other lower bounds. In
Sec. IV, we discuss some of the applications of our lower
bound. Section V includes the discussion and summary of our
findings.

II. IMPROVED UNCERTAINTY RELATION WITH
THE HOLEVO QUANTITY

In this section, we obtain a lower bound for EUR in the
presence of a memory particle. Consider a bipartite state
ρAB shared between Alice and Bob. Alice performs the X

or Z measurement and announce her choice to Bob. Bob’s
uncertainty about both X and Z measurement outcomes is

S(X|B) + S(Z|B) = H (X) − I (X; B) + H (Z) − I (Z; B)

� qMU + S(A) − [I (X; B) + I (Z; B)]

= qMU + S(A|B)

+ {I (A; B) − [I (X; B) + I (Z; B)]},
where in the second line, we apply Eq. (4) and in the last line
we use the identity S(A) = S(A|B) + I (A; B). Therefore, the
EUR is obtained as

S(X|B) + S(Z|B) � qMU + S(A|B) + max{0,δ}, (11)

where

δ = I (A; B) − [I (X; B) + I (Z; B)]. (12)

We note that when Alice measures observable P on her
particle, she will obtain the ith outcome with probability
pi = trAB(�A

i ρAB�A
i ) and Bob’s particle will be left in the

corresponding state ρB
i = trA(�A

i ρAB�A
i )

pi
; then

I (P ; B) = S(ρB ) −
∑

i

piS
(
ρB

i

)
is the Holevo quantity, and it is equal to the upper bound
of Bob’s accessible information about Alice’s measurement
outcomes. Thus, one can see that if the sum of information that
Alice sends to Bob by her measurements is less than the mutual
information between A and B, the above EUR represents an
improvement to Berta et al.’s uncertainty relation by raising the
lower bound limit by the amount of δ. It is worth noting that the
inequality (4) becomes an equality if observables X and Z are
complementary and subsystem A is a maximally mixed state.
Thus, our lower bound is perfectly tight for the class of states
with maximally mixed subsystem A (including Werner states,
Bell diagonal states, and isotropic states) and complementary
observables. In other words, S(X|B) + S(Z|B) coincides with
our lower bound if X and Z are complementary and the
subsystem A is maximally mixed.

It was conjectured [31] that the quantum mutual informa-
tion is lower bounded by the sum of the classical mutual
information in two mutually unbiased bases, namely,

I (A; B) � I (X; X′) + I (Z; Z′), (13)

where X′ and Z′ are two complementary observables measured
on the memory particle. Although a stronger conjecture in
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which X′ and Z′ are replaced by the quantum memory B can
be violated in general [32], we will show that when X and Z

are complementary, there is a wide variety of states for which
δ � 0. We have

S(X|B) + S(Z|B) = H (X) + H (Z) − S(A)

+ S(A|B) + δ

� log2 d + S(A|B), (14)

where in the last line we use Berta et al.’s inequality and d is
the dimension of subsystem A. Here we see that

δ � log2 d + S(A) − H (X) − H (Z); (15)

hence, when the right-hand side (RHS) of the above inequality
is zero, δ � 0. When subsystem A is maximally mixed,
S(A),H (X), and H (Z) are equal to log2 d, making the RHS of
the above equation zero. Also, when X (Z) minimally disturbs
subsystem A, H (X) [H (Z)] is equal to S(A), and H (Z)
[H (X)] is equal to log2 d, which, again, makes the RHS zero.
So for all Bell diagonal states, Werner states, and maximally
correlated mixed states we have δ � 0, and for these states our
inequality is tighter than Berta et al.’s uncertainty relation (3).
Because Pati et al. in obtaining Eq. (5) used JA(ρAB) instead of
both I (X; B) and I (Z; B), we know that JA(ρAB) � I (X; B)
and I (Z; B). Thus, our lower bound is stronger than Eq. (5).

III. EXAMPLES

A. Pure bipartite state

First, we consider a pure bipartite state written in the
Schmidt basis, |�〉AB = ∑

i

√
λi |ai〉|bi〉. For this state we

have, S(ρA) = S(ρB ), I (A; B) = 2S(ρB ). Alice measures
observable X or Z on her particle. Regardless of which
observable Alice measures, whenever she obtains a particular
outcome, the state of Bob’s particle will be pure; then S(ρB

i ) =
0 and I (X; B) = I (Z; B) = S(ρB). Thus, δ = 0, and our lower
bound coincides with Berta et al.’s lower bound (3).

B. Werner state

As a second example, we consider a two-qubit Werner state,

ρAB = 1 − p

4
IA ⊗ IB + p|�−〉AB〈�−|, (16)

where 0 � p � 1 and |�−〉AB = 1√
2
(|01〉 − |10〉) is the Bell

state.
Because the Werner states are invariant under all uni-

tary transformations of the form U ⊗ U so that I (X; B) =
I (Z; B) = JA(ρAB) and then δ = {I (A; B) − [I (X; B) +
I (Z; B)]} = DA(ρAB) − JA(ρAB), where we use Eq. (7), our
lower bound equals the one which Pati et al. introduced.

C. Bell diagonal state

As the third example, we consider the set of two-qubit states
with the maximally mixed marginal states. This state can be
written as

ρAB = 1

4

⎛
⎝I ⊗ I +

3∑
i,j=1

wijσi ⊗ σj

⎞
⎠, (17)

where σi(i = 1,2,3) are the Pauli matrices. According to the
singular-value-decomposition theorem, the matrix W = {wij }
can always be diagonalized by a local unitary transformation;
then the above state transforms to the following form:

ρAB = 1

4

(
I ⊗ I +

3∑
i=1

riσi ⊗ σi

)
. (18)

The above density matrix is positive if 	r = (r1,r2,r3)
belongs to a tetrahedron defined by the set of vertices
(−1,−1,−1),(−1,1,1),(1,−1,1), and (1,1,−1). A projective
measurement performed by Alice can be written by P A

± =
1
2 (I ± 	n · 	σ ), where 	n is a unit vector. If Alice measures
observable P on her particle, Bob’s qubit will be in the states
ρB

± = 1
2 (I ± ∑

i niriσi) occurring with probability 1
2 . One can

obtain the entropy as

S(ρB
±) = h

(
1 +

√
(n1r1)2 + (n2r2)2 + (n3r3)2

2

)
,

where h(x) = −x log2 x − (1 − x) log2(1 − x) is the binary
entropy. From ρB = p+ρB

+ + p−ρB
− = 1

2I and S(ρB) = 1, we
conclude

I (P ; B) = 1 − h

(
1 +

√
(n1r1)2 + (n2r2)2 + (n3r3)2

2

)
.

Now, we rearrange the three numbers {r1,r2,r3} according
to their absolute values and denote the rearranged set as
{r̄1,r̄2,r̄3} such that |r̄1| � |r̄2| � |r̄3|. When 	̄n = (1,0,0) (	̄n is a
rearranged unit vector corresponding to 	̄r), the Holevo quantity
I (P ; B) reaches its maximum, JA(ρAB) = 1 − h( 1+|r̄1|

2 ). If
Alice chooses X such that I (X; B) = JA(ρAB) and Z is com-

plementary to X, then I (Z; B) = 1 − h(
1+

√
(n̄2 r̄2)2+(n̄3 r̄3)2

2 ), and
one can see that I (Z; B) � JA(ρAB); hence, δ � DA(ρAB) −
JA(ρAB), and our EUR is tighter than the EURs of Pati et al.
[10].

Especially, when r1 = 1 − 2p and r2 = r3 = −p, with 0 �
p � 1, the state in Eq. (18) becomes

ρ = p|�−〉〈�−| + 1 − p

2
(|�+〉〈�+| + |�+〉〈�+|). (19)

Now we consider three complementary observables, X, Y ,
and Z, corresponding to 	̄n = (1,0,0), 	̄n = (0,1,0), and 	̄n =
(0,0,1), respectively. One can see that

I (X; B) = JA(ρAB) = max

{
1 − h(p),1 − h

(
1 + p

2

)}
,

I (Y ; B) = 1 − h

(
1 + p

2

)
,

I (Z; B) = min

{
1 − h(p),1 − h

(
1 + p

2

)}
. (20)

Berta et al.’s lower bounds for two sets of complementary
observables {X,Y } and {X,Z} are the same and are equal to

qMU + S(A|B) = −p log2 p − (1 − p) log2

(
1 − p

2

)
,

(21)
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FIG. 1. Lower bounds of the entropic uncertainty relation of the two complementary observables in the presence of quantum memory
when Bob prepares a correlated bipartite state in a special class of state: ρAB = p|�−〉〈�−| + 1−p

2 (|�+〉〈�+| + |�+〉〈�+〉). The blue solid
line shows our results, the green dashed line shows Pati et al.’s result, and the red dot-dashed line represents Berta et al.’s lower bound. (a) The
uncertainty lower bound when one considers the two complementary observable X and Y , i.e., choosing 	̄n = (1,0,0), 	̄n = (0,1,0), respectively,
and (b) the uncertainty lower bound when one considers the two complementary observable X and Z, i.e., choosing 	̄n = (1,0,0), 	̄n = (0,0,1),
respectively.

and similarly, Pati et al.’s lower bound for two sets of
complementary observables is the same:

qMU + S(A|B) + max{0,DA(ρAB) − JA(ρAB)}

= −p log2 p − (1 − p) log2

(
1 − p

2

)

+ max

{
0,2 + p log2 p + (1 − p) log2

(
1 − p

2

)

− 2 max

[
1 − h(p),1 − h

(
1 + p

2

)]}
. (22)

The above discussion indicates that Berta et al.’s lower
bound is not able to distinguish between any two observables
in the set of the complementary observables. In other words the
lower bound is observable independent for the complementary
observables. Also, this argument is true for Pati et al.’s lower
bound. But our lower bounds for two sets of complementary
observables {X,Y } and {X,Z} are obtained as

qMU + S(A|B) + δ

= 2 − max

{
1 − h(p),1 − h

(
1 + p

2

)}
− h

(
1 + p

2

)
(23)

and

qMU + S(A|B) + δ = 2 − max

{
1 − h(p),1 − h

(
1 + p

2

)}

− min

{
1 − h(p),1 − h

(
1 + p

2

)}
,

(24)

respectively. As can be seen, our lower bounds of EUR for two
sets of complementary of observables are different. In other
words, the lower bound depends on the measured observables
as well as correlations of quantum states. As can be seen from

Figs. 1(a) and 1(b), in some intervals related to parameter p,
the results obtained by Berta et al., Pati et al., and us overlap.
In Fig. 1(a) we consider the two complementary observables
X and Y , i.e., corresponding to 	̄n = (1,0,0), 	̄n = (0,1,0),
respectively; in the A region Pati et al. and Berta et al. obtain
the same results. However, if p ∈ [1/3,1], then we face the
situation that our result overlaps with Pati et al.’s result (we
illustrate this by the C region). In Fig. 1(b) we consider the two
complementary observables X and Z, i.e., corresponding to
	̄n = (1,0,0), 	̄n = (0,0,1), respectively. In this case, our result
does not overlap with the results obtained by Berta et al. and
Pati et al.; however, Berta et al.’s and Pati et al.’s results overlap
in the A region.

D. Two-qubit X states

As the last example, we consider a special class of two-qubit
X states,

ρAB = p|�+〉〈�+| + (1 − p)|11〉〈11|,
where |�+〉 = 1√

2
(|01〉 + |10〉) is a maximally entangled state

and 0 � p � 1. The density matrices of subsystems A and B

are

ρA = ρB =
(p

2 0
0 1 − p

2

)
.

One can obtain the conditional von Neumann entropy

S(A|B) = −p log2 p − (1 − p) log2(1 − p) +
(p

2

)
× log2

(p

2

)
+

(
1 − p

2

)
log2

(
1 − p

2

)
, (25)

and the mutual information

I (A; B) =p log2 p + (1 − p) log2(1 − p) − 2
(p

2

)
log2

(p

2

)
− 2

(
1 − p

2

)
log2

(
1 − p

2

)
. (26)
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FIG. 2. Lower bounds of the entropic uncertainty relation of the
two complementary observables σx and σz in the presence of quantum
memory when Bob prepares a correlated bipartite state in a special
class of state: ρAB = p|�+〉〈�+| + (1 − p)|11〉〈11|. The blue solid
line shows our results, the green dashed line shows Pati et al.’s result,
and the red dot-dashed line represents Berta et al.’s lower bound.

If Alice measures observable X = σx or Z = σz, where σx

and σz are Pauli matrices, then one can see that

I (X; B) = −p

2
log2

(p

2

)
−

(
1 − p

2

)
log2

(
1 − p

2

)
+ 1

2
(1 −

√
1 − 2p + 2p2)

× log2
1

2
(1 −

√
1 − 2p + 2p2)

+ 1

2
(1 +

√
1 − 2p + 2p2)

× log2
1

2
(1 +

√
1 − 2p + 2p2). (27)

and

I (Z; B) = − p

2
log2

(p

2

)
−

(
1 − p

2

)
log2

(
1 − p

2

)
+ p

2
log2

(
p

2 − p

)
+ (1 − p) log2

(
2(1 − p)

2 − p

)
.

(28)

For this state the classical correlation equals I (X; B); there-
fore, the quantum discord equals DA(ρAB) = I (A; B) −
I (X; B) [33–35]. So we can obtain Berta et al.’s, Pati et al.’s,
and our lower bounds. As can be seen from Fig. 2, our lower
bound improves their results.

IV. APPLICATIONS

In addition to fundamental significance, the EUR has
applications in various quantum information processing tasks
[8,27]. In the following we mention some of the applications.
According to Eq. (3), if H (X|B) + H (Z|B) < log2

1
c

or
if I (X; B) + I (Z; B) > H (X) + H (Z) − log2

1
c
, then condi-

tional entropy S(A|B) is negative, and A and B must be
entangled. According to our relation if H (X|B) + H (Z|B) <

log2
1
c

+ max{0,δ}, then the joint system is entangled. Fur-
thermore, when δ � 0, i.e., I (A; B) � I (X; B) + I (Z; B), if
I (X; B) + I (Z; B) > S(A), then A and B are entangled [the

conditional entropy S(A|B) becomes negative], which is an
improvement over using Berta et al.’s EUR.

Also, we can obtain a lower bound for the entanglement of
formation Ef (ρAB) and its regularized form E∞

f (ρAB). Recall
that

Ef (ρAB) = min
{pi ,|ψi 〉}

∑
i

piS(TrB[|ψi〉〈ψi |]),
(29)

E∞
f (ρAB) = lim

n−→∞
1

n
Ef [(ρAB)⊗n],

where the minimum is taken over all ensembles {pi,|ψi〉}
satisfying

∑
i pi |ψi〉〈ψi | = ρAB . In Ref. [36] it was shown

that Ef (ρAB) � −S(A|B); by using the fact that entropies are
additive for tensor-power states, we conclude that E∞

f (ρAB) �
−S(A|B). Suppose that Alice measures X or Z on her
state, and corresponding to her measurement, Bob makes
a measurement on his state to guess Alice’s outcome. Let
P X

e and P Z
e be the probabilities that Bob’s guess about

Alice’s measurement outcomes is incorrect when she measures
X and Z, respectively. According to the Fano inequality,
S(X|B) + S(Z|B) � bF , where bF ≡ h(P X

e ) + P X
e log2(d −

1) + h(P Z
e ) + P Z

e log2(d − 1). So we obtain a lower bound
for the regularized entanglement of formation as follows:

E∞
f (ρAB) � log2

1

c
+ max{0,δ} − bF . (30)

As another application, we obtain an upper bound for the
regularized distillable common randomness [37]. Considering
the n states ρ⊗n

CB shared between Charlie and Bob, the optimum
amount of classical correlation that they can share by means
of classical communication from C to B is given by

C→
D (ρCB) = lim

n−→∞
1

n
J (ρCB)⊗n. (31)

Koashi and Winter [38] show that

E∞
f (ρAB) + C→

D (ρCB) = S(ρB); (32)

using this equality and Eq. (30), we obtain an upper bound for
the distillable common randomness as follows:

C→
D (ρCB) � S(ρB) + bF − log2

1

c
− max{0,δ}. (33)

V. CONCLUSION

We have obtained a lower bound for the entropic uncertainty
in the presence of quantum memory by adding an additional
term depending on the Holevo quantity and mutual informa-
tion. We have shown that our lower bound tightens that of Berta
et al. whenever the mutual information between two particles
is larger than the sum of two sources of classical information
that Alice sends to Bob by her measurements. We have
demonstrated that for the complementary observables, a wide
variety of states, including Bell diagonal states and maximally
correlated mixed states, fulfills this condition. We have
compared our lower bound with the other lower bounds for
some examples; especially, for a class of Bell diagonal states
and two-qubit X states, the comparison of the lower bounds is
depicted in Figs. 1 and 2, where it is clear that our lower bound
(blue solid line) significantly improves the previously known
results. We have discussed that our lower bound shows an
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improvement over the other lower bounds in entanglement
detection. Using our lower bound, we have obtained a
nontrivial lower bound for the entanglement of formation and
an upper bound for the regularized common randomness.
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