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Exact decoherence-free state of two distant quantum systems in a non-Markovian environment
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Decoherence-free-state (DFS) encoding supplies a useful way to avoid the detrimental influence of the
environment on quantum information processing. The DFS was previously well established in either the two
subsystems locating at the same spatial position or the dynamics under the Born–Markovian approximation.
Here, we investigate the exact DFS of two spatially separated quantum systems consisting of two-level systems
or harmonic oscillators coupled to a common non-Markovian zero-temperature bosonic environment. The exact
distance-dependent DFS and the explicit criterion for forming the DFS are obtained analytically, which reveals
that the DFS can arise only in one-dimensional environment. It is remarkable to further find that the DFS is
just the system-reduced state of the famous bound state in the continuum (BIC) of the total system predicted by
Wigner and von Neumann. On the one hand our result gives insight into the physical nature of the DFS, and on
the other hand it supplies an experimentally accessible scheme to realize the mathematically curious BIC in the
standard quantum optical systems.
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I. INTRODUCTION

As a ubiquitous phenomenon in microscopic world, deco-
herence describes an inevitable loss of quantum coherence
due to the interactions between quantum system and its
environment. It is seen as a main obstacle to the realization of
any applications utilizing quantum coherence, e.g., quantum
computation [1], quantum teleportation [2], and quantum
metrology [3]. Therefore, how to control decoherence is a
crucial issue in quantum engineering. Many active schemes,
such as feedback control [4] and dynamical decoupling [5],
have been proposed to beat this unwanted effect. On the
other hand, people found that decoherence can also be used
for good purposes [6–8]. It was found that the decoherence
caused by a common environment can play a constructive
role in generating stable entanglement between two quantum
systems [9–12]. The intrinsic physics is the existence of
the decoherence-free state (DFS) [13–15], which triggers
the enthusiasm of relearning the role of decoherence of
composite system caused by a common environment from
different systems such as harmonic oscillators [16–20] and
spins [21–24], and different environments such as crystal
chains [25–27] and waveguides [23,24,24,28–31].

It is clear in principle that the DFS is present when the two
quantum systems are at same spatial position [13–15]. While
when they are spatially separated, there are still controversies
on whether the DFS exists or not or, equivalently, whether
the common environment can create stable entanglement
distribution. Some works pointed out that the entanglement
would disappear when the spatial distances are larger than
the wavelength associated with the environmental cutoff
frequency [18,32–35], while some other works claimed that the
DFS for distant quantum systems is still possible to be formed
[24–28]. However, the physical nature of the DFS, especially
its explicit form and its dependence on the spatial distance, and
when it is formed have seldom been touched on in these works.
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The realistic significance of answering these questions is that
it could supply meaningful message for designing practical
devices to distribute long-distance entanglement.

Another inspiration of our study is the famous bound
state in the continuum (BIC), which was proposed soon after
the birth of quantum mechanics [36]. Being stable in space
but with its energy lying in the continuous energy band,
such a counterintuitive eigenstate of the quantum system was
regarded as a mathematical curiosity due to the inaccessible
potentials for a long time [37]. That situation changed when
it was proposed that the BIC can arise naturally by virtue of
the destructive interference between two resonance states in
molecule systems [38]. Although the BIC has been extensively
studied in the classical optical systems [39–45], the BIC was
rarely demonstrated heretofore in quantum systems.

In this work, we reveal that these two seemingly unrelated
concepts merge together in open quantum systems. By
studying the decoherence of two distant quantum systems
consisting of either two-level systems (TLSs) or harmonic
oscillators embedded in a common bosonic environment, we
derive analytically the exact DFS and the physical criterion
for forming the DFS without resorting to the Born–Markovian
approximation (BMA). It is found that the distance-dependent
DFS can only exist in a one-dimensional environment. This is
in sharp contrast with the case in which the two subsystems
are located in the same spatial position, where the DFS is
present irrespective of the environmental dimension. Further
study reveals that the DFS, which scales as 1/R with increasing
system distance R, corresponds exactly to the system-reduced
state of the BIC of the total system. The emergence of such a
BIC can be physically attributed to the destructive interference
between the two independent interaction channels of the two
subsystems with the common environment, which can be seen
as a direct realization of Friedrich and Wintgen’s idea on
the BIC [38] in quantum optical system. Our conclusions
are verified in the models of two TLSs interacting with a
coupled cavity chain acting as an environment. Our study
gives a realizable scheme to detect the BIC by observing the
decoherence dynamics of open quantum systems.
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The paper is organized as follows: In Sec. II, we present
our model. The DFS under and beyond the BMA is derived in
Sec. III. The correspondence between the DFS and the BIC is
also established here. By two examples of two TLSs interact-
ing with the nearest-neighbor and the next-nearest-neighbor
coupled-cavity arrays acting as environments, our conclusions
are verified in Sec. IV. In Sec. V, a summary is given.

II. THE MODEL

Consider two spatially separated quantum systems coupled
to a common dissipative bosonic environment. The Hamilto-
nian reads Ĥ = ĤS + ĤE + ĤI with

ĤS =
∑
j=1,2

ω0Ô
†
j Ôj , ĤE =

∑
k

ωkâ
†
kâk,

(1)
ĤI =

∑
j,k

gk(eik·rj Ô+
j âk + H.c.),

where Ôj and ω0 are the annihilation operators and frequency
of the j th quantum system located at rj , â

†
k and âk are the

creation and annihilation operators of the environmental kth
mode with frequency ωk , and gk is the coupling strength
between the systems and the environment. Our system can
be two TLSs when Ô = σ̂− [23] or two harmonic oscillators
when Ô = b̂ [16,18]. Here, the rotating-wave approxima-
tion is used in ĤI, which is valid in the weak-coupling
limit. Under this approximation, the total excitation number
N̂ = ∑

j,k(Ô†
j Ôj + â

†
kâk) of the system is conserved since

[N̂ ,Ĥ ] = 0. The Hilbert space of the whole system is thus
divided into independent subspaces with definite excitation
number N .

Previously, it was found that, when the two systems are
placed in the same position, there is the DFS [15]

|�DFS〉 = 1√
2

(Ô†
1 − Ô

†
2)|0,0〉

with |0〉 being the ground state of the systems due to
ĤI|�DFS〉 = 0. This DFS physically originates from the
permutation symmetry of the quantum systems [46]. We here
are interested in exploring whether the DFS still exists when
the two systems are placed in different positions such that the
permutation symmetry is broken.

III. DECOHERENCE-FREE STATE

A. Decoherence-free state under Born–Markovian
approximation

To describe the DFS of two spatially separated quantum
systems influenced by the common zero-temperature environ-
ment, we consider first its decoherence dynamics under the
BMA. The master equation reads [47]

ρ̇(t) = −i

[∑
i

(ω0 + �ii)Ô
†
i Ôi + (�12Ô

†
1Ô2 + H.c.),ρ(t)

]

+
∑
i,j

γij

2
[2Ôjρ(t)Ô†

i − {Ô†
i Ôj ,ρ(t)}]

≡ Ľρ(t), (2)

where ρ(t) is the reduced density matrix of the systems,

�ij = P
∑

k

g2
ke

ik·(ri−rj )

ωk − ω0
,

with P being the Cauchy principal value, i = j denoting
the frequency shift, and i �= j denoting the dipole-dipole
interaction strength induced by the environment, the decay
rate reads

γij = 2π
∑

k

g2
ke

ik·(ri−rj )δ(ω0 − ωk). (3)

Generally, �12 is real due to the parity symmetry �12 =
�21 = �∗

12. It can be seen from Eq. (2) that the environment
can not only induce individual spontaneous emission γjj

and frequency shift �jj to each system, but also induce the
correlated spontaneous emission γ12 = γ21 and the coherent
dipole-dipole interaction �12 between the two quantum sys-
tems by the exchange of virtual photons.

When the decay rates γij satisfy γ12 = γ21 = ±γ11 = ±γ22,
there is a DFS

ρDFS = |�DFS〉∓〈�DFS|, (4)

with |�DFS〉∓ = 1√
2
(Ô†

1 ∓ Ô
†
2)|0,0〉 due to ĽρDFS = 0. Com-

bined with Eq. (3), the explicit criterion for the presence of the
DFS (4) is

k(ω0) · R = lπ, l ∈ Z, (5)

with R = r1 − r2 being the relative coordinate of the quantum
systems. The sign in Eq. (4) is “−” (“+”) when l is even
(odd). Equation (5) illustrates that, given the direction of R,
the existence of the DFS requires that all the degenerate wave
vectors k with the same frequency ω0 must satisfy Eq. (5)
simultaneously. It strongly limits the existence of the DFS in a
multidegenerate environment as in two- and three-dimensional
cases, where the degeneracy of k is generally infinite. This con-
dition is possible only for the one-dimensional-environment
case. For example, when the one-dimensional environment is
formed by the electromagnetic field, the wave vectors for ω0

can only take ±k. If k satisfies Eq. (5), then −k satisfies it
naturally. This explains well why all of the works [23,25–
27,48] on the DFS are in one-dimensional environments.

B. Exact decoherence-free state beyond Born–Markovian
approximation

The above Markovian theory reveals that the DFS for
distant quantum systems only exists in the one-dimensional-
environment case. A natural question is whether it is still
valid in the non-Markovian dynamics. The exploration to
this issue is meaningful because the non-Markovian effect is
non-negligible in a one-dimensional environment, especially
for composite quantum systems. Besides the weak system-
environment coupling, the validity of the BMA also requires
that the environmental correlation timescale is much shorter
than the characteristic time of the system. For the composite
quantum system as considered in Eq. (1), a new timescale
characterizing the communication between the subsystems via
the common environment is involved. When this timescale is
comparable with the environmental correlation time, the non-
Markovian effect would dominate the dynamics even in the
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weak-coupling limit. This non-Markovian effect is especially
important in a one-dimensional environment [24,28,49].

Based on the observation that the DFS must be a system-
reduced state of the whole-system eigenstate, only under which
it is unchanged by the action of Ĥ , we here calculate the
exact eigenstate of Eq. (1). The DFS derived in this way can
efficiently avoid the BMA used in the preceding section. The
eigenstate in the single-excitation subspace can be expanded
as

|ψ〉 =
[

2∑
i=1

ciÔ
†
i +

∑
k

dkâ
†
k

]
|0,0,{0k}〉,

where |{0k}〉 denotes the environmental vacuum state. From
the Schrödinger equation, we can obtain (i �= j )

ci

(
E − ω0 −

∑
k

g2
k

E − ωk

)
= cj

∑
k

g2
ke

ik·(ri−rj )

E − ωk

, (6)

and

dk = gk

∑
j=1,2

cj e
−ik·rj

E − ωk

,

where E is the eigenenergy [50,51]. After eliminating c1 and
c2, we have E satisfying

E = ω0 +
∑

k

g2
k[1 ± cos(k · R)]

E − ωk

, (7)

where we used the environmental spatial reflection symmetry,
i.e., the modes ±k are degenerate in their ωk and gk. Substi-
tuting Eq. (7) into Eq. (6) and using again the spatial reflection
symmetry, we obtain c1 = ±c2 ≡ C/

√
2. Absent in the single-

quantum-system case [50,52], the cosine term in Eq. (7)
manifests the interference of the two interaction channels of
the quantum systems with the common environment. As seen
in the following, it is just this interference term which produces
the BIC in our bipartite quantum systems.

In the infinite limit of the environmental modes, there is an
integration identity for any function f (k):∑

k

f (k)

E − ωk

= P
∑

k

f (k)

E − ωk

− iπ
∑

k

f (k)δ(E − ωk).

(8)

The imaginary part in Eq. (8) entering into the eigenenergy
E contributes to the dynamics a damping rate. By using this
identity in Eq. (7), we conclude that, to ensure the existence of
the DFS, this imaginary part must vanish for one eigenenergy
E0 of Eq. (7), i.e.,

1 ± cos [k(E0) · R] = 0 ⇒ k(E0) · R = lπ, l ∈ Z. (9)

This criterion is almost the same as Eq. (5) under the BMA
except that the argument E0 differs from ω0. The eigenstate
with the real E0 under Eq. (9) is an isolated bound state,
while other ones with Eq. (9) unsatisfied are called resonant
states and play a significant role in Fano effect [53,54]. The
eigenenergy of the bound state falls in the environmental
continuous energy band [37], it thus is a BIC. Equation (9)
describes the destructive interference of the two interaction
channels of the quantum systems with the environment. The

BIC here has a close analogy with that predicted in molecule
systems [38]. After tracing over the environmental degrees of
freedom from the BIC, we obtain the exact DFS as

ρDFS = |C|2|�DFS〉±〈�DFS| + (
1 − |C|2)|0,0〉〈0,0|, (10)

where ± depend on the parity of l in Eq. (9). It can be seen
that, different from the result (4) under the BMA, the exact
DFS is a classical mixture of |�DFS〉± and |0,0〉.

The above analysis reveal that, to make the DFS (10) exist,
Eq. (9) must be satisfied simultaneously by all the degenerate
modes k having the common eigenenergy E0. This again is
possible for the one-dimensional-environment case when k is
either parallel or antiparallel to R. So we have |dk|2 = g2

k [1 ±
cos(kR)]|C|2/(E0 − ωk)2. With the help of the normalization
condition |C|2 + ∑

k |dk|2 = 1, we obtain

|C|2 =
[

1 +
ˆ

dω
J (ω)[1 ± cos(k(ω)R)]

(E0 − ω)2

]−1

, (11)

where the summation over k has been replaced by the
integration over ω in the infinite limit of the environmental
modes, and J (ω) = ∑

k g2
k δ(ω − ωk) is the environmental

spectral density. Acting as the weight of |�DFS〉± in ρDFS

[Eq. (10)], |C|2 determines the entanglement available in the
DFS. We notice that the main contribution to the integration in
Eq. (11) comes from the modes with ω ≈ E0. Making a Taylor
expansion near E0, it can be recast into

|C|2 ≈
[

1 + J (E0)
ˆ

dδ
[1 − cos (αRδ)]

δ2

]−1

= [1 + J (E0)π |α|R]−1 ≈ [J (E0)π |α|R]−1, (12)

where δ = ω − E0, α = ∂ωk(ω)|ω=E0 , and Eq. (9) have been
used. It demonstrates that the weight of |�DFS〉± in the exact
DFS scales as 1/R with increasing distance between the
two quantum systems. In practice, one generally is interested
in realizing distant entanglement distribution by using the
DFS [23,25–27]. Our exact result implies that the available
entanglement decays in power law as 1/R with the increase of
the distance between quantum systems. This sets a practical
bound on the performance of the scheme.

IV. ILLUSTRATIVE EXAMPLES

We first consider two TLSs embedded in a one-dimensional
environment formed by a nearest-neighbor coupled-cavity
array (see Fig. 1) with the Hamiltonian

ĤE =
N∑

j=1

[ωcâ
†
j âj + ξ (â†

j+1âj + H.c.)], (13)

FIG. 1. Schematic diagram of a one-dimension nearest-neighbor
coupled-cavity array with two TLSs embedded in cavities m1 and m2,
respectively. The distance between two nearest-neighbor cavities is
x0.
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where âj and â
†
j are the annihilation and creation operators of

the j th cavity with frequency ωc, and ξ is the coupling strength
between the nearest-neighbor cavities separated in distance x0.
By a Fourier transformation âj = ∑

k âke
ikjx0/

√
N , Eq. (13)

is recast into ĤE = ∑
k ωkâ

†
kâk with dispersion relation ωk =

ωc + 2ξ cos(kx0). Thus the coupled-cavity array defines an
environment with finite bandwidth 4ξ centered at its eigen-
mode ωc. The two TLSs are embedded in cavities m1 and m2,
respectively. The interactions are

ĤI = g
∑
j=1,2

(
σ̂+

j âmj
+ H.c.

)
, (14)

which, in the Fourier space, takes the form ĤI =
(g/

√
N )

∑
j=1,2

∑
k[eikmj x0 âkσ̂

+
j + H.c.]. It was previously

found that, if the TLS frequency falls in the band-gap
regime of the environmental spectrum, i.e., ω0 < ωc − 2ξ

or ω0 > ωc + 2ξ , a bound state in the band gap forms
[52,55], which has been found to play a constructive role
in decoherence suppression [56,57], entanglement trapping
[50], and entanglement generation [58]. Here we exclude this
situation from consideration and concentrate on the potentially
formed BIC. Such a bound state has been found in quantum
Hall insulators [59] and optical waveguide array structures
[39,40].

We see from the dispersion relation that there is a two-fold
degeneracy with ±k for one explicit ωk . It can be calculated
exactly from Eq. (7) that the eigenenergy of the DFS (10) is
E0 = ω0 (see Appendix), which in turn reduces criterion (9)
for forming the DFS (10) to

�m arccos

(
ω0 − ωc

2ξ

)
= lπ, (15)

and the weight (11) to

|C|2 =
[

1 + g2�m

4ξ 2 − (ωc − ω0)2

]−1

, (16)

with �m = m1 − m2. The obtained result E0 = ω0 confirms
that the DFS is a BIC because ω0 is within the environmental
energy band. Equation (16) reveals that |C|2 scales as 1/�m

with the increase of the TLS distance, which is consistent with
the conclusion in last section.

To check whether the BIC is free of decoherence, we
resort to the dynamics under the initial condition |�(0)〉 =
|1,0,{0k}〉. Its evolved state takes the form

|�(t)〉 =
[∑

i=1,2

αi(t)σ̂
+
i +

∑
k

βk(t)â†
k

]
|0,0,{0k}〉, (17)

where αi(t) are governed by

α̇i(t) + iω0αi(t) +
∑
j=1,2

ˆ t

0
dτfij (t − τ )αj (τ ) = 0, (18)

with fij = (g2/N )
∑

k e−iωk (t−τ )+ik(mi−mj )x0 . The convolution
in Eq. (18) keeps all the non-Markovian effect induced by
the backactions of the memory environment. By the Laplace
transform F̃ (s) = ´∞

0 e−stF (t)dt , it is straightforward to

show that

α̃1(s) =
∑
j=0,1

1/2

s + iω0 + g2

N

∑
k

1+(−1)j cos(k�mx0)
s+iωk

, (19)

α̃2(s) = − (g2/N)
∑

k eik�mx0 (s + iωk)−1

s + iω0 + g2

N

∑
k(s + iωk)−1

α̃1(s). (20)

Setting s = −iE, one can find that the pole of Eq. (19) satisfies
Eq. (7) and thus corresponds exactly to the eigenenergy of the
BIC. There is no further pole in Eq. (20). Using the residue
theorem, we readily have

αj (t) = Zje
−iω0t +

ˆ ′iε+∞

iε−∞

dE

2π
α̃j (−iE)e−iEt , (21)

where the first term with residue Zj is contributed from the
BIC with eigenenergy ω0, the second term contains all the
contributions from the continuous energy band, and the prime
in the integration represents the integration region excluding
the eigenenergy of the BIC. It is interesting to find that the two
residues take exactly as

Z1 = ±Z2 = |C2|/2. (22)

Oscillating with time in continuously changing frequencies,
the second term in Eq. (21) behaves as a decay and approaches
zero in the long-time limit due to the out-of-phase interference.
Therefore, the steady state of our system after tracing over the
environmental degrees of freedom from |�(∞)〉 is

ρ(∞) = |C|2
2

ρDFS +
(

1 − |C|2
2

)
|0,0〉〈0,0|, (23)

which demonstrates the dominate role of the ρDFS formed
in the long-time steady state. On the contrary, if no BIC
and DFS formed, then ρ(∞) = |0,0〉〈0,0|. The results verify
analytically from the point of view of the dynamics the validity
of our expectation that the reduced state of the formed BIC is
a DFS of our decoherent system.

We plot the time evolution of the total excited-state
population Pt = ∑

i=1,2 |αi(t)|2 in different TLS separation
�m when ω0 = ωc in Fig. 2(a) and 1.2ωc in Fig. 2(b)
calculated by numerically solving Eq. (18). Equation (15)
indicates that the DFS is formed when �m is an even number
for ω0 = ωc. Figure 2(a) indeed shows that Pt tends to a
finite value when �m is an even number and decays to
zero whenever �m is an odd number. The preserved steady-
state population matches well with Tr[ρ(∞)

∑
j=1,2 σ̂+

j σ̂−
j ] =

|C|4/2 calculated analytically from Eq. (16), which verifies
unambiguously that the initial state evolves exclusively to the
ρ(∞) obtained in Eq. (23). When ω0 = 1.2ωc, the DFS is
formed when �m = 3n with n an integer. As confirmed by
Fig. 2(b), Pt approaches |C|4/2 when �m = 3n and decays
to zero in other cases without any exception. The exact
correspondence between the analytical results |C|4/2 and the
numerical dynamics testifies the distinguished role played by
the formed DFS in the steady-state behavior.

To further verify the validity of Eq. (23), we plot the
evolution of the entanglement between the TLSs in Figs. 2(c)
and 2(d). The entanglement is quantified by concurrence [60],
which for the state (17) is Ct = 2|α1(t)α2(t)|. We can find
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FIG. 2. Time evolution of the TLS excited-state population Pt in
panels (a) and (b) and concurrence Ct in panels (c) and (d) as the
change of the TLS separation �m when ω0 = 1.0ωc in panels (a) and
(c) and 1.2ωc in panels (b) and (d) obtained by numerically solving
Eqs. (18). The blue solid and green dashed lines denote the cases
with and without the DFS formed, respectively. The dots connected
by the red dot-dashed lines plot the results analytically evaluated
from Eq. (16). Other parameters are ξ = 0.2ωc, g = 0.05ωc, and
N = 1201.

that the parameter regimes in Figs. 2(a) and 2(b) where a
nonzero Pt is achieved match exactly well with the regimes in
Figs. 2(c) and 2(d) where a finite concurrence is obtained. The
concurrence approaches the analytical value |C|4/2, which is
just the concurrence calculated from the steady state (23). It
demonstrates well the distinguished role played by the formed
DFS in the dynamics and steady-state behavior.

On the other hand, if the environment is not two-fold
degenerate, then the criterion (9) for forming the DFS is
hard to satisfy even for the one-dimensional-environment case.
To verify this, we next consider another situation where the
next-nearest-neighbor coupling of the cavity array is involved.
Then Eq. (13) is recast into

Ĥ ′
E =

∑
j

[ωcâ
†
j âj + (ξ â

†
j+1âj + ξ ′â†

j+2âj + H.c.)], (24)

where ξ ′ is the next-nearest-neighbor hopping rate. The
dispersion relation is derived to be

ωk = ωc + 2ξ cos(kx0) + 2ξ ′ cos(2kx0). (25)

Compared with the two-fold degeneracy in the nearest-
neighbor-hopping case, the modes here can take four-fold
degeneracy ±k1 and ±k2 [see Fig. 3(a)]. The formation of
the DFS require that criterion (9) should be satisfied for
±k1 and ±k2 simultaneously. We numerically calculate the
dynamics and plot the Pt obtained in Fig. 3(b). It shows that
the DFS previously formed in Fig. 2(b) disappears with the
next-nearest-neighbor hopping considered. Thus, no stable
concurrence can be established in the long-time limit except
for the trivial case �m = 0. Although in some cases the

FIG. 3. (a) Environmental dispersion relation reveals that a four-
fold degeneracy exists when ωk > 1.04ωc. (b), (c) Time evolution of
Ct in different TLS separation �m when the next-nearest-neighbor
hopping of the cavity array is considered. The blue solid and
green dashed lines denote the cases with and without the DFS
formed, respectively. The orange dotted lines show that Ct , although
dramatically slowed down, finally decays to zero. The parameter
ξ ′ = 0.9ξ and the others are the same as in Fig. 2(b).

decay of Ct transiently formed is dramatically slowed down,
it decays to zero asymptotically [see Fig. 3(c)]. This gives a
counterexample to illustrate the validity of criterion (9).

V. CONCLUSIONS

In summary, we investigated the DFS of two distant
quantum systems embedded in a common environment. Going
from a general model of dissipative systems, we derived the
criterion for forming the DFS for both the Markovian and
non-Markovian decoherence dynamics. It is interesting to find
that the DFS may be formed only in the one-dimensional-
environment case. We have also revealed that the exact DFS
for the non-Markovian dynamics is a reduced density matrix
of the so-called BIC of the total system, which consists of a
classical mixture of the maximally entangled state |�〉± and
|0,0〉. The weight of the former scales as 1/R with the increase
of the system distance, which sets a bound on distributing
entanglement over distant quantum systems via the common
environment. The exact dynamics of two TLSs embedded in
two types of coupled-cavity array as the common environment
are studied explicitly, which verifies our prediction on the
DFS. Our scheme supplies an implementation of Friedrich and
Wintgen’s idea on the realization of the mathematically curious
BIC in explicit quantum optical system [37]. By giving insight
into the physical nature of the DFS, our exact DFS result is
expected to be helpful to interpret the environment-induced
entanglement between two quantum systems.
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APPENDIX: DERIVATION OF THE EIGENVALUE OF THE
BOUND STATE IN THE CONTINUUM

The eigenvalue of the BIC for the coupled-cavity-array
environment satisfies

E0 = ω0 + g2

N

∑
k

1 ± cos(kx0�m)

E0 − ωk

, (A1)

where ± are determined by the separation �m according to
Eq. (15). With the dispersion relation ωk = ωc + 2ξ cos(kx0),
Eq. (A1) in the continuous limit of the environmental modes
is recast into

E0 = ω0 + g2x0

2π

ˆ 2π
x0

0
dk

1 ± cos(kx0�m)

E0 − ωc − 2ξ cos(kx0)
. (A2)

Setting z = eikx0 , we have

E0 = ω0 + g2

2πi

‰
z=1

dz
1 ± 1

2 (z�m + z−�m)

z(E0 − ωc) − ξ (z2 + 1)

= ω0 − g2

2ξ

‰
z=1

dz

2πi

1 ± z�m

(z − a − iε)(z − a∗ − iε)

− g2

2ξ

‰
z=1

(−z2)
dz−1

2πi

1 ± z−�m

[z − a − iε][z − a∗ − iε]

= ω0 − g2

2ξ

‰
z=1

dz

2πi

1 ± z�m

(z − a − iε)(z − a∗ − iε)

+ g2

2ξ

fi
z′=1

dz
′

2πi

1 ± z′�m

[z′ − (a + iε)−1][z′ − (a∗ + iε)−1]
,

(A3)

where a and a∗ are the solutions of the equation z2 −
z(E0 − ωc)/ξ + 1 = 0 and satisfy a∗a = 1 and ε is an
infinitesimal positive value. Here an integration relation

�
z=1 dz = ff

z−1=1 dz−1 has been used. There are two singu-
larities for each of the integrations in Eq. (A3). However,
only one of them falls within the circle z = 1 and z′ =
1, respectively. According to the residue theorem, we can
evaluate the integrations as

E0 = ω0 − g2

2ξ

[
1 ± a�m

a − a∗ + 1 ± (a∗)−�m

(a∗)−1 − a−1

]

= ω0 − g2(1 ± a�m)

ξ (a − a∗)
. (A4)

Because E0, as the the eigenvalue of the BIC, must be real, we
readily have 1 ± a�m = 0 and thus E0 = ω0. Substituting the
form of

a = ω0 − ωc

2ξ
− i

√
1 −

(
ω0 − ωc

2ξ

)2

= exp

[
−i arccos

(
ω0 − ωc

2ξ

)]
into 1 ± a�m = 0, we readily have

�m arccos

(
ω0 − ωc

2ξ

)
= lπ, (A5)

which is just the criterion (15) for forming the BIC.
With the similar procedure, the weight |C|2 can also be

evaluated as

|C|2 =
[

1 + g2x0

2π

ˆ 2π
x0

0
dk

1 ± cos (kx0�m)

[E0 − ωc − 2ξ cos (kx0)]2

]−1

=
[

1 ± g2�ma�m

ξ 2(a − a∗)2

]−1

=
[

1 + g2�m

4ξ 2 − (ω0 − ωc)2

]−1

, (A6)

where 1 ± a�m = 0 has been used.
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725 (2014).

[8] D. Kienzler, H.-Y. Lo, B. Keitch, L. de Clercq, F. Leupold, F.
Lindenfelser, M. Marinelli, V. Negnevitsky, and J. P. Home,
Science 347, 53 (2015).

[9] M. B. Plenio and S. F. Huelga, Phys. Rev. Lett. 88, 197901
(2002).

[10] D. Braun, Phys. Rev. Lett. 89, 277901 (2002).
[11] F. Benatti, R. Floreanini, and M. Piani, Phys. Rev. Lett. 91,

070402 (2003).
[12] Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S.

Sørensen, D. Leibfried, and D. J. Wineland, Nature (London)
504, 415 (2013).

[13] P. Zanardi and M. Rasetti, Phys. Rev. Lett. 79, 3306 (1997).
[14] L.-M. Duan and G.-C. Guo, Phys. Rev. Lett. 79, 1953 (1997).
[15] D. A. Lidar, I. L. Chuang, and K. B. Whaley, Phys. Rev. Lett.

81, 2594 (1998).
[16] J.-H. An and W.-M. Zhang, Phys. Rev. A 76, 042127 (2007).
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